首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water shortage has become an important issue for Korean agriculture. Korea suffers from a limited agricultural water supply, and wastewater reuse has been recommended as an alternative solution. This study examined the concentrations of toxic heavy metals and Escherichia coli in a paddy rice field irrigated with reclaimed wastewater to evaluate the risk to farmers. Most epidemiological studies have been based on upland fields, and therefore may not be directly applicable to paddy fields. In this study, a Beta-Poisson model was used to estimate the microbial risk of pathogen ingestion. The risk value increased significantly after irrigation and precipitation. The results of the microbial risk assessment showed that risk values of groundwater and reclaimed wastewater irrigation were lower than the values of effluent directly from wastewater treatment plants. The monitoring results of heavy metals for each irrigated paddy fields did not show specific tendency. A risk assessment for toxic heavy metals was performed according to various exposure pathways; however, the results of the carcinogenic and noncarcinogenic risk estimation showed that the risk from reclaimed wastewater-irrigated paddy fields was the lowest.  相似文献   

2.
There are more than 130 agricultural water sources that are located near wastewater treatment plants (WWTPS) in Korea. The majority of the stream flow in these farmlands is dependent on effluent from the WWTPS during the dry season. This explains the indirect or direct reuse of effluent from WWTPs. Most of the farm workers use the effluent without any additional treatment because they have a lack of knowledge regarding water reuse. In addition, insufficient consideration is given to health and hygiene safety. This study reviewed the safety issues in these farmlands. A total of 53 farmlands located near WWTPs were investigated to determine if farm workers used effluent as irrigation water on their paddy rice fields. Total coliform, fecal coliform, Escherichia coli (E. coli), and the concentration of some heavy metals in paddy water and soils were measured. Quantitative microbial and toxic risk assessment methods were used to review the safety of wastewater irrigation. E. coli concentrations were used to estimate the microbial risk of enteric disease in the paddy fields. The microbial risk was 5.9 × 10?4, which did not satisfy the minimum safety standards. Carcinogenic risk was 3.99 × 10?5 and non-carcinogenic risk was 6.34 × 10?1. These values were too high to be considered safe, even though the measurements of E. coli and some toxic metals were of short duration.  相似文献   

3.
Choi  Joongdae  Kim  Gunyeob  Park  Woonji  Shin  Minhwan  Choi  Yonghun  Lee  Suin  Lee  Deogbae  Yun  Dongkoun 《Paddy and Water Environment》2015,13(2):205-213
Paddy and Water Environment - A field experiment with a locally-bred Japonica rice cultivar was conducted in 2011 to measure the effect of paddy irrigation management in Korea on rice yield, water...  相似文献   

4.
In Taiwan, Camellia seed meal is often sprayed on rice paddies during rice transplantation season to stop the growth of Pomacea canaliculata. However, the application of camellia seed meal endangers muciferous mollusks and fishes in paddy fields. Though researchers have examined the effects of the saponin in the camellia seed meal on Pomacea canaliculata, previous studies ignore the effects of saponin on fish. Loaches often inhabit the rivers, lakes, ponds, paddy fields, and canals of low elevation where there have muddy layer with plant chips. This study uses vanillin-sulfuric acid method and field tests on loaches in paddy fields to determine the duration of camellia seed meal’s effect on loaches (Misgurnue Angullicaudatus). Results indicated that the best application to stop the growth of Pomacea canaliculata is to seal the rice field immediately after transplantation, apply the camellia seed meal, and then irrigate the field 2?days after camellia seed meal application for the summer transplantation, and 3?days for the spring transplantation. Water should not be drained from the paddy field after the application of camellia seed meal to reduce the chance of endangering loaches in irrigation canals. Field Tests show that high water temperature during summer also has a negative effect on loaches in paddy fields and irrigation canals.  相似文献   

5.
This article describes the pilot study on the water reuse for agricultural irrigation in Korea. The project is a part of the application of wastewater reuse system for Agriculture project, a 21st Century Frontier R&D Program sponsored by the Ministry of Education, Science, and Technology and associated with the Sustainable Water Resources Research Program. The goal of the project was to develop infra-technologies necessary to reclaim wastewater for irrigation in agriculture. The project involved two phases: laboratory and field research. Reclamation techniques for irrigation and feasible reuse were developed as a first step in proposing appropriate water quality standards. Reclaimed wastewater of various qualities was used to irrigate cereal crops and vegetables, and possible adverse effects on crops, humans, and the environment were investigated. The optimal reclamation methods required to satisfy water quality standards were explored and the operational characteristics investigated. Moreover, an inventory of farmlands that could reuse reclaimed wastewater was established. Feasible delivery systems for irrigation were developed, and pilot project sites were identified. Finally, operational field data from pilot units were collected and analyzed. This research and development may help solve water shortage problems in Korea, which left unaddressed will have an adverse effect on future generations.  相似文献   

6.
为了揭示覆膜滴灌对稻田CH_4综合排放的影响,采用比较分析法分析了覆膜滴管条件下稻田甲烷的排放变化。试验采用覆膜滴灌Ⅰ、覆膜滴灌Ⅱ和漫灌3个处理,分别对当地高产主栽品种吉旱1号进行CH_4排放通量的测定。结果表明,覆膜滴灌稻田CH_4排放通量显著高于漫灌稻田;覆膜滴灌处理条件下,土壤含水率高的覆膜滴灌Ⅰ稻田CH_4排放通量高于覆膜滴灌Ⅱ,说明土壤水分是稻田CH_4排放的主要影响因素之一;3个处理下CH_4的排放趋势大体一致,排放高峰均出现在水稻分蘖的前中期和拔节孕穗期,说明覆膜滴灌未改变稻田CH_4排放的进程。  相似文献   

7.

Water management methods regulate water temperature in paddy fields, which affects rice growth and the environment. To understand the effect of irrigation conditions on water temperature in a paddy field, water temperature distribution under 42 different irrigation models including the use of ICT water management, which enables remote and automatic irrigation, was simulated using a physical model of heat balance. The following results were obtained: (1) Irrigation water temperature had a more significant effect on paddy water temperature close to the inlet. As the distance from the inlet increased, the water temperature converged to an equilibrium, which was determined by meteorological conditions and changes in water depth. (2) Increasing the irrigation rate with higher irrigation water amount increased the extent and magnitude of the effects of the irrigation water temperature. (3) When total irrigation water amount was the same, increasing the irrigation rate decreased the time-averaged temperature gradient effect over time across the paddy field. (4) Irrigation during the lowest and highest paddy water temperatures effectively decreased and increased the equilibrium water temperature, respectively. The results indicate that irrigation management can be used to alter and control water temperature in paddy fields, and showed the potential of ICT water management in enhancing the effect of water management in paddy fields. Our results demonstrated that a numerical simulation using a physical model for water temperature distribution is useful for revealing effective water management techniques under various irrigation methods and meteorological conditions.

  相似文献   

8.
The human body loading with arsenic (As) through rice consumption is a global health concern. There is a crucial need to limit As build-up in rice, either by remediating As accumulation in soils or reducing As levels in irrigation water. Several conventional approaches have been utilized to alleviate the As accumulation in rice. However, except for some irrigation practices, those approaches success and the adoption rate are not remarkable. This review presents human health risks posed due to consumption of As contaminated rice, evaluates different biomarkers for tracing As loading in the human body, and discusses the latest advancement in As reducing technologies emphasizing the application of seed priming, nanotechnology, and biochar application for limiting As loading in rice grains. We also evaluate different irrigation techniques to reduce As accumulation in rice. Altering water management regimes significantly reduces grain As accumulation. Bio- and nano-priming of rice seeds improve germination and minimize As translocation in rice tissues by protecting cell membrane, building pool around seed coat, methylation and volatilization, or quenching harmful effects of reactive oxygen species. Nanoparticle application in the form of nano-adsorbents or nano-fertilizers facilitates nano-remediation of As through the formation of Fe plaque or sorption or oxidation process. Incorporating biochar in the rice fields significantly reduces As through immobilization, physical adsorption, or surface complexation. In conclusion, As content in cooked rice depends on irrigation source and raw rice As level.  相似文献   

9.
10.
A pilot study of microorganism repair after UV disinfection was performed for agricultural reuse of secondary-level effluent in paddy rice fields in Korea. Effluent from the bio-filter of a 16-unit apartment was used in a flow-through type UV-disinfection system. The average concentration of suspended solids (SS) and biochemical oxygen demand (BOD) were 3.4 and 5.9 mg L−1, respectively. The mean total coliform level was in the range of 1.5 × 104 MPN 100 mL−1. Photoreactivation and dark repair were apparent at a low UV dose (6 mW s cm−2). In low-dose UV disinfection, microorganisms increased within 12 h by approximately 5 and 1% due to photoreactivation and dark repair, respectively. This increase was not significant at a high UV dose (16 mW s cm−2). The repaired microorganisms were further inactivated, rather than reactivated, by solar irradiation, and numbers decreased to non-detectible levels after 4 h of exposure to solar irradiation. Based on UV disinfection and repair studies, a UV dose of 30 mW s cm−2 is recommended as sufficient to produce reclaimed water virtually free of pathogens and may be adequate for disinfection of secondary effluent for agricultural irrigation in paddy rice culture.  相似文献   

11.
Water management is an important factor in regulating soil respiration and the net ecosystem exchange of CO2 (NEE) between croplands and atmosphere. However, how water management affects soil respiration and the NEE of paddy fields remains unexplored. Thus, a 2-year field experiment was carried out to study the effects of controlled irrigation (CI) during the rice season on the variation of soil respiration and NEE, with flooding irrigation (FI) as the control. A decrease of irrigation water input by 46.39% did not significantly affect rice yield but significantly increased irrigation water use efficiency by 0.99 kg m?3. The soil respiration rate of CI paddy fields was larger than that of FI paddy fields except during the ripening stage. Natural drying management during the ripening stage resulted in a significant increase of the soil respiration rate of the FI paddy fields. Variations of NEE with different water managements were opposite to soil respiration rates during the whole rice growth stages. Total CO2 emission of CI paddy fields through soil respiration (total R soil) increased by 11.66% compared with FI paddy fields. The increase of total R soil resulted in the significant decrease of total net CO2 absorption of CI paddy fields by 11.57% compared with FI paddy fields (p < 0.05). There were inter-annual differences of soil respiration and the NEE of paddy fields. Frequent alternate wetting and drying processes in the CI paddy fields were the main factors influencing soil respiration and NEE. CI management slightly enhanced the rice dry matter amount but accelerated the consumption and decomposition of soil organic carbon and significantly increased soil respiration, which led to the decrease of net CO2 absorption. CI management and organic carbon input technologies should be combined in applications to achieve sustainable use of water and soil resources in paddy fields.  相似文献   

12.
Cadmium (Cd) is a toxic heavy metal which harms human health. In Japan, a major source of human Cd-intake is rice grains and contamination of paddy soils by Cd and accumulation of Cd in rice grains are the serious agricultural issues. There also exist Cd contamination of rice and its toxicity in several populations in countries including China and Thailand. Understanding the Cd transport mechanisms in rice can be a basis for regulating rice Cd transport and accumulation by molecular engineering and marker-assisted breeding. Recently, a number of studies have revealed the behavior of Cd in rice, genetic diversity of Cd accumulation, quantitative trait loci controlling Cd accumulation and transporter molecules regulating Cd accumulation and distribution in rice. In this article, we summarize recent advances in the field and discuss perspectives to reduce grain Cd contents.  相似文献   

13.
This paper introduces an irrigation system developed in the floodplain of a lake and studies the water management technique of the irrigation system by estimating the total water balance of the whole system. The system is characterized by a reservoir combined with a dike system in the floodplain of the Tonle Sap Great Lake and an irrigation system. Two main models are used for calculating the total water balance. The first model is the water balance of the reservoir. The inputs to the model are water level of the reservoir, precipitation, lake evaporation, infiltration, and area–volume curve of the reservoir. The outputs are inflow and outflow of the reservoir. The supply from the reservoir to paddy fields is computed from the outflow. The second model is the water balance of paddy fields, based on which the water requirement in paddy fields is derived. The reference evapotranspiration needed to calculate the water requirement is simulated for monthly time series using the FAO Penman–Monteith model. Since there is no drainage network in the irrigation system, surface drainage and runoff are not included in the calculation of the water balance, and seepage is considered negligible in the flat floodplain area. The evapotranspiration, rice variety, soil type and irrigated area are used to simulate water consumption in paddy fields. Finally, the two models are connected to produce the total water balance from the reservoir to paddy fields. The total outflow from the reservoir is estimated and the total water consumption for dry season cultivation is also determined. Finally, the efficiency of the whole system is examined.  相似文献   

14.
Paddy and Water Environment - One of the common irrigation systems in the paddy fields is field-to-field irrigation. The management of these irrigation systems is difficult and essential because of...  相似文献   

15.
Zhou  Wangzi  Dong  Bin  Liu  Junjie 《Paddy and Water Environment》2020,18(1):121-138
Paddy and Water Environment - In South China’s paddy irrigation area, irrigation and drainage dual-purpose channel mode (IDDCM) is applied to conserve farmland resources in rice cultivation...  相似文献   

16.
Flooded paddy fields have many functions, including not only rice production, and ecological and environmental conservation. This work estimates the extent of paddy field infiltration in Taiwan by adopting a one-dimensional Darcy-based soil/water balance model SAWAH (Simulation Algorithm for Water Flow in Aquatic Habitats). A 10 cm thick plow sole layer with a hydraulic conductivity of 0.03 cm/day, coupled with the soil texture and irrigation data obtained from 15 irrigation associations, is used to estimate the volumetric amount of annual infiltration in Taiwan. Simulation results from SAWAH indicate that the plow sole layer controls the movement of infiltrated water, with a rate about 1.8 billion cubic meters annually. The estimated infiltration rate of 1.8 billion m3/yr comprises more than 40% of the annual infiltration recharge to ground water in Taiwan. Additionally, the amount of infiltration recharge to groundwater is equivalent to 20 billion Taiwan dollars NT$ (or 0.65 billion US$) while the yearly rice crop production is 35 billion NT$ (or 1.13 billion US$). It is evident that the infiltration from rice paddy is of great importance to the economy, environment, and water resources conservation in Taiwan.  相似文献   

17.
In the large-scale irrigation schemes of the lower Ili River Basin of Kazakhstan, crop rotation combines paddy rice and non-rice crops. Continuous irrigation is practiced in paddy fields, whereas other crops are sustained from groundwater after only limited early irrigation. The water table in non-rice crops is raised by seepage from canals and the flooded paddy fields. We investigated the areal extent to which the groundwater level of non-irrigated fields is influenced by seepage from canals and paddy fields by examining the relationship between distance (from canal and paddy field) and groundwater level in upland fields. The groundwater level was influenced for up to 300 and 400 m from the canals and paddy fields, respectively. Geographic information system analysis of crop and canal patterns in the 11 selected years showed that if the zone of influence is 300 and 400 m from the canals and paddy fields, respectively, the groundwater level of most of the area of upland fields was raised by seepage. We conclude that the water supply to cropping fields by seepage from irrigation canals and paddy fields is adequate, but the spatial distribution of the paddy fields may be an important factor that needs more attention to help improve water use efficiency in this irrigation district.  相似文献   

18.
Nie  Tangzhe  Chen  Peng  Zhang  Zhongxue  Qi  Zhijuan  Zhao  Jian  Jiang  Lili  Lin  Yanyu 《Paddy and Water Environment》2020,18(1):111-120
Paddy and Water Environment - Irrigation methods and rice straw incorporation (RSI) are two major factors influencing CH4 emissions from paddy fields. However, their effects have never been studied...  相似文献   

19.
There are many paddy fields and large amounts of groundwater in the Tedori River Alluvial Fan in Ishikawa Prefecture, Japan. Water infiltration from paddy fields during irrigation may significantly contribute to groundwater recharge. Groundwater recharge is known to be one outcome of paddy farming, and in general is usually related to land use. However, a decreased area of paddy fields because of socioeconomic factors such as urbanization and increasing area of fallow fields has possibly affected the groundwater environment. Evaluation of the quantitative effect of paddy fields on groundwater is necessary for groundwater conservation. This study examined the relationship between differences in the depth of groundwater from just before the irrigation period to just after the first irrigation of paddy fields (increments of groundwater levels) in observation wells and the area of paddy fields around each well. The paddy areas within circular buffer zones, which were delineated at 0.2 km intervals between 0.2 and 2.0 km centered on each observation well, were calculated. A positive relationship was found between the rise in groundwater and the area of paddy field within different buffer zones at most wells. In addition, in the middle or upper part of the fan, the effect of changes in the area of paddy fields surrounding the well on the groundwater level rise was greater than that on the lower part of the fan.  相似文献   

20.
Increasing water productivity for paddy irrigation in China   总被引:4,自引:0,他引:4  
This paper introduces the research on practices to increase water productivity for paddy irrigation in China and summarizes the experience on implementation of the alternate wetting and drying (AWD) irrigation technique. The widespread adoption of the AWD practice on 40% of the rice growing area provides an opportunity for China to produce more food in the water-surplus south where it is wet and the traditional based paddy field agriculture is dominant. Physical and institutional measures leading to increasing water and land productivity in rice-based systems are discussed. Research studies show that AWD practice does not reduce rice yield, but does increase the productivity of water. Water use and thus water charges can be reduced. However, experience shows that demonstrations and training are needed to encourage farmer adoption. Furthermore, there are a range of complementary policies and practices, such as volumetric pricing or farm pond development, which provide incentives for adoption of AWD. Finally, there remain many scientific issues to be addressed. Application of the AWD technique in some regions is still very difficult because of both bio-physical and socio-economic problems. In conclusion, the widespread adoption of AWD is only a first step in the continuing effort to find practices that will increase water productivity for paddy irrigation in China.Dr. Yuanhua Li was a Professor and Dean in Wuhan University of Hydraulic and Electric Engineering from 1996 to 2000. After that, he has been a Professor and Deputy Director General of the National Centre for Irrigation and Drainage Development, Ministry of Water Resources, China. He has been doing research on irrigation principally for paddy since 1982.Dr. Randolph Barker is an agricultural economist and Professor Emeritus Cornell University. From 1966 to 1978 he served as head of the Economics Department, International Rice Research Institute, Los Banos, Philippines and from 1995 to 2004 was principal researcher, International Water Management Institute, Colombo, Sri Lanka.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号