首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
为明确水茄Solanum torvum植株叶片邹缩、褪绿是否由菜豆金色花叶病毒属病毒侵染引起,从云南省西双版纳傣族自治州田间采集具有疑似感染症状的水茄植株叶片样品,应用菜豆金色花叶病毒属病毒简并引物和特异性引物进行PCR扩增、克隆和测序,通过生物信息软件分析比较其核苷酸序列特征,并对其进行系统发育分析。结果显示,从采集的疑似病叶中共克隆获得了5条菜豆金色花叶病毒属病毒DNA-A全序列和3条DNA-B全序列,经全序列分析发现,侵染水茄的2种菜豆金色花叶病毒属病毒分离物分别属于中国南瓜曲叶病毒(squash leaf curl China virus,SLCCNV)和野茼蒿黄脉病毒(Crassocephalum yellow vein virus,CraYVV)。SLCCNV水茄分离物的基因组具有典型的菜豆金色花叶病毒属病毒双组分结构特征,与来自泰国的SLCCNV分离物(AB330078)亲缘关系最近,相似性最高达到99.0%;CraYVV水茄分离物的基因组具有典型的菜豆金色花叶病毒属病毒单组分结构特征,与来自云南省景洪市的CraYVV分离物(EF165536)亲缘关系最近,相似性最高达到97.6%。表明水茄是这2种菜豆金色花叶病毒属病毒的新寄主,并首次发现双组分和单组分菜豆金色花叶病毒属病毒可复合侵染水茄。  相似文献   

2.
The biological and molecular characterization of a virus recognized as a distinct begomovirus species, Tomato curly stunt virus (ToCSV), first observed in South Africa in 1997, is reported here. Whitefly‐transmission and host‐range studies were carried out using a Bemisia tabaci colony identified as the B‐biotype. The experimental host range of ToCSV spanned primarily species in the Solanaceae and Fabaceae. The complete ToCSV genome (2·766 kb) was amplified by PCR, cloned, and the DNA sequence determined. Phylogenetic analysis revealed that ToCSV was most closely related to Tobacco leaf curl Zimbabwe virus (TbLCZV), at 84% nucleotide identity, indicating that ToCSV is a new species in the genus Begomovirus that is probably endemic to southern Africa. The ToCSV genome sequence contained all of the hallmark coding and non‐coding features characteristic of other previously recognized monopartite begomoviruses. ToCSV is only the second begomovirus described from southern Africa that infects solanaceous species. Neither a begomoviral DNA‐B component nor a satellite‐like DNA molecule was detected by PCR in extracts of ToCSV‐infected plants.  相似文献   

3.
4.
Leaf samples (five) from brinjal/eggplant fields showing upward leaf curling symptoms were collected from Varanasi, Uttar Pradesh state, India. The full length genome of begomovirus and associated betasatellite were amplified by PCR, cloned and sequenced. Sequences of homologous DNA-A and its betasatellite in all samples were the same. The samples failed to amplify DNA-B, suggesting that the begomovirus associated with leaf curl disease of eggplant was monopartite. The complete genome (homologous of DNA-A) consists of 2758 nts, whereas the betasatellite has 1352 nts and the genome organization is typical of Old World begomoviruses. The sequence analysis showed high levels of nucleotide sequence identity (79.8–91.7%) of virus with Tomato leaf curl Joydebpur virus (ToLCJoV) infecting chilli in India, suggesting it as a strain of ToLCJoV based on the current ICTV taxonomic criteria for begomovirus strain demarcation. However, the betasatellite associated was identified as a variant of Tomato leaf curl Bangladesh betasatellite (ToLCBDB), with which it shared highest sequence identity of 84.7–94.8%. Phylogenetic analyses of the genome further supported the above results. The recombination analyses of both genome and betasatellite showed that a major part of genome sequences are derived from begomoviruses (ToLCJoV, ChiLCuV, AEV) infecting chilli, tomato, ageratum and betasatellite from PaLCuB as the foremost parents in evolution, suggesting this as a new recombinant virus strain. This is the first report of a monopartite begomovirus and a betasatellite molecule associated with the leaf curl disease of eggplant.  相似文献   

5.
 为明确云南雾水葛表现叶片黄化、花叶等症状的植株是否被菜豆金色黄花叶病毒属病毒侵染,本研究通过PCR扩增、克隆测序及核苷酸序列特征分析,确定样品中病原种类及其系统进化关系。结果显示,该病样中检测到雾水葛金色花叶病毒(pouzolzia golden mosaic virus,PouGMV),该分离物全基因组具有典型的菜豆金色花叶病毒属单组分病毒结构特征,与来自越南的Vietam分离物(KC857508)亲缘关系最近,相似性最高达94.6%,与PouGMV其他分离物亲缘关系相对较远,相似性在88.9%~93.2%之间。病毒alpha卫星分子检测及分析显示,该样品中检测到的alpha卫星分子,其全长核苷酸序列与云南番茄黄化曲叶alpha卫星(tomato yellow leaf curl Yunnan alphasatellite,TYLCYnA)相似性最高,达到92.3%。研究结果表明云南雾水葛中分离到PouGMV,且异源伴随TYLCYnA卫星分子。这是雾水葛金色花叶病毒伴随alpha卫星分子侵染雾水葛的首次报道。  相似文献   

6.
ABSTRACT The genome of Tomato leaf curl virus (ToLCV) from Bangalore, India, a whitefly-transmitted geminivirus, was cloned (pIND9) and sequenced. The circular DNA of 2,759 nucleotides (U38239) is organized similarly to that of other begomoviruses with monopartite genomes. Comparison of the nucleotide sequence of pIND9 with other tomato-associated begomoviruses from India (Tomato leaf curl Bangalore virus [ToLCBV, Z48182]) and Tomato leaf curl New Delhi virus-Severe (ToLCNdV-Svr, U15015) showed moderate DNA sequence identities (82 to 87%) between capsid protein (CP) genes but low identities (66 to 67%) for the intergenic regions and the replication-associated protein (Rep) genes (75 to 81% identity). Phylogenetic trees generated with nucleotide sequences of the Rep and CP genes of 26 begomoviruses indicated that this ToLCV is distinct from other begomoviruses and that it may be a recombinant virus derived from at least three different viral lineages. Tomatoes (Lycopersicon esculentum) inoculated with the cloned DNA monomer of ToLCV (pIND9) via particle bombardment developed leaf curling and yellowing symptoms. The virus was transmitted by Bemisia tabaci biotype B from tomatoes infected via particle bombardment to healthy tomatoes and by sap inoculation from infected tomatoes to tomato, Nicotiana benthamiana and N. tabacum. This ToLCV is a distinct member of the genus Begomovirus from India that differs from the previously characterized Tomato leaf curl Sadasivanagar virus isolate Bangalore 1 (L12739), ToLCBV (Z48182), ToLCBV isolate Bangalore 4 (AF165098), and the bipartite ToLCNdV (U15015, U15016). Thus, this ToLCV is named Tomato leaf curl Karnataka virus (ToLCKV).  相似文献   

7.
Leaf curl in Zinnia elegans was observed in a subtemperate region in northern India, and the causal organism was identified as Ageratum enation virus (AEV). The virus appeared to be monopartite and associated with nanovirus-like satellite DNA1. The whole genome was amplified by rolling circle amplification, cloned, and sequenced using a primer walking strategy. The genome (FN543099) was composed of 2753 nucleotides (nt) and that of DNA1 (FN543100) of 1374 nt. DNA-β was not detected from any of the infected samples. The study presents the first report of a begomovirus from Zinnia spp. in India and the complete nucleotide sequence characterization of AEV associated with nanovirus-like satellite DNA1.  相似文献   

8.
 从中国福建省表现曲叶和脉突症状的赛葵上分离到病毒分离物FJ1~FJ6。利用菜豆金色花叶病毒属病毒的特异性简并引物PA/PB,在所有6个分离物中都分离到了约500bp长度的病毒部分DNA片段。这些DNA片段与已报道的广东赛葵曲叶病毒(Malvastrum leaf curl Guangdong virus,MLCuGdV)的核苷酸序列同源性高达90%-93%。随机挑选FJ3分离物进行全基因组DNA的克隆测序。结果表明,FJ3 DNA全长2765个核苷酸,具有典型的双生病毒科病毒的基因组结构特征,与MLCuGdV的同源性为92.9%,表明FJ3是MLCuGdV的一个分离物。系统进化分析表明,除了MLCuGdV,FJ3与其它赛葵上分离到的双生病毒的亲缘关系都较远,而与分离自中国南方番木瓜上的双生病毒聚成簇,有较近的亲缘关系。进一步比较分析各蛋白编码的氨基酸序列发现,FJ3可能是一个种间重组分子,它可能是由中国番木瓜曲叶病毒或广东番木瓜曲叶病毒和另外的未知病毒重组产生的。  相似文献   

9.
ABSTRACT Two begomoviruses (Java virus-1 and Java virus-2), two satellite DNAs (DNAbeta01 and DNAbeta02), and a recombinant DNA (recDNA) were cloned from a single tomato plant from Indonesia with leaf curl symptoms, and the role of these satellite DNAs in the etiology of begomovirus disease was investigated. The genome organizations of the two viruses were similar to those of other Old World monopartite begomoviruses. Comparison of the sequences with other begomoviruses revealed that Java virus-1 was a newly described virus for which the name Tomato leaf curl Java virus (ToLCJAV) is proposed. Java virus-2 was a strain of Ageratum yellow vein virus (AYVV) (AYVV-[Java]). ToLCJAV or AYVV-[Java] alone did not induce leaf curl symptoms in tomato plants. However, in the presence of DNAbeta02, both ToLCJAV and AYVV-[Java] induced leaf curl symptoms in tomato plants. In the presence of DNAbeta01, these viruses induced mild leaf curl symptoms in tomato plants. The recDNA had a chimeric sequence, which arose from recombination among ToLCJAV, AYVV-[Java], DNAbeta01, and DNAbeta02; it was replicated only in the presence of AYVV-[Java] in tomato plants.  相似文献   

10.
Tomato-infecting begomoviruses comprise a complex of monopartite and bipartite virus species that cause severe yield and quality losses worldwide. Therefore, the availability of wide spectrum resistance for begomovirus control is desirable. However, limited sources of resistance are available. In this study, three tomato inbred lines with resistance to bipartite begomoviruses of Brazil were tested for resistance to monopartite begomoviruses associated with the tomato yellow leaf curl disease (TYLCD). Stable resistance to Tomato yellow leaf curl virus was observed either by inoculation with Bemisia tabaci or with Agrobacterium tumefaciens using an infectious clone. The resistance resulted in a complete absence of TYLCD symptoms and restricted virus accumulation. Further studies performed with the line '468-1-1-12' indicated that the resistance was also effective against three other virus species associated with TYLCD, indicating wide spectrum resistance of this source. Quantitative genetics analyses suggested that a major recessive locus with epistatic interactions is controlling the resistance to TYLCD in '468-1-1-12', which could facilitate introgression of this trait into elite tomato lines. The resistance was stable under field conditions with high TYLCD pressure. Mild symptoms could be observed in these conditions, and recovery from disease and from virus infection suggested an active host antiviral defense mechanism. The differential reaction of '468-1-1-12' against a number of TYLCD-associated viruses and artificial chimeras between them allowed to identify a region of the virus genome that presumably contains a virus determinant for breaking the resistance to infection observed in '468-1-1-12'.  相似文献   

11.
Three begomovirus isolates were obtained from tomato plants showing leaf curl symptoms in Guangxi province of China. Typical begomovirus DNA components representing the three isolates (GX-1, GX-2 and GX-3) were cloned and their full-length sequences were determined to be 2752 nucleotides. Nucleotide identities among the three viral sequences were 98.9–99.7%, but all shared <86.7% nucleotide sequence identity with other reported begomoviruses. The sequence data indicated that GX-1, GX-2 and GX-3 are isolates of a distinct begomovirus species for which the name Tomato leaf curl Guangxi virus (ToLCGXV) is proposed. Further analysis indicated that ToLCGXV probably originated through recombination among viruses related to Ageratum yellow vein virus, Tomato leaf curl China virus and Euphorbia leaf curl virus. PCR and Southern blot analyses demonstrated that isolates GX-1 and GX-2 were associated with DNAβ components, but not isolate GX-3. Sequence comparisons revealed that GX-1 and GX-2 DNAβ components shared the highest sequence identity (86.2%) with that of Tomato yellow leaf curl China virus (TYLCCNV). An infectious construct of ToLCGXV isolate GX-1 (ToLCGXV-GX) was produced and determined to be highly infectious in Nicotiana benthamiana, N. glutinosa, tobacco cvs. Samsun and Xanthi, tomato and Petunia hybrida plants inducing leaf curl and stunting symptoms. Co-inoculation of tomato plants with ToLCGXV-GX and TYLCCNV DNAβ resulted in disease symptoms similar to that caused by ToLCGXV-GX alone or that observed in infected field tomato plants.  相似文献   

12.
Xiong Q  Fan S  Wu J  Zhou X 《Phytopathology》2007,97(4):405-411
ABSTRACT Ageratum conyzoides plants exhibiting yellow vein symptoms, collected near Haikou, Hainan Province, China, contained begomoviral DNA-A-like molecules. The complete sequences of the molecules from two samples, Hn2 and Hn2-19, were shown to consist of 2,768 and 2,748 nucelotides (nt), respectively. These sequences have more than 97% nucleotide sequence identity, but less than 86% identity with other reported begomovirus sequences. In line with the taxonomic convention for begomoviruses, Hn2 and Hn2-19 are therefore considered to represent isolates of a distinct begomovirus species, for which the name Ageratum yellow vein China virus (AYVCNV) is proposed. Sequence alignment shows AYVCNV has arisen by recombination among viruses related to Ageratum yellow vein virus, Papaya leaf curl China virus, and an unidentified begomovirus. Southern blot analyses revealed that all plants sampled contained molecules resembling DNAbeta. DNAbeta molecules from three samples were 1,323 or 1,324 nt long and had >98% sequence identity but <81% identity with previously reported DNAbeta sequences. Infectious clones of Hn2 and its associated DNAbeta were constructed and agroinoculated to plants. Hn2 alone caused sporadic asymptomatic systemic infection of Nicotiana benthamiana, N. glutinosa, Lycopersicon esculentum, Petunia hybrida, and A. conyzoides but its accumulation was much enhanced in plants co-inoculated with DNAbeta. The co-inoculated N. benthamiana, N. glutinosa, P. hybrida, and L. esculentum plants developed leaf curling or leaf crinkling symptom; those in A. conyzoides were typical of ageratum yellow vein disease. When the DNAbeta molecules associated with four other Chinese begomoviruses were coinoculated with Hn2 to N. benthamiana and N. glutinosa, the DNAbeta molecules were replicated, and the plants developed systemic symptoms of types that were specific for each DNAbeta. This illustrates that there is less specific interaction between monopartite begomovirus and DNAbeta than between the DNA-A and DNA-B of begomoviruses with bipartite genomes.  相似文献   

13.
 2018—2020年,从南宁市武鸣区、宾阳县的西番莲果园中采集疑似感染双生病毒的西番莲叶片样品,利用PCR、RCA、基因克隆、序列比对和进化树分析等方法,明确了其感染的病毒及系统进化关系。结果显示:采集的23份西番莲样本中有19份扩增出一条570 bp的目的条带,证实受到双生病毒侵染;从部分阳性样品中共获得11条病毒全长基因组序列,其中10条序列与已报道的广东番木瓜曲叶病毒(papaya leaf curl Guangdong virus,PaLCuGdV)各分离物的核苷酸相似性达92%以上;1条序列与已报道的一品红曲叶病毒(euphorbia leaf curl virus,EuLCV)各分离物的相似性达92%以上;依据双生病毒分类标准,确定侵染广西西番莲的双生病毒为PaLCuGdV和EuLCV的分离物;进化树分析发现,PaLCuGdV广西西番莲分离物与PaLCuGdV韩国各西番莲分离物和中国台湾西番莲分离物处于同一大分支,说明PaLCuGdV广西西番莲各分离物与PaLCuGdV韩国各西番莲分离物和中国台湾西番莲分离物具有较近的亲缘关系;EuLCV广西西番莲分离物与EuLCV韩国分离物、中国山东一品红分离物和福建一品红分离物等处于一个大分支,但广西分离物却又独处一个小的分支,说明广西分离物虽然与上述几个分离物亲缘较近,但可能存在较为独立的进化。这是PaLCuGdV和EuLCV侵染广西西番莲的首次报道。  相似文献   

14.
Sweet potato begomoviruses diverge basally from all other begomoviruses and have been named sweepoviruses. In 2009, a sweepovirus was detected for the first time in sweet potato crops in Uganda by using the indicator plant Ipomoea setosa and generic primers in a polymerase chain reaction (PCR). An isolate was cloned and sequenced, the first fully sequenced genome of a sweepovirus from mainland Africa. At the nucleotide level, this isolate differed from other sweepoviruses by at least 13%, discriminating the Ugandan isolate as a new species which has been tentatively named Sweet potato leaf curl Uganda virus (SPLCUV). In infected sweet potato plants, SPLCUV showed an uneven distribution; it was detected more often in samples from the midrib and lamina of middle and lower leaves, and reversion to healthy tissue occurred, especially in shoots of cv. New Kawogo. This appears to be the first report of resistance to a sweepovirus in sweet potato. While it was only detected at relatively low efficiency by PCR, use of I. setosa plants as an indicator of sweepovirus infection in sweet potato plants was as efficient as using real‐time quantitative PCR (qPCR). Storage of dry leaves for 84 days and dried DNA extracts for 21 days did not affect the ability of PCR and qPCR to detect it. Sweepovirus(es) was detected frequently using generic primers in cultivars Ejumula, New Kawogo and 318L in eastern and central Uganda.  相似文献   

15.
ABSTRACT Bean calico mosaic virus (BCMoV), a whitefly-transmitted geminivirus from Sonora, Mexico, was purified, and the genome components were cloned and sequenced. Purified viral fractions and cloned genome components were infectious by biolistic inoculation to bean, completing Koch's postulates for both. The B biotype of the whitefly Bemisia tabaci efficiently transmitted both native virus and progeny virus derived from cloned DNA inoculum. Host ranges of native virus and of progeny virus derived from cloned DNA were identical based upon whitefly and biolistic mediated transmission, respectively. BCMoV has a relatively wide experimental host range among begomoviruses known to infect bean, encompassing genera and species within the Fabaceae, Malvaceae, and Solanaceae. BCMoV has a bipartite genome, as do other New World begomoviruses. BCMoV DNA-A shared highest nucleotide sequence identities with squash leaf curl virus-E strain (SLCV-E) and cabbage leaf curl virus (CaLCV) at 80.1 and 80.7%, respectively. BCMoV DNA-B shared highest nucleotide sequence identity with SLCV-E at 70.7%. The common region (CR) sequences of BCMoV and SLCV-E are 73 to 76% identical; however, modular cis-acting elements within the CR involved in replication origin function and recognition are 100% conserved. Phy-logenetic analysis indicated that BCMoV DNA-A shares a most recent common ancestor with the DNA-A of two viruses that also occur in the Sonoran Desert, SLCV-E and Texas pepper virus (TPV-TAM), and CaLCV from Florida. In contrast, a phylogenetic analysis indicated that BCMoV DNA-B shares a most recent common ancestor with SLCV-E; whereas DNA-B of CaLCV clustered in a separate clade with pepper hausteco virus. Collectively, biological and molecular characteristics indicate that BCMoV is a distinct begomovirus species with the northernmost distribution of any begomovirus isolated from bean in the Americas. Furthermore, the phylogenetic relationships of begomovirus cognate components are not necessarily identical, suggesting that DNA-A and DNA-B of some begomoviruses may have different evolutionary histories.  相似文献   

16.
We demonstrated that only 2 out of 15 isolates of Tobacco leaf curl Yunnan virus (TbLCYNV) were associated with the satellite DNAβ molecules. To investigate the infectivity of this virus, an infectious clone of TbLCYNV isolate Y143 (TbLCYNV-Y143) was agroinoculated or whitefly transmitted into Nicotiana benthamiana, N. glutinasa, Petunia hybrida and N. tabacum. TbLCYNV-Y143 alone was able to induce severe upward leaf curling, vein thickening or stunt symptoms in these plants. Co-inoculation of TbLCYNV-Y143 with DNAβ molecules associated with other begomoviruses induced similar symptom types on these plants. This indicates that TbLCYNV is a monopartite begomovirus. The relevance of results that only two isolates of TbLCYNV were associated with DNAβ molecules is discussed.  相似文献   

17.
Molecular and biological characterization of the begomovirus isolate BR:LNS2:Pas:01, obtained from yellow passionfruit plants in Livramento de Nossa Senhora, Bahia state, Brazil, was carried out. Sequence analysis demonstrated that the BR:LNS2:Pas:01 DNA‐A had highest nucleotide sequence identity with Tomato chlorotic mottle virus (77%) and had five ORFs corresponding to the genes cp, rep, trap, ren and ac4. The DNA‐B had highest nucleotide sequence identity with Tomato yellow spot virus (74%) and two ORFs corresponding to the genes mp and nsp. These identity values indicate that this isolate represents a new begomovirus species, for which the name Passionfruit severe leaf distortion virus (PSLDV), is proposed. Phylogenetic analysis clustered the PSLDV DNA‐A and ‐B in a monophyletic branch with Brazilian tomato‐infecting begomoviruses. The isolate’s host range was restricted to species from the Passifloraceae and Solanaceae. PSLDV‐[BR:LNS2:Pas:01] was capable of forming pseudorecombinants with tomato‐infecting begomoviruses, reinforcing its close relationship with these viruses and suggesting a possible common origin. However, the virus was not capable of infecting tomato.  相似文献   

18.
Using differential hybridization, two DNA fragments, VDf35 and VDf90, specific to Verticillium dahliae, were isolated. These fragments contained truncated open reading frames (ORFs) homologous to the gypsy-type retrotransposon. The ORFs of VDf35 and VDf90 were pol and gag homologs, respectively. In addition, VDf90 had a pol homolog without an ORF sequence. The pol homologs in VDf35 and VDf90 were similar to each other, and these two DNA fragments had completely identical sequences. Genomic Southern analysis revealed that numerous copies of these homologs existed in V. dahliae, suggesting that V. dahliae carries a gypsy-like retroelement. Genomic Southern and polymerase chain reaction (PCR) analysis also indicated that a large number of these homologs exist in V. longisporum as well as in V. dahliae, but only a few were present in V. albo-atrum. No homolog was found in either V. nigrescens or V. tricorpus. The uneven distribution of these homologs of the retroposon-like elements among Verticillium species suggested a close genetic kinship between V. dahliae and V. longisporum. PCR primers designed from VDf35 showed species- or pathotype-specific amplification. Therefore, this sequence may be useful as a DNA marker to identify species and pathotypes of V. dahliae. This is the first report on a retrotransposon-like sequence in the genome of phytopathogenic Verticillium species.The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under accession numbers AB095264 (VDf90) and AB095265 (VDf35)  相似文献   

19.
The diversity of whitefly‐transmitted begomoviruses in Europe is low, most being exotic, introduced species. The only agriculturally important viruses are two species causing tomato yellow leaf curl. These viruses are believed to have originated in the Middle East but have since spread right across the Mediterranean region. Two ornamentals (Abutilon and Lonicera japonica) were introduced into Europe from the New World and the Far East, respectively, for the striking symptoms induced by the viruses which infect them. The virus infecting honeysuckle (Honeysuckle yellow vein mosaic virus) has been shown to be part of newly identified cluster of begomoviruses which require an additional component, a satellite molecule termed DNA β, to induce symptoms in their host plants. A further begomovirus, Ipomoea yellow vein virus, which infects the weed Ipomoea indica, is present in the Mediterranean region. The precise origin and relationship of this virus to other begomoviruses is unclear.  相似文献   

20.
Euphorbia mosaic virus (EuMV), a tentative species within the genus Begomovirus, was isolated from Euphorbia heterophylla plants growing in the Yucatan Peninsula, Mexico. The complete bipartite genome was cloned from total DNA extracts and the nucleotide (nt) sequence was determined. The DNA-A sequence of the EuMV-Yucatan Peninsula (EuMV-YP) isolate shared 95% nt identity with the partially characterized type EuMV isolate from Puerto Rico. The EuMV-YP genome organization was like that of other New World, bipartite begomoviruses. The DNA-A component was 2613 nt in size, while the DNA-B component was 2602 nt long. The 165-nt common region (CR) sequence for the DNA-A and DNA-B components shared a lower than expected nt identity of 86%. The organization and iterons of the putative AC1 binding site of EuMV-YP were similar to those of begomoviruses in the Squash leaf curl virus (SLCV) clade. Characteristic disease symptoms were reproduced in E. heterophylla plants inoculated at the seedling stage using the cloned viral DNA-A and DNA-B components, confirming disease aetiology. Results of an experimental host-range study for EuMV-YP indicated that it infected at least five species in three plant families, including the Euphorbiaceae ( E. heterophylla ), Solanaceae ( Datura stramonium , pepper, tomato) and Fabaceae (bean). Phylogenetic analysis of the DNA-A and DNA-B components indicated that EuMV-YP is a New World begomovirus and that it is a new member of the SLCV clade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号