首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A field experiment was carried out to research the changes and spatial distributions of soil enzyme activities in saline–sodic soil for a different number of cultivated years under drip irrigation. The distributions of alkaline phosphatase, urease, and sucrase activities within 40 cm in both horizontal and vertical directions of the emitter in saline–sodic soils planted with Leymus chinensis for 1st, 2nd, and 3rd year were studied. A mathematical method was used to determine the relationships between soil enzyme activities and soil environmental factors contain the electrical conductivity of saturated-soil extract, pH value, available nutrient, and organic carbon. Alkaline phosphatase, urease, and sucrase activities all increased with cultivated years in saline–sodic soil under drip irrigation: from 4.5, 1.39 and 19.39 to 20.25, 3.17, and 61.33 μg g?1 h?1, respectively, after planting L. chinensis for 3 year. Alkaline phosphatase, urease, and sucrase activities all decreased with increased horizontal and vertical distance from the emitter. After 3 year of drip irrigation, the correlations between soil enzyme activities and soil environment factors had stronger correlations than in the unreclaimed land. After 4–6 years, the soil enzyme activities should attain the level of the natural L. chinensis grassland.  相似文献   

2.
In order to ascertain the alkaline phosphatase (ALP) activity and its relationship with soil properties in saline–sodic soils during reclamation, a study was conducted in a saline–sodic soil reclaimed by cropping wolfberry (Lycium barbarum L.) with drip irrigation, in Ningxia Plain, Northwest China. The soil ECe, pH and SAR in 0–30 cm were 12.3 dS m?1, 9.4 and 44.1 (mmol/L)0.5, respectively. Soil transects with different planting years were intensively sampled, which had a wide gradient of salinity and sodicity. Ranging from 1.1 to 42.4 μg g?1 h?1, soil ALP activities increased with the increasing planting years, and showed a large spatial variability within transect. The higher ALP activities were always found beneath the drip emitters. More soil physicochemical properties became related significantly to the ALP activities as the planting years increased, indicating that the ALP activities could be better predicted by other properties after reclamation. Path analyses showed that the negative direct effects of soil pH on ALP activities became clearly dominant as the planting years increased. The positive effects of organic matter on ALP activities exerted indirectly, mainly through pH, total N, and available P. Soil ALP activities decreased exponentially with pH, which varied from 7.38 to 10.00. Our findings demonstrated that soil pH was the limiting factor for improving soil ALP activities in this saline–sodic soil, and after three planting years, soil biological activities and fertility level increased significantly.  相似文献   

3.
Application of sand can ameliorate rice paddy fields converted from saline–sodic land. However, the requirement of huge amount of sand has been limiting its practical application. In this study, flushing during saline sodic-sensitive stages of rice plant growth was incorporated into the ameliorating system to reduce the sand usage. A split-plot design was adopted with sand application (SA) with two levels as main plots and flushing during the sensitive stages (FL) with two levels as subplots in a hard saline–sodic soil, Northeast China. Four treatments included CK (no-sand, no-flush flooding), NF (non-sand, flush flooding), SN (sand, no-flush flooding), and SF (sand, flush flooding). The results showed that both SA and FL significantly affected all the investigated yield parameters. The combined effect of SA and FL on the grain yield was additive in the first year in respect of the effect on panicle density and seed weight per panicle; while it showed synergistic effect on the seed weight per panicle and grain yield in the second year. The rice yield in different treatments was in the order of SF > SN > NF > CK in both years, with the highest yield (4.37 t ha?1) obtained by SF treatment in the second year. Our results demonstrate that half the traditional amount of sand in combination with water-flushing during the saline–sodic-sensitive growth stages of rice is sufficiently effective in ameliorating saline–sodic soil and thereby enhancing rice grain yield in saline–sodic paddy fields.  相似文献   

4.
5.
Bioavailability and mobility of lead (Pb) in soils depend upon their partitioning between solution-solid phases and their further fractionation and redistribution among different solid-phase components. However, the dynamics of Pb in salt-affected (saline–sodic) Pb-contaminated (polluted) paddy soil need more exploration particularly under the influence of application of amendments at varying hydrological regimes and residence time. In this context, an incubation study was conducted to investigate the effect of application of three inorganic amendments (gypsum, rock phosphate and diammonium phosphate) on Pb fractions at two soil moisture regimes (flooding regime and 75% field capacity) and two incubation times (after 2 and 30 days) successively in non-saline/sodic and saline–sodic Pb-polluted paddy soils. After applied treatments, the concentration of Pb in five, i.e., exchangeable (F1), carbonate (F2), Fe–Mn oxide (F3), organic matter and sulfide bound (F4) and residual (F5) fractions, was assessed by sequential extraction. The results showed that the Pb spiked in the soils was significantly (P?≤?0.05) transformed from easily extractable (exchangeable and carbonate) fractions into less labile (Fe–Mn oxide, OM–S bound and residual) fractions. Among tested amendments, gypsum performed better in reducing the lability of Pb followed by DAP.  相似文献   

6.
7.
System of rice intensification (SRI) has been disseminated in many countries because of its high yield, although the mechanism of yield increase has yet to be fully understood. The aims of this study were to clarify the actual water management of a skilled SRI farmer in irrigated paddy field of Indonesia and to examine the effect of intermittent water management on rice growth and yield. Yield and yield components were compared in the field experiments in the farmer’s fields under intermittent (SRI) or flooded (FL) irrigation for 4 years from 2013 to 2016. The daily mean water depth of SRI plots during 0–40 days after transplanting showed very shallow (ca. 2 cm) or little lower than soil surface and continued to be lower than soil surface during reproductive stage when panicles were formed. The yield of SRI significantly exceeded that of FL for 4 years by 13% (P?=?0.0004), so did the panicle numbers per area (P?=?0.036). The yield increase in SRI was associated with the increased number of panicles, which should have resulted from enhanced tiller development under shallow water level during the vegetative stage. The increased number of panicles was, however, counteracted by the reduced number of spikelets per panicle and resulted in nonsignificant increase in the spikelet density, defined as number of spikelets per unit area of crop. This dampening change in spikelet number per panicle could have been caused by limited supply of either nitrogen or carbohydrate during the panicle development stage under the intermittent water supply. A greater yield increase by SRI could be expected by improving nutrient or water management during the reproductive stage.  相似文献   

8.
Tsujimoto  Kumiko  Ono  Kotaro  Ohta  Tetsu  Chea  Koemorn  Muth  E-Nieng  Hor  Sanara  Hok  Lyda 《Paddy and Water Environment》2021,19(4):635-648

The dependencies of the planting date on rainfall and soil moisture in paddy fields in Cambodia were analyzed to quantify farmers’ empirical knowledge regarding their decision of the planting date. Remote sensing data from multiple satellites covering the 2003–2019 period were analyzed. The planting dates in rain-fed paddies ranged from April to August, with large spatial variations and year-to-year fluctuations. In years when planting was suppressed in April and May, planting was extensively enhanced in June and August compared to normal years, and vice versa. Over the northeastern side of Tonle Sap Lake and south of Phnom Penh city, the areas planted in April and May were found to have positive correlations with rainfall and soil moisture, suggesting that wetter-than-average conditions encouraged farmers to plant earlier in the season. In contrast, this relationship was unclear on the western side of Tonle Sap Lake, where the rainfall amounts were larger throughout the year than in other areas in Cambodia. In this region, the relationship between the planting area and soil water availability was either unclear or was even slightly negative from June to August. Since more frequent dry spells have been detected after the onset of the rainy season in recent years, further studies and disseminations of potential changes in dry spells are important for the agronomic adaptation of planting dates under climate change.

  相似文献   

9.
The physical and chemical properties of the incorporation of whole and chopped straw into the soil and the rice yield of the first year in Northeast China are investigated in this study. Since the incorporated straw would become decayed in 2nd and 3rd year and cause favorable effect on rice growing, only the first year yield is evaluated.  相似文献   

10.
Phytosulfokine- α (PSK- α ), a biologically active peptide acting as a growth factor, plays a key role in cellular differentiation and proliferation. To test if PSK- α has some influence on agrobacterium-mediated transformation in rice, PSK-α at a series of concentrations was added into co-culture medium respectively. The results showed that PSK- α indeed affected the recovery of resistant calli and the transformation frequency of rice varieties Taipei 309 and Lijiangxintuanheigu, PSK- α at the concentration of 10 nmol/L could increase induction of resistant callus and efficiency of transformation, with a 11% and 4.9% top increase, respectively than the control. However, PSK- αat 200 nmol/L could inhibit the induction of the resistant calli. Further more, the effect of PSK-α on agrobacterium-mediated transformation is related with the concentration of 2, 4-D in selection medium. Higher induction rate of resistant calli was obtained from tissues treated with PSK- α plus 2 mg/L 2, 4-D.  相似文献   

11.
There are about 1 million ha of Si-deficiency paddy soils in Hubei Province, Practically, it is essential to study the Si nutrient status in those Si-deficiency rice soil and its regional distribution before the application of Si-fertilizer.  相似文献   

12.
Experiment was conducted for five successiveyears under large undisturbed monolith lysime-ters(2m×2m in square,l m in depth).Thesoil was silty clay loam texture and had a con-tent of total N 1.55 g/kg.The soil was flood-ed with penetration rate controlled at approxi-mate 3 mm per day in duration of double-riceseason and laid fallow and natural in winterand spring.Results showed that nitrate was the mainform of nitrogen in percolates.The change of  相似文献   

13.
There are about 1 million ha of Si-deficiency paddy soils in Hubei Province. Practically, it is essential to study the Si nutrient status in those Si-deficiency rice soil and its regional distribution before the application of Si-fertilizer. According to the analysis of 50 rice soil samples which collected from 20 counties/cities in Hubei Province, the available Si content in rice soils derived from different parent materials varied greatly. The Si content from high to low was in sequence of limestone, redpurplish sandy shale with carbonate, alluvium and lacustrine deposits, quaternary period red clay, granitic gneiss, and sandy shale. In addition, the Si content in rice soil was remarkably related with its pH. It seems that the pH 6.5 might be a demarcation line that divided the supplying Si ability of rice soils into the low and high categories (Table 1). Integrating the results with a critical soil Si-deficiency as 100 mg/kg, the evaluation index of soil Si supplying capability of a rice soil  相似文献   

14.
15.
The rice variety Tesanai 2 is susceptible tochilling. Exposure of the seedlings grown at 28±1℃ and under a photo flux density(PFD) of30μmol/m~2s to 1℃ and under a PFD of 150μmol/m~2s for 2 d caused a physiological disor-der called chilling injury which reduced the sur-vival rate to 50%. The experimental results in-dicated that the activity of scavenge oxygen  相似文献   

16.
Phytosulfokine(PSK)is a new peptide plant hormone,which was isolated in the conditioned medium of cultures derived from both monoco-tyledonous and dicotyledonous plants,such as Asparagus officinalis mesophyll[1],rice[2],zinnia[3],and carrot[4].PSK has two types of structure:PSK-αand PSK-β.The former is a sulfated pentapeptide[H-Tyr(SO3H)-Ile-Tyr(SO3H)-Thr-Gln-OH],the latter is a sulfated terapeptide[H-Tyr(SO3H)-Ile-Tyr(SO3H)-Thr-OH].Both are heat-stable,susceptible to pronase…  相似文献   

17.
The seedlings of indica hybrid rice Weiyou 49 and Weiyou 28 were exposed to 1℃ and 40℃ .and the changes of activity (content) of superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbic acid (ASA), glutathione (GSH),malondialdehyde (MDA) and leakage of electrolytes (%) were measured.  相似文献   

18.
《Field Crops Research》1999,63(3):211-224
Vertic Inceptisols are prone to land degradation because of excessive run-off and soil erosion during the rainy season. Productivity of soybean-based systems on these soils needs to be improved and sustained by better management of natural resources, particularly soil and water. During 1995–1997 a field study was conducted in Peninsular India on a Vertic Inceptisol watershed to study the effect of two soil depths, namely shallow (<50 cm soil depth) and medium-deep (≥50 cm soil depth) and two landform treatments, namely flat and broadbed-and-furrow (BBF) systems, on productivity and resource-use efficiency of soybean–chickpea rotation (soybean in rainy season followed by chickpea in post-rainy season). Soybean grown on flat landform on medium-deep soil had a higher leaf area index and more light interception compared to the soybean grown on the BBF landform. This resulted in an increase in mean seed yield for the flat landform (2120 kg ha−1) compared to the BBF landform (1870 kg ha−1). However, the landform treatments on shallow soil did not affect soybean yields. The soybean yield was higher on the medium-deep soil (1760 kg ha−1) than on the shallow soil (1550 kg ha−1) during 1995–1996, but were not different during 1996–1997. In both years chickpea yields and total system productivity (soybean + chickpea yields) were greater on medium-deep soil than on the shallow soil. Total run-off was higher on the flat landform (25% of seasonal rainfall) than on the BBF landform (20% of seasonal rainfall). This concomitantly increased profile water content (10–30 mm) of both soils in BBF compared to the flat landform treatment during 1995–1996, but not during 1996–1997. Deep drainage was higher in the BBF landform than in flat, especially for the shallow soil. Across landforms and soil depths, water use (evapotranspiration) by soybean–chickpea rotation during 1996–1997 ranged from 496 to 563 mm, which accounted for 54–61% of the rainfall. These results indicate that while the BBF system is useful in decreasing run-off and increasing infiltration of rainfall on Vertic Inceptisols, there is a need to increase light use by soybean on BBF during the rainy season to increase its productivity. A watershed-based farming system needs to be adopted to capture significant amount of rain water lost as run-off and deep drainage. The stored water can be used for supplemental irrigation to increase productivity of soybean-based systems leading to overall increases in resource-use efficiency, crop productivity, and sustainability.  相似文献   

19.
《Field Crops Research》1999,64(3):273-286
On-farm research to evaluate the productivity and nitrogen (N) nutrition of a rice (Oryza sativa L.)–wheat (Triticum aestivum L.) cropping system was conducted with 21 farmers in the piedmont of Nepal and with 21 farmers in northwest Bangladesh. In Nepal, two levels of N-fertilizer (0–22–42 and 100–22–42 kg N–P–K ha−1) and farmers’ nutrient management practices were tested in the rice season, and three levels of N (0–22–42, 70–22–42, and 100–22–42) and farmers’ practices were evaluated in the wheat season. The treatments in Bangladesh included a researchers managed minus-N plot (0–22–42) and the farmers’ practices. Rice and wheat yields were higher in all treatments than the 0–22–42 control plots, with the exception of rice with the farmers’ practices at one location in Bangladesh. The researchers’ treatment of 100–22–42 in Nepal resulted in larger yields of both rice and wheat than the farmers’ practices, indicating that farmers’ rates of N-fertilizer (mean 49 kg N ha−1) were too low. Delaying wheat seeding reduced yields in the fertilized plots in both countries, especially as N-fertilizer dose increased. Soil N-supplying capacities (SNSC), measured as total N accumulation from the zero-N plots (0–22–42), and grain yields without N additions were greater for rice than for wheat in both Nepal and Bangladesh. Higher SNSC in rice was probably due to greater mineralization of soil organic N in the warm, moist conditions of the monsoon season than in the cooler, drier wheat season. However, SNSC was not correlated with total soil N, two soil N availability tests (hot KCl-extractable NH4+ or 7-day anaerobic incubation), exchangeable NH4+ or NO3. Wheat in Nepal had greater N-recovery efficiency, agronomic efficiency of N, and physiological efficiency of N than rice. Nitrogen internal-use efficiency of rice for all treatments in both countries was within published ranges of maximum sufficiency and maximum dilution. In wheat, the relationship between grain yield and N accumulation was linear indicating that mobilization of plant N to the grain was less affected by biotic and abiotic stresses than in rice.  相似文献   

20.
The effects of large granule urea(LOU) to irrigated rice were studied at the farm of China National Rice Research Institute. Experiment soil contained organic C 19.0g/kg, total N 2.2g/kg, total P 0.60g/kg, total K 20.1g/kg and pH6.9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号