首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
挥发性有机化合物(volatile organic compounds, VOCs)是大气污染物的重要组成成分,对环境和人体健康有潜在危害。生猪养殖业是畜牧业的支柱产业,但其发展受到猪场排放的VOCs等引起的空气污染严重制约。该研究从特征和减排技术两个方面对猪场的VOCs进行综述,重点介绍了猪场VOCs的来源、种类及其特征、致臭性VOCs的特征和检测方法等,从源头减排、过程控制与末端处理 3 个环节对猪场VOCs减排技术进行分析和探讨,并对该研究领域的发展趋势与研究重点进行展望,以期为开展畜牧业VOCs污染减排技术研究和推动畜牧业可持续发展提供参考。  相似文献   

2.
Sorption of volatile organic contaminants by soils (a review)   总被引:1,自引:0,他引:1  
The sorption of volatile organic compounds (VOCs)—the most common, mobile, but relatively poorly studied contaminants—by soils is considered. Typical VOCs of different classes, the major processes determining their retention by soils, the main rules and mechanisms of VOC sorption, and the experimental methods of its measurement are characterized. The common approximation models and geometrical shapes of VOC sorption isotherms are discussed. Provisional analytical ranges of experimental VOC sorption values in the aqueous and the vapor phases at low and high relative concentrations are reported.  相似文献   

3.
A computer based system, Best Available Technology Evaluator (BATE), has been developed for the evaluating cost and performance of the best available technologies for removing volatile organic chemicals (VOCs) from drinking water. The treatment processes considered are air stripping tower (AST), and air stripping with off-gas control by gas phase granular activated carbon (GPGAC) and liquid phase granular activated carbon (LPGAC). BATE is unique in its ability to model multicomponents, optimise total cost for different process configurations and yield the best process design for a given VOC scenario. This paper, the first in a two-part series, highlights a new cost optimization method for the AST with GPGAC system and a technique for combining mathematical models for efficient process design of AST and GPGAC processes. Discussion of LPGAC simulation results and comparison of an LPGAC system with AST and GPGAC processes for a variety of VOC scenarios will follow in the next paper.  相似文献   

4.
Volatile organic compounds (VOCs) are major contaminants of indoor air, with concentrations often several times higher than outdoors. They are recognized as causative agents of “building-related illness” or “sick-building syndrome”. Our previous laboratory test-chamber studies have shown that the potted-plant/root-zone microorganism microcosm can eliminate high concentrations of air-borne VOCs within 24 hours, once the removal response has been induced by an initial dose. However, the effectiveness of the potted-plant microcosm in ‘real-world’ indoor spaces has never previously been tested experimentally. This paper reports the results of a field-study on the effects of potted-plant presence on total VOC (TVOC) levels, measured in 60 offices (12 per treatment), over two 5–9 week periods, using three planting regimes, with two ‘international indoor-plant’ species. Fourteen VOCs were identified in the office air. When TVOC loads in reference offices rose above 100 ppb, large reductions, of from 50 to 75% (to <100 ppb), were found in planted offices, under all planting regimes The results indicate that air-borne TVOC levels above a threshold of about 100 ppb stimulate the graded induction of an efficient metabolic VOC-removal mechanism in the microcosm. Follow-up laboratory dose-response experiments, reported in the following paper, confirm the graded induction response, over a wide range of VOC concentrations. The findings together demonstrate that potted-plants can provide an efficient, self-regulating, low-cost, sustainable, bioremediation system for indoor air pollution, which can effectively complement engineering measures to reduce indoor air pollution, and hence improve human wellbeing and productivity.  相似文献   

5.
The production of nonmethane volatile organic compounds (VOCs) by soil microbes is likely to have an important influence on soil ecology and terrestrial biogeochemistry. However, soil VOC production has received relatively little attention, and we do not know how the emissions of microbially-produced VOCs vary across soil and litter types. We collected 40 root-free soil and litter samples from a diverse array of ecosystem types and conducted laboratory incubations in order to compare the types and quantities of VOCs emitted. VOC production rates were higher in litter samples than in soil samples, and the rates were correlated with microbial biomass and CO2 production levels. On average, the litter samples produced more types of VOCs than the soil samples with litters emitting a number of VOCs (including terpenoids) that were not generally emitted from the soil samples. Across all of the samples, we identified 100 VOCs, and more than 70% of these compounds could not be positively identified by GC/MS analyses. Of those VOCs that could be identified, furfural and similar furan compounds were noteworthy in that they were emitted in large amounts from nearly every sample examined. Other identifiable VOCs produced across a range of soil and litter samples included propanoic and butanoic acids, which are known products of microbial fermentation. Together these results suggest a need for additional research examining the specific factors influencing VOC emissions from soil and the identification of specific VOCs emitted from soil and litter as many of these compounds are likely to have important effects on belowground ecology.  相似文献   

6.
Human exposure to volatile organic compounds (VOCs) and residential indoor and outdoor VOC levels had hitherto not been investigated in Turkey. This study details investigations of indoor, outdoor, and personal exposure to VOCs conducted simultaneously in 15 homes, 10 offices and 3 schools in Kocaeli during the summer of 2006 and the winter of 2006–2007. All VOC concentrations were collected by passive sampling over a 24-h period and analyzed using thermal desorption (TD) and a gas chromatography/flame ionization detector (GC/FID). Fifteen target VOCs were investigated and included benzene, toluene, m/p-xylene, o-xylene, ethylbenzene, styrene, cyclohexane, 1,2,4-trimethylbenzene, n-heptane, n-hexane, n-decane, n-nonane, n-octane and n-undecane. Toluene levels were the highest in terms of indoor, outdoor, and personal exposure, followed by m/p-xylene, o-xylene, ethylbenzene, styrene, benzene and n-hexane. In general, personal exposure concentrations appeared to be slightly higher than indoor air concentrations. Both personal exposure and indoor concentrations were generally markedly higher than those observed outdoors. Indoor target compound concentrations were generally more strongly correlated with outdoor concentrations in the summer than in winter. Indoor/outdoor ratios of target compounds were generally greater than unity, and ranged from 0.42 to 3.03 and 0.93 to 6.12 in the summer and winter, respectively. Factor analysis, correlation analyses, indoor/outdoor ratios, microenvironment characteristics, responses to questionnaires and time activity information suggested that industry, and smoking represent the main emission sources of the VOCs investigated. Compared with the findings of earlier studies, the level of target analytes in indoor air were higher for several target VOCs, indicating a possible trend toward increased inhalation exposure to these chemicals in residential environments.  相似文献   

7.
Indoor air-borne loads of volatile organic compounds (VOCs) are usually significantly higher than those outdoors, and chronic exposures can cause health problems. Our previous laboratory studies have shown that the potted-plant microcosm, induced by an initial dose, can eliminate high air-borne VOC concentrations, the primary removal agents being potting-mix microorganisms, selected and maintained in the plant/root-zone microcosm. Our office field-study, reported in the preceding paper, showed that, when total VOC (TVOC) loads in reference offices (0 plants) rose above about 100 ppb, levels were generally reduced by up to 75% (to < 100 ppb) in offices with any one of three planting regimes. The results indicate the induction of the VOC removal mechanism at TVOC levels above a threshold of about 100 ppb. The aims of this laboratory dose-response study were to explore and analyse this response. Over from 5 to 9 days, doses of 0.2, 1.0, 10 and 100 ppm toluene and m-xylene were applied and replenished, singly and as mixtures, to potted-plants of the same two species used in the office study. The results confirmed the induction of the VOC removal response at the lowest test dosage, i.e in the middle of the TVOC range found in the offices, and showed that, with subsequent dosage increments, further stepwise induction occurred, with rate increases of several orders of magnitude. At each dosage, with induction, VOC concentrations could be reduced to below GC detection limits (< 20 ppb) within 24 h. A synergistic interaction was found with the binary mixtures, toluene accelerating m-xylene removal, at least at lower dosages. The results of these two studies together demonstrate that the potted-plant microcosm can provide an effective, self-regulating, sustainable bioremediation or phytoremediation system for VOC pollution in indoor air.  相似文献   

8.
Fungistasis is a widespread phenomenon that can be mediated by soil microorganisms and volatile organic compounds (VOCs). The relationship between soil microorganisms and VOCs is still unclear, however, and many fungistatic compounds remain to be identified. We assessed the effects of soils (soil direct fungistasis) and VOCs produced by natural soils (soil volatile fungistasis) on the spore germination of several fungi. Both strong soil direct fungistasis and soil volatile fungistasis were observed in a wide range of soils. Soil fungistasis and VOC fungistasis were significantly correlated (P<0.001). The volatile fungistatic activity of soils stopped after autoclaving. Some VOCs were identified by using solid-phase microextraction-gas chromatography/mass spectrum. VOC composition and in vitro antagonism of relatively pure commercial compounds also were measured. Some VOCs, trimethylamine, 3-methyl-2-pentanone, dimethyl disulfide, methyl pyrazine, 2,5-dimethyl-pyrazine, benzaldehyde, N,N-dimethyloctylamine and nonadecane, were produced by various fungistatic soils. Moreover, antifungal activity test of above VOCs showed that trimethylamine, benzaldehyde, and N,N-dimethyloctylamine have strong antifungal activity even at low levels (4-12 mg l−1).  相似文献   

9.
Volatile organic compounds (VOCs) in soils   总被引:1,自引:0,他引:1  
Soils may act as sources or sinks of volatile organic compounds (VOCs). Many of the formed VOCs are produced by microorganisms, and it would be a challenge to investigate soil microbial communities by studying their VOC profile. Such “volatilomics” would have the advantage of avoiding extraction steps that are often a limit in genomic or proteomic approaches. Abundant literature on microbially produced VOCs is available, and in particular novel detection methods allow additional insight. The aim of this paper was to give an overview on the current knowledge of microbial VOC emissions from soils.  相似文献   

10.
A great deal of research has been directed towards the problem of reduction and control of volatile organic compounds (VOCs). The aim of this research is to find a process that is both efficient and inexpensive in comparison with traditional air treatment technologies. Our biofilter (one stage system, 2 m in height) is an aerobic system for waste gases containing VOCs using the degradation properties of microbial flora (assorted cultures of Bacillus, Micrococcus, Acinetobacter and yeast). In this process, polluted gas diffuses across a filter bed into which a microbial culture has previously been introduced. Peat is the medium of choice for inoculation with microorganisms because of its adsorption and absorption properties, ability to retain moisture, and buffering capacity. Furthermore, the peat utilized is spherical in shape; thus, it is possible to avoid problems related to compacting. The objective of this study was to eliminate VOCs emitted from a rotogravure process. We were able to achieve promising results from biofiltration of two types of VOCs (a mixed solvent containing isopropyl acetate and 1-nitropropane, and the solvent: 1-nitropropane). The results obtained indicate that the elimination of nitropropane and the mixed solvent in the biofilter are considered to follow zero-order kinetics with reaction rate limitation and diffusion rate limitation, respectively.  相似文献   

11.
Information about soil VOC inventories and exchange rates in different soils is very scarce. Seasonality of soil VOC exchange rates is also largely unknown, despite the increasing interest in some soil volatile compounds, such as monoterpenes, because of their important role in soil ecology. We aimed to explore and quantify soil VOC exchange rates in a Mediterranean shrubland and their seasonality. Measurements of soil VOC exchange were taken using GC‐MS and PTR‐MS techniques, together with soil temperature, soil moisture and soil CO2 efflux measurements, during two annual campaigns with contrasting precipitation. Methanol, acetic acid, ethyl acetate, acetaldehyde, acetone, C3 and C4 carbonyls (such as methyl ethyl ketone), α‐pinene and limonene, showed the highest emission rates. Maximum soil monoterpene emission rates were very low (0.003 nmol m?2 s?1) compared with foliar monoterpene emission rates. The emission rates of the other VOCs were also low (maximum 0.8 nmol m?2 s?1) except for methanol (1.2 nmol m?2 s?1). Maximum soil uptake rates for some VOCs, such as methanol and acetonitrile (ranging from ?0.1 to ?0.5 nmol m?2 s?1) were, however, comparable with foliar uptake rates. Further studies are needed to corroborate these results and the possible importance of the soil VOC sink in regional chemistry‐climate models. Long‐term severe drought increased soil monoterpene emission rates in this Mediterranean shrubland. The increases seem to be linked to changes in the soil’s physical properties induced by low soil moisture. Unlike monoterpenes, other soil VOC emission rates decreased when soil moisture was low. The results suggest a seasonal control of soil temperature on the emission rates of monoterpenes and other VOCs. The emission rates increase with soil temperature. Positive correlations between the VOC exchange rates and the soil CO2 fluxes suggest that phenology of roots and microorganisms also controls seasonal changes in soil VOCs in this Mediterranean shrubland.  相似文献   

12.
The RAINS (Regional Air Pollution INformation and Simulation) model was developed at IIASA as an integrated assessment tool to assist policy advisors in evaluating options for reducing acid rain. In recent years, the European implementation of this model has been used to support the negotiations on an updated, effect-based Sulphur Protocol under the Convention on Long-range Transboundary Air Pollution. The development of future strategies for reducing the environmental damage caused by air pollutants requires a multi-pollutant, multi-effect approach. In this context, the RAINS model is being further developed to include ozone. This paper outlines the development of an integrated assessment model for tropospheric ozone, which combines information on the emissions of ozone precursors (NOx and VOCs), the available control technologies and abatement costs, the formation and transport of ozone and its environmental effects in Europe.  相似文献   

13.
Photolysis, sonolysis, and photosonolysis of common groundwater contaminants, namely 1,1,1-trichloroethane, trichloroethylene, and tetrachloroethylene, were investigated using a flow-through photosono reactor system. Simulated groundwater containing the chlorinated volatile organic compounds (VOCs) was exposed to ultraviolet light (UV), ultrasonication (US), and UV and US concurrently (UVUS), without a photo catalyst. VOC removal efficiencies of the UV, US, and UVUS treatment processes were computed from the VOC concentrations in influent and effluent of the reactor. The process using UVUS exhibited larger degradation efficiencies than that with UV and US separately in most cases; however, statistical analysis showed that the UVUS treatment efficiency is likely to be additive of the UV and US treatment efficiencies. The results also showed that the increase of the detention time from 26 to 60 min had no significant effect on the VOC removal efficiencies in these processes.  相似文献   

14.
Volatile organic compounds (VOCs) are emitted from wastewater treatment processes via stripping and volatilization. Significant progress has been made in modeling these emissions, but questions remain regarding operative mass transfer mechanisms in certain processes. In the case of flow over weirs and drop structures, two approaches have been presented: mass transfer is modeled as taking place either (1) entirely in the nappe, or (2) entirely in air bubbles entrained by falling water in the tailwater pool. In the present work, these two very different modeling approaches are evaluated using experimental results on liquid-side concentrations of chlorinated solvents above and below a primary clarifier weir. The model locating the primary emission mechanism within entrained air bubbles in the tailwater pool is found to predict observed liquid-side VOC concentrations better than the model which considers only emissions from the weir nappe.  相似文献   

15.
The objective of this study was to identify and quantify volatile organic compounds (VOCs) produced during composting of poultry litter. The VOCs produced from in-vessel composting with a controlled aeration system were tested using the F-ITR method by VOC analyzer. Alkanes and alkylated benzenes were emitted in the highest amounts from poultry litter, while aldehydes, terpenes, ketones were emitted in much lesser amounts. Studies showed that VOCs generation was the greatest early during the composting process and greatly reduced thereafter. Composting temperatures were found to affect VOCs. All VOCs were least with the high temperatures generated during composting.  相似文献   

16.
An emission inventory concerning volatile organic compounds (VOC) and their emission profile linked to their sources in Sweden has been undertaken. The inventory has been used in model simulations to predict the ozone formation from different emission source categories in Sweden. The studies have been carried out using the IVL photochemical trajectory model for two types of air masses which describes clean and polluted air. In Sweden mobile sources contribute to 45 % by mass of the total national VOC emissions, 58 % of the NOx emissions and to at least 43 % of the ozone formation from national sources. In general, the ozone formation in Sweden is more dependent and sensitive to emissions of NOx rather than VOC.  相似文献   

17.
The effect of methyl jasmonate (MJ) spraying on the chemistry of Brassica plants was investigated. Glucosinolates (GLS) in the leaves, stems, and roots of laboratory-grown oilseed rape (Brassica rapa subsp. oleifera cv. Tuli and Valo) 3 and 7 days after MJ treatment were analyzed. Volatile organic compounds (VOCs) from whole oilseed rape plants were collected 3 days after MJ treatment. GLS were also analyzed from field-grown oilseed rape (cv. Valo) treated with MJ. The production of indolyl GLS in laboratory-grown oilseed rape, especially the concentration of 4-hydroxy-3-indolylmethyl (4-OH-glucobrassicin) in leaves, stems, and roots, 3-indolylmethyl (glucobrassicin) in stems, and 4-methoxy-3-indolylmethyl (4-methoxyglucobrassicin) in roots, was induced after MJ treatment. The VOC emission profile changed after MJ treatment, and homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) was detected only in MJ-treated plants. The GLS concentration in the field-grown plants was significantly higher in MJ-treated plants than in control plants. These results suggest that spraying with MJ induces the production of secondary compounds, that is, GLS and VOCs, in Brassica plants. The induction of VOC emissions in oilseed rape is comparable to that caused by insect feeding damage. Thus, MJ-treated crop plants may become less palatable to insect herbivores and more attractive to natural enemies of herbivores.  相似文献   

18.
We report the evaluation of the floral origin of honey by analysis of its volatile organic compounds (VOCs) profile, joined with the use of combined pattern recognition techniques. Honey samples, from five floral origins, were analyzed by headspace solid-phase microextraction-gas chromatography-mass spectrometry, selecting 35 VOCs out of the entire profiles, which were analyzed by hierarchical cluster analysis (HCA), stepwise discriminant analysis (SDA), and K-nearest-neighbor (KNN). Both HCA and SDA were used as exploratory tools to select a group of VOCs representing similitude and differences among studied origins. Thus, six out of 35 VOCs were selected, verifying their discriminating power by KNN, which afforded 93% correct classification. Therefore, we drastically reduced the amount of compounds under consideration but kept a good differentiation between floral origins. Selected compounds were identified as octanal, benzeneacetaldehyde, 1-octanol, 2-methoxyphenol, nonanal, and 2-H-1-benzopyran-2-one. The analysis of VOC profiles, coupled to HCA, SDA, and KNN, provides a feasible alternative to evaluate the botanical source of honey.  相似文献   

19.
The present work shows the possibilities and limitations in modeling release kinetics of volatile organic compounds (VOCs) from roasted and ground coffee by applying physical and empirical models such as the diffusion and Weibull models. The release kinetics of VOCs were measured online by proton transfer reaction-mass spectrometry (PTR-MS). Compounds were identified by GC-MS, and the contribution of the individual compounds to different mass fragments was elucidated by GC/PTR-MS. Coffee samples roasted to different roasting degrees and ground to different particle sizes were studied under dry and wet stripping conditions. To investigate the accuracy of modeling the VOC release kinetics recorded using PTR-MS, online kinetics were compared with kinetics reconstituted from purge and trap samplings. Results showed that uncertainties in ion intensities due to the presence of isobaric species may prevent the development of a robust mathematical model. Of the 20 identified compounds, 5 were affected to a lower extent as their contribution to specific m/z intensity varied by <15% over the stripping time. The kinetics of these compounds were fitted using physical and statistical models, respectively, the diffusion and Weibull models, which helped to identify the underlying release mechanisms. For dry stripping, the diffusion model allowed a good representation of the release kinetics, whereas for wet stripping conditions, release patterns were very complex and almost specific for each compound analyzed. In the case of prewetted coffee, varying particle size (approximately 400-1200 microm) had no significant effect on the VOC release rate, whereas for dry coffee, the release was faster for smaller particles. The absence of particle size effect in wet coffee was attributed to the increase of opened porosity and compound diffusivity by solubilization and matrix relaxation. To conclude, the accurate modeling of VOC release kinetics from coffee allowed small variations in compound release to be discriminated. Furthermore, it evidenced the different aroma compositions that may be obtained depending on the time when VOCs are recovered.  相似文献   

20.
Climate models predict drier conditions in the next decades in the Mediterranean basin. Given the importance of soil CO2 efflux in the global carbon balance and the important role of soil monoterpene and volatile organic compounds (VOCs) in soil ecology, we aimed to study the effects of the predicted drought on soil CO2, monoterpenes and other VOC exchange rates and their seasonal and interannual variations. We decreased soil water availability in a Mediterranean holm oak forest soil by means of an experimental drought system performed since 1999 to the present. Measurements of soil gas exchange were carried out with IRGA, GC and PTR-MS techniques during two annual campaigns of contrasting precipitation. Soil respiration was twice higher the wet year than the dry year (2.27±0.26 and 1.05±0.15, respectively), and varied seasonally from 3.76±0.85 μmol m−2 s−1 in spring, to 0.13±0.01 μmol m−2 s−1 in summer. These results highlight the strong interannual and interseasonal variation in CO2 efflux in Mediterranean ecosystems. The drought treatment produced a significant soil respiration reduction in drought plots in the wet sampling period. This reduction was even higher in wet springs (43% average reduction). These results show (1) that soil moisture is the main factor driving seasonal and interannual variations in soil respiration and (2) that the response of soil respiration to increased temperature is constrained by soil moisture. The results also show an additional control of soil CO2 efflux by physiology and phenology of trees and animals. Soil monoterpene exchange rates ranged from −0.01 to 0.004 nmol m−2 s−1, thus the contribution of this Mediterranean holm oak forest soil to the total monoterpenes atmospheric budget seems to be very low. Responses of individual monoterpenes and VOCs to the drought treatment were different depending on the compound. This suggests that the effect of soil moisture reduction in the monoterpenes and VOC exchange rates seems to be dependent on monoterpene and VOC type. In general, soil monoterpene and other VOC exchange rates were not correlated with soil CO2 efflux. In all cases, only a low proportion of variance was explained by the soil moisture changes, since almost all VOCs increased their emission rates in summer 2005, probably due to the effect of high soil temperature. Results indicate thus that physical and biological processes in soil are controlling soil VOC exchange but further research is needed on how these factors interact to produce the observed VOCs exchange responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号