共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent community based actions to ensure the sustainability of irrigation and protection of associated ecosystems in the Murrumbidgee Irrigation Area (MIA) of Australia has seen the implementation of a regional Land and Water Management Plan. This aims to improve land and water management within the irrigation area and minimise downstream impacts associated with irrigation. One of the plan objectives is to decrease current salt loads generated from subsurface drainage in perennial horticulture within the area from 20 000 tonnes/year to 17 000 tonnes/year. In order to meet such objectives Controlled Water table Management (CWM) is being investigated as a possible ‘Best Management Practice’, to reduce drainage volumes and salt loads.During 2000–2002 a trial was conducted on a 15 ha subsurface drained vineyard. This compared a traditional unmanaged subsurface drainage system with a controlled drainage system utilizing weirs to maintain water tables and changes in irrigation scheduling to maximize the potential crop use of a shallow water table. Drainage volumes, salt loads and water table elevations throughout the field were monitored to investigate the effects of controlled drainage on drain flows and salt loads.Results from the experiment showed that controlled drainage significantly reduced drainage volumes and salt loads compared to unmanaged systems. However, there were marked increases in soil salinity which will need to be carefully monitored and managed. 相似文献
2.
The use of drainage systems for supplementary irrigation is widespread in The Netherlands. One of the operating policies is to raise the surface water level during the growing season in order to reduce drainage (water conservation) or to create subsurface irrigation. This type of operation is based on practical experience, which can be far from optimal.To obtain better founded operational water management rules a total soil water/surface water model was built. In a case study the effects of using the drainage system in a dual-purpose manner on the arable crop production were simulated with the model. Also, the operational rules for managing this type of dual-purpose drainage systems were derived.The average annual simulated increase in crop transpiration due to water conservation and water supply for subsurface irrigation are 6.0 and 5.4 mm.y –1, respectively. This is equivalent with 520 × 10 3 and 460 × 10 3 Dfl.y –1 for the pilot region (2 Dfl 1 US $). The corresponding investments and operational costs are 600 × 10 3 Dfl and 9 × 10 3 Dfl.y –1 for water conservation and 3200 × 10 3 Dfl and 128 × 10 3 Dfl.y –1 for subsurface irrigation. Hence, water conservation is economically very profitable, whereas subsurface irrigation is less attractive.Comparing the management according to the model with current practice in a water-board during 1983 and 1986 learned that benefits can increase with some 50 and 500 Dfl per ha per year, respectively. 相似文献
3.
Drainage water from the lower boundary of the root zone is an important factor in the irrigated agricultural lands for prediction of the water table behavior and understanding and modeling of water and chemical movement in the soil profile. The drainage coefficient is an important parameter for the design of subsurface drainage. On a 33,138 ha of the Nile Delta in Egypt, this study is conducted using 90 irrigation periods over a 3-year crop rotation to estimate the time-dependent drainage from the root zone and the design subsurface drainage coefficient with different cropping seasons and irrigation management levels.The results showed that the cropping seasons and the irrigation management levels as indicated by different irrigation efficiency are significantly affected the drainage rate from the root zone and the design value of subsurface drainage coefficient. Drainage rates from the root zone of 1.72 mm/d and 0.82 mm/d were estimated for summer and winter seasons, respectively. These rates significantly decreased in a range of 46% to 92% during summer season and 60% to 98% during winter season when the irrigation efficiency is increased in a range of 5% to 15%. The subsurface drainage coefficient was estimated to be 1.09 mm/d whereas the design drain pipe capacity was estimated to be 2.2 mm/d, based on the peak discharge of the most critical crop (maize), rather than 4.0 mm/d which is currently used. A significant decrease of the drainage coefficient and the drain pipe capacity ranges from 18% to 45% was found with the increase of irrigation efficiency in a range of 5% to 15%. The leaching requirement for each crop was also estimated. 相似文献
4.
进行暗管排水条件下微咸水灌溉田间试验,设置3种暗管埋深,分别为80 cm(D1)、120 cm(D2)以及无暗管排水(D0),3种微咸水浓度,其电导率分别为0.78 dS/m(S1),3.75 dS/m(S2)和6.25 dS/m(S3),共9个处理,每个处理3组重复.试验结果表明:暗管排水措施可以有效排除微咸水灌溉过程中土壤中累积的盐分;在玉米全生育期内,暗管埋深D1条件下,3种浓度微咸水S1,S2和S3灌溉时根系土壤电导率分别下降了39.00%,31.56%和29.43%,暗管埋深D2条件下,根系土壤电导率则分别下降了31.91%,18.08%和7.44%;夏玉米干物质累积量、穗棒累积量和穗棒质量分配率及最终产量均随着微咸水浓度的升高而降低;在相同微咸水浓度下,不同暗管埋设条件下的夏玉米最终产量从大到小依次为D1,D2,D0;3种暗管埋设条件下的作物需水量从大到小依次为D0,D2,D1的规律;暗管埋深80 cm的处理(D1)下夏玉米水分利用效率最高,而未埋设暗管的处理(D0)水分利用效率最低;当暗管埋设条件一定时,夏玉米水分利用效率随微咸水浓度的升高呈逐渐降低的趋势. 相似文献
5.
为了探索膜下滴灌盐碱地在灌溉过程中暗管排水规律及土壤脱盐效率,设计了一种暗管排水模型试验装置系统来探究灌溉过程中暗管排水规律和排盐效果.试验通过控制灌水时间、灌水量、观测并记录暗管出水时间、排水流量、排水矿化度、土壤盐分剖面等指标,分析灌溉排水过程中暗管排水流速和排水矿化度特征以及各土层土壤脱盐效率.结果表明:经过3次灌水淋洗试验后,暗管排水流速最终趋于1.5~3.5 L/h稳定范围,排水矿化度稳定在20~40 g/L内;0~40 cm土层脱盐率高达85%,0~80 cm土层土壤脱盐率为80.5%,两暗管中间位置处脱盐率最小分别为57.96%,56.73%,69.29%,暗管上方脱盐率最大分别为71.73%,73.34%,84.26%,暗管排盐量占0~80 cm土层总盐分含量的28.9%,其余盐分被淋洗到了80 cm土层以下. 相似文献
6.
为探索解决地下滴灌玉米出苗难的问题,通过土箱试验,对内蒙古自治区具有典型代表性的3种土壤,开展了毛管铺设参数(滴头流量、埋深)和灌水定额对地下滴灌湿润半径的影响规律试验,结合玉米播种深度、水分向上及向下运移的距离及种子周围土壤含水量,研究了玉米适宜出苗灌水定额,以提高出苗率,指导实际生产.结果表明:按显著性水平0.05检验,土壤类型和灌水定额均对土壤湿润半径影响具有统计学意义,而滴头流量和埋深对湿润半径影响不具有统计学意义.在黏壤土中,玉米出苗灌水定额37.5~52.5 mm基本可满足毛管埋深25~35 cm的出苗要求;在壤土中,玉米出苗灌水定额37.5 mm左右基本可满足毛管埋深25~30 cm的出苗要求,灌水定额52.5 mm左右基本可满足埋深30~35 cm的出苗要求;在砂壤土中,灌水定额22.5~37.5 mm基本可满足毛管埋深约25 cm的玉米出苗要求,灌水定额52.5 mm基本可满足毛管埋深25~35 cm的玉米出苗要求. 相似文献
7.
This paper summarises the performance indicators currently used in the Research Program on Irrigation Performance (RPIP).Within this Program field data are measured and collected to quantify andtest about 40 multidisciplinary performance indicators. These indicatorscover water delivery, water use efficiency, maintenance, sustainability ofirrigation, environmental aspects, socio-economics and management. Theindicators now are sufficiently mature to be recommended for use inirrigation and drainage performance assessment. 相似文献
8.
为了探究不同外包滤料条件下的暗管排水性能和土壤脱盐效果,基于室内试验研究成果,在田间设置4种暗管排水系统(各系统中暗管埋深均为80 cm,间距均为20 m),所用外包滤料分别为68 g/m 2土工布(L)、砂滤料(S)、68 g/m 2土工布+砂滤料(LS)和无外包滤料(W),以当地常规明沟排水(CK)作为对照,通过田间试验分析了春灌过程中各暗管系统的排水性能指标及土壤脱盐效率.结果表明:相比处理W,处理L,S和LS平均排水速率提升了7.44%,12.55%和15.75%,平均流量衰减度降低4.07%;处理S和LS累积排水量提高了5.11%和8.31%(P<0.05).各暗管处理春灌后平均土壤脱盐率均达47%以上,较CK提升显著,其中处理LS效果最优,为50.94%.综上,应优先选择处理LS作为河套灌区暗管排水系统外包滤料布设方案.该研究结果可为河套灌区暗管排盐技术的推广应用提供理论支撑和科学指导. 相似文献
9.
This paper describes a multi-level drainage system, designed to improve drainage water quality. Results are presented from a field scale land reclamation experiment implemented in the Murrumbidgee Irrigation Area of New South Wales, Australia. A traditional single level drainage system and a multi-level drainage system were compared in the experiment in an irrigated field setting. The single level drainage system consisted of 1.8 m deep drains at 20 m spacing. This configuration is typical of subsurface drainage system design used in the area. The multi-level drainage system consisted of shallow closely spaced drains (3.3 m spacing at 0.75 m depth) underlain by deeper widely spaced drains (20 m spacing at 1.8 m depth). Data on drainage flows and salinity, water table regime and soil salinity were collected over a 2-year period. 相似文献
10.
This paper presents a framework irrigation managers can use in assessing performance of irrigation, and recommends a specific set of indicators for measuring performance that the authors believe are practical, useful, and generally applicable. Although the primary focus is on the management of canal systems for agricultural production, the paper also discusses indicators that can be used for assessing longer term performance, including physical, economic and social sustainability. Finally, the paper highlights the crucial importance of strategic, as well as operational management performance, and the necessity of having an incentive system that encourages managers to improve performance. 相似文献
11.
为解决不同树龄葡萄根系的差异使得地下滴灌系统在布设应用中存在的困难,采用室内试验和HYDRUS-2D数值模拟相结合的方法,以宁夏和关中葡萄产区为例,研究了2种土质条件下分层地下滴灌土壤水分运动规律,提出了分层地下滴灌带最佳布设深度.研究结果表明,HYDRUS-2D模拟值与试验实测值具有良好的吻合度.地下滴灌带的埋深直接影响土壤水分的分布,2种土质下湿润体内部处于最佳含水率区间的土壤体积随滴头间距的增加而增大.通过适当增大浅层滴头埋深并减小深层滴头埋深可减小表层水分无效损耗.从避免水分无效消耗以及提高湿润体与根系匹配效果等角度出发,建议关中地区葡萄单滴头灌溉且适宜滴灌带布设深度为20 cm;宁夏贺兰山地区滴灌带布设深度以15 cm和45 cm为宜. 相似文献
12.
The discharge of irrigation drainage water through a natural depression in the Benue valley of North Cameroon, has created a permanently flooded habitat for freshwater snails which transmit schistosomiasis. The risk of transmission of schistosomiasis for people living near this depression has considerably increased. In close cooperation and consultation with the local population the depression was reconstructed in order to destroy snail breeding sites and to use the available land and water for agriculture and fisheries. Results indicate that the availability of a manageable water supply is welcomed by the villagers, especially because it makes dry-season horticulture a more attractive and profitable endeavour. In addition the production of fish is appreciated because it provides a cheap additional source of protein for local consumption. Snail populations have dramatically decreased in numbers after the reconstruction of the depression, showing that an integrated approach to drainage problems can result in increased production while reducing health risks. 相似文献
13.
Subsurface drainage requires appropriate materials to ensure a proper functioning of the drainage system. The materials normally applied for subsurface drainage are drain pipes and envelopes. Besides a review of the materials used for drain pipes, their hydraulic characteristics — discharge capacity and entrance resistance — have been treated. Much attention is paid to subsurface drainage envelope materials because of practical problems and a serious gap in knowledge, in spite of considerable research efforts. After treating the aim of drainage envelopes, a review of the used materials is given. Practical experience with gravel envelopes, still often used in irrigated areas, shows serious shortcomings. Since organic envelopes are vulnerable to deterioration, the only possible alternative are synthetic envelopes. Their property to retain soil particles is characterized by the so-called filter criteria. Laboratory research and field experiments to evaluate the blocking and clogging aspects of synthetic envelopes are discussed and selection criteria given. 相似文献
14.
A simulation study on alternative water management strategies was carried out for Sirsa Irrigation Circle in Haryana, covering an area of about 4800 km 2. Results showed that crop evapotranspiration and soil salinity development under reduction in canal water supply and increase in groundwater use, are largely influenced by the amount and distribution of rainfall. Reduction in canal water supply by 25% during the rainy season is unlikely to have any adverse effect on the salinity development in the study area. Reduction in crop evapotranspiration due to decreased canal water supply can partly be compensated by the increase in groundwater use. Leaching of salts due to monsoon rains in the study area shows that groundwater of even relatively poor quality can be used for irrigation without excessive long-term build up of soil salinity under deep groundwater depth conditions. However, increased groundwater extraction without associated actions will not be very effective to solve the problem of rising groundwater levels. 相似文献
15.
Most subsurface drainage equations assume either homogeneous, two-layer or three-layer soil conditions. Finite difference simulations were performed to quantify the effect of gradually decreasing hydraulic conductivity on watertable depths for steady-state subsurface drainage. For vertically decreasing hydraulic conductivity, and for cases where drain spacing was based on effective hydraulic conductivity of the 0.5 to 2.0 m layer, mid-spacing watertable depth ranged from 0.282 to 0.900 m. The average value was 0.718 m, which is considerably shallower than the 0.9 m design value used for determining drain spacing. These higher watertables may have detrimental effects on crop yield, especially in arid areas where soil salinity is a problem. The importance of the difference between actual and design watertable depths was mostly related to the type of hydraulic conductivity decrease function, drain depth, and drainage rate. These differences are explained by the position of the drain within the soil profile and the effect of the spacing on the equivalent depth of flow. Using effective hydraulic conductivity of the 0.5 to 3.0 m layer for determining drain spacing reduced the error. For an effective hydraulic conductivity value of 0.3 m/d, the average watertable depth increased from 0.748 m for the 2.0 m auger hole to 0.829 m for the 3.0 m hole. The results presented can be used to estimate the error on watertable depth resulting from ignoring the vertical variations of hydraulic conductivity. 相似文献
16.
农田暗管排水系统建设是提高农业机械化作业效率的有效措施之一.土工布作为排水暗管外包滤料时,需要具有良好的透水性能和抗淤堵能力.文中以扬州段沿运灌区为例,针对当地土壤中粉粒含量较高,土工布外包滤料筛选困难等实际问题,参考相关技术准则,选用2种开孔率和厚度不同的土工布进行了水力渗透试验,并与传统的河砂反滤材料进行了对比,筛选出适合当地土壤的土工布外包材料.研究结果显示,所选用的2种土工布透水性能存在较大差异,其中厚度较大(0.41 mm)、孔径较小(180 μm)的土工布A的透水性能较好,渗透系数为初始值的54.1%,高于河砂滤层的46.1%,而厚度为0.35 mm、孔径为227 μm的土工布B渗透系数仅为初始值的30.2%.相比于土工布B,土工布A具有更好的抗淤堵能力,长期使用后淤堵率比土工布B低16%.通过对土工布表面形成的、透水性较低的滤饼分析发现,土工布B不但自身发生了较大程度淤堵,其表面形成的滤饼较为密实,是影响其渗透性能的直接原因. 相似文献
17.
本文阐述了农业专家系统的研究现状及其在灌溉管理中的应用,并就其在节水农业专家系统研究中的几个问题进行了讨论。 相似文献
18.
To evaluate the hydraulic performance of subsurface collector drains and to study the relationships between discharge rates, crop patterns, and the salinity of drainage water, subsurface drains were monitored in different parts of the Nile Delta and Valley.Actual discharges were much smaller than design discharges. Also, overpressure in the pipes occurred frequently, indicating too small a capacity in the design. From research in one pilot area, it was concluded that if construction methods and materials are not improved, the roughness factor in the design should be increased by 100% to allow sufficient capacity.The cultivation of rice increases discharges. Salinity of drainage water is higher in winter than in summer, and higher in the north of the Delta than in the south. 相似文献
19.
分析国内外农业灌溉和排水领域发展的研究现状和目前常见的灌排装置的特点,针对中国灌溉排水研究领域对节水灌溉、控制排水设施的迫切需求,提出了水田灌排一体化系统的设计方案.该系统能根据农作物不同时期对水位的需求,充分利用灌溉和降雨的水量,较为精确地控制水田的灌溉和排水水位,解决了原有灌排设备无法同时实现灌溉和排水自动控制的难题.实际应用结果表明,水田灌排一体化系统试验区和对照区相比,降雨量增加利用150 mm,降雨利用率提高21%,减少灌水量21%;水稻亩产量增加4.3%;提高肥料的利用效率,减少农业面源污染.该系统结构简单、操作方便,具有可观的经济、生态效益和广阔的应用前景. 相似文献
20.
Waterlogging and salinity are reducing the productivity of irrigated agriculture on clay soils in south east Australia. We compared five drainage treatments: (1) undrained control (Control); (2) mole drains (Mole); (3) mole drains formed beneath gypsum-enriched slots (GES) (Mole + GES); (4) shallow pipe drains installed beneath GES (Shallow Pipe); (5) deep pipe drains (Deep Pipe). The experiment was set out on a vertisol and our measurements were made during the growth of an irrigated onion crop. Over the 3 months before the spring irrigations commenced, the perched water table on the Control was less than 400 mm below the soil surface for 27% of the time, whereas the shallow drainage treatments (Treatments 2, 3 and 4) reduced this time to less than 4%. During the irrigation season, the perched water table on the Mole + GES treatment rose above 400 mm for 3% of the time. The perched water table on the Mole treatment was above 400 mm for 14% of the time, compared with 19% of the time on the Control. The Deep Pipes were less effective in reducing the depth to the perched water table, both before and during the irrigation period. Mole drains increased the gas-filled porosity above the drains. However, the gas-filled porosity remained below reported levels for optimum root growth. Although the drains effectively drained excess water, and lowered the water table, the hydraulic gradient was insufficient to remove all of water from the macropores. Gypsum enriched slots above the mole drains increased the gas-filled porosity in the slots but the drainable porosity in the undisturbed soil appeared to be inadequate for optimum root growth, even though some drainage occurred near the slots. Discharge from the shallow drainage treatments averaged 58 mm for each irrigation, and was considerably more than the amount required to drain the macropores. The mole channels were in reasonably good condition at the end of the irrigation season, with at least 70% of the cross-sectional area of the channel open. Shallow subsurface drains increased onion yield by about 38%. For each day the water table was above 400 mm, the yield declined by 0.23 tonnes per hectare. Farmer adoption of shallow subsurface drainage will depend on the long-term economic benefits (influenced by the longevity of the mole channels and yields response) and the need to develop more sustainable management practices. 相似文献
|