首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The African rice Oryza glaberrima, traditionally cultivated since more than 3.500 years, is of poor agronomic performance but resistant/tolerant to various stresses and diseases. The introduction of these characters into O. sativa cultivars is difficult since crossing barriers cause spikelet sterility in F1. Backcrossing can restore fertility and recently facilitated the development of fertile O. glaberrima × O. sativa ssp. japonica hybrid progenies for rain fed systems. With the objective to gain access to African rice germplasm for improvement of irrigated rice, crosses were performed with eighteen O. glaberrima and twenty O. sativa ssp. indica accessions. In total about one hundred F1-hybrid grains were obtained. The F1 plants were all completely sterile and backcrossing (BC) to O. sativa was performed in order to restore spikelet fertility. Monitoring of Tog5681 × IR64 hybrid progenies under field conditions revealed a broad genetic diversity within the BC1 and BC2 populations. Some BC1 and BC2 progeny plants outperformed the O. sativa parent, indicating that the heterozygocity level and complementary gene action after two backcrosses are still sufficient to positively influence plant vigor. Spikelet fertility of progenies was highly variable, but almost complete fertility was already observed within the BC1F2 population. High spikelet fertility was preserved in one out of two analyzed BC1F3 families and inmost of the BC2F3 families. The ability to restore spikelet fertility within few generations and the potential of the genetic diversity present in interspecific progenies facilitates the development of plant types specifically designed for the African irrigated and lowland environment. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Yoshio Sano 《Euphytica》1985,34(3):587-592
Summary To study differential nucleus-cytoplasm interactions between the two cultivated rice species, Oryza sativa and O. glaberrima, cytoplasmic substitution lines were made by using a glaberrima strain (G) and an Indica strain of sativa (S). The G cytoplasm had no adverse effect on pollen development when combined with the nucleus of S. On the other hand, when the S cytoplasm was combined with the G nucleus, the substitution line showed no seed set because of male sterility although the pollen grains were normally stained with I2-KI solution. A dominant gene derived from S strain seemed to cause anther indehiscence in the substitution line. Further, a restorer gene (Rf j)from Akebono of Japonica type was effective on pollen restoration in the male sterile line, suggesting that the S cytoplasm is the same as those of Japonica type in terms of a fertility-restoring system.This paper is Genetic studies of speciation in cultivated rice. 4.  相似文献   

3.
Summary Most of the commercial hybrids of indica rice are based on wild abortive (WA) source of cytoplasmic-genetic male sterility (CMS). Such cytoplasmic uniformity may lead to genetic vulnerability to disease and insect pests. To overcome this problem, diversification of CMS sources is essential. Crosses of 46 accessions of O. perennis and two accessions of O. rufipogon as female parents were made with two restorers (IR54, IR64) of WA cytosterility. Sterile hybrids were backcrossed with the respective recurrent parents. Of all the backcross derivatives, one line having the cytoplasm of O. perennis Acc 104823 and the nuclear background of IR64 was found to be stable for male sterility. The newly developed CMS line has been designated as IR66707A. This line is completely sterile (0% seed set) under selfed conditions. Crosses of IR66707A with 10 restorers of WA cytoplasm showed almost complete (93–100%) pollen sterility, indicating that the male sterility source of IR66707A is different from WA sterility. Southern hybridization of IR66707A, O. perennis (cytoplasmic donor), IR66707B (maintainer) and V20A (WA cytoplasm) using mitochondrial DNA specific probes (5 endonucleases × 8 probes) showed identical banding patterns between IR66707A and O. perennis. However, in more than half of the combinations, different banding patterns were observed between IR66707A and IR66707B and between IR66707A and V20A. The results suggest that IR66707A has the same cytoplasm as the donor (O. perennis), and CMS may not be caused by any major rearrangement or modification of mtDNA. The new CMS source identified will be useful in cytoplasmic diversification in hybrid rice breeding.  相似文献   

4.
Summary Four indica cultivars viz. Kalinga-I, Ptb. 10, IR 27280-13-3-3-3 and Co. 41 were found to possess male sterile cytoplasm with fertility restoring genes while the cultivar Krishna was found to maintain the male sterility in all the cases. All the plants in the F1 of Kalinga-I × Krishna were observed to be completely male sterile and continued to show complete pollen sterility in subsequent backcross generations when backcrossed with recurring pollen parent, Krishna. Thus, it was posible to develop a new cytoplasmic-genetic male sterile line in indica rice (Krishna A) with Kalinga-I male sterile cytoplasm and this male sterile cytoplasm was found to be genetically different from others. Further, the newly developed male sterile line (Krishna A) was observed to be tolerant for low temperature at seedling stage.  相似文献   

5.
Two species in genus Oryza, O. glaberrima and O. glumaepatula, are valuable and potential sources of useful genes of interest for rice improvement. However, the hybrid sterility between O. sativa and these two species is a main reproduction barrier when transferring the favorable traits/genes to mbox{O. sativa.} To overcome it, the nature of hybrid sterility should be understood further. The objective in the report is to map a new hybrid sterility gene as a Mendelian factor from O. glaberrima and analyze the co-linear of hybrid sterility S loci mbox{between} mbox{O. glaberrima} and mbox{O. glumaepatula} via comparative mapping approach. A BC2F2 population, derived from a single semi-sterility plant of BC2F1 of WAB56-104/ WAB450-11-1-2-P41-HB (WAB450-6) //WAB56-104///WAB56-104 was employed to map this pollen killer in O. glaberrima since WAB450-6 is a progeny of interspecific hybrid between O. sativa and O. glaberrima. A new pollen killer locus, S29(t) in O. glaberrima, was identified and mapped to interval between SSR marker RM7033 (1.1 cM) and RM7562 (1.3 cM) on rice chromosome 2. Comparative mapping indicated that S29(t) closely corresponded to S22 which is also a pollen killer gene in O. glumaepatula and is tightly linked with RFLP marker S910 on the short arm of rice chromosome 2. The good co-linear between S29(t) and S22 implied that there might exist common (orthologous) hybrid sterility loci controlled the reproduction barrier among AA genome species of genus Oryza, which will contribute significantly to our understanding of speciation and operation of hybrid sterility between O. sativa and its AA genome relatives.  相似文献   

6.
Hybrid sterility hinders the transfer of useful traits between Oryza sativa and O. glaberrima. In order to further understand the nature of interspecific hybrid sterility between these two species, a strategy of multi-donors was used to elucidate the range of interspecific hybrid sterility in this study. Fifty-nine accessions of O. glaberrima were used as female parents for hybridization with japonica cultivar Dianjingyou 1, after several backcrossings using Dianjingyou 1 as the recurrent parent and 135 BC6F1 sterile plants were selected for genotyping and deducing hybrid sterility QTLs. BC6F1 plants containing heterozygous target markers were selected and used to raise BC7F1 mapping populations for QTL confirmation and as a result, one locus for gamete elimination on chromosome 1 and two loci for pollen sterility on chromosome 4 and 12, which were distinguished from previous reports, were confirmed and designated as S37(t), S38(t) and S39(t), respectively. These results will be valuable for understanding the range of interspecific hybrid sterility, cloning these genes and improving rice breeding through gene introgression.  相似文献   

7.
Summary Interspecific cytoplasm substitution lines of Oryza sativa and O. glaberrima, i.e. (sativa)-glaberrima and (glaberrima)-sativa, have been bred by means of successive backcrosses, using three japonica varieties of sativa and two glaberrima strains.In all the six substitution lines with the cytoplasm of the glaberrima strains, the fertility increased with succeeding backcrosses, and eventually completely fertile plants whith the characteristics of the parental japonica variety appeared. This indicates that the glaberrima cytoplasm exerted no effect on the genome manifestation of these japonica varieties. Of the five substitution lines with the cytoplasm of each of the japonica varieties, four lines produced male sterile (M.S.) plants only in the backcross generations. In the remaining substitution line with the cytoplasm of the japonica variety Akebono, there was simultaneous segregation for male sterile (M.S.) and pollen fertile plants bearing indehiscent anthers (ID.M.F.) in the backcross generations. In the compulsively selfed progeny of ID.M.F. plants, pollen fertile plants with dehiscent anthers (D.M.F.) occurred with M.S- and ID.M.F. plants. Morphologically, these three types were supposed to have the same genetic background as the glaberrima parent. It was established that D.M.F.-and ID.M.F. plants were homozygous and heterozygous for a dominant nuclear gene restoring pollen fertility, respectively, and the M.S. plants and the two glaberrima strains used in this study carried a recessive gene for pollen sterility in homozygous condition. The restorer gene was assumed to derive from the japonica variety Akebono. The expression of the restorer gene was of the sporophytic type. The pollen sterility of the substitution lines that possessed the cytoplasm of the japonica varieties was of cytoplasmon-genic nature.  相似文献   

8.
To further understand the nature of hybrid sterility between Oryza sativa and Oryza glaberrima, quantitative trait loci (QTL) controlling hybrid sterility between the two cultivated rice species were detected in BC1F1 and advanced backcross populations. A genetic map was constructed using the BC1F1 population derived from a cross between WAB450-16, an O. sativa cultivar, and CG14, an O. glaberrima cultivar. Seven main-effect QTLs for pollen and spikelet sterility were detected in the BC1F1. Forty-four sterility NILs (BC6F1) were developed via successive backcrosses using pollen sterility plants as female and WAB450-16 as the recurrent parent. Seven NILs, in which the target QTL regions were heterozygous while the other QTL regions as well as most of the reminder of the genome were homozygous for the WAB450-16 allele, were selected as the QTL identification materials. BC7F1 for the seven NILs showed a continuous variation in pollen and spikelet fertility. The four identified pollen sterility QTLs were located one each on chromosomes 1, 3, 7 and 7. Pollen sterility loci qSS-3 and qSS-7a were on chromosomes 3 and 7, respectively, which coincides with the previously identified S19, and S20, while loci qSS-1 and qSS-7b on chromosomes 1 and 7L appear distinct from all previously reported loci. An epistatic interaction controlling the hybrid sterility was detected between qSS-1 and qSS-7a.  相似文献   

9.
Hybrid incompatibility plays an important role in establishment of post-zygotic reproductive isolation. To unveil genetic basis of hybrid incompatibilities between diverged species of genus Oryza AA genome species, we conducted genetic dissection of hybrid sterility loci, S22(t), which had been identified in backcross progeny derived from Oryza sativa ssp. japonica (recurrent parent) and South American wild rice O. glumaepatula near the end of the short arm of chromosome 2. The S22(t) region was found to be composed of two loci, designated S22A and S22B, that independently induce F1 pollen sterility. Pollen grains containing either of the sterile alleles (S22A-glums or S22B-glums) were sterile if produced on a heterozygous plant. No transmission of the S22A-glums allele via pollen was observed, whereas a low frequency of transmission of S22B-glums was observed. Cytological analysis showed that the sterile pollen grains caused by S22A could reach the bicellular or tricellular stage, and the nearly-sterile pollen grains caused by S22B could reach the tricellular stage. Our genetic analysis showed repulsion linkage effect is possible to induce strong reproductive barrier by high pollen sterility based on recombination value and transmission ratio of hybrid sterility gene to the progeny was influenced by frequency of competitors on fertilization.  相似文献   

10.
Search for male sterility-inducing cytoplasm in wild species of the genus Oryza was attempted with a view to diversify the base of the cytoplasmic genetic male sterility system currently used in the development of commercial rice hybrids. A total of 132 interspecific crosses were made involving accessions of four wild and two cultivated species, all belonging to the A genome. Wild accessions possessing sterility-inducing cytoplasms were identified following reciprocal and sterile F2 backcross methods. Sterile segregants were pursued through substitution backcrosses to develop cytoplasmic male-sterile (CMS) lines. CMS lines were developed with the cytoplasm of either O. rufipogon (VNI) or O. nivara (DRW 21018, DRW 21001, DRW 21039, DRW 21030 and RPW 21111). Based on shape, staining, and abortive pattern of pollen and also on type of interaction with a set of restorers and maintainers for known cytoplasmic male steriles of WA source (V 20A), the newly-developed CMS lines were grouped into four classes. Of these, RPMS 1 and RPMS 2 showed gametophytic male sterility with a restorer reaction different from WA cytoplasmic male-sterile stocks.  相似文献   

11.
Summary It is shown that the restorer gene Rf j extracted from the Japanese rice variety Akebono is effective on pollen restoration in the cytoplasm substitution line having the nucleus of Oryza glaberrima and japonica or indica cytoplasm of O. sativa, and is of the sporophytic type.The Asian perennial type of the wild rice species O. rufipogon is considered to be the progenitor of O. sativa. Two substitution lines having the cytoplasm of a perennial strain of O. rufipogon from Sri Lanka and the nucleus of O. glaberrima with or without the gene Rf j in homozygous condition have been bred by means of successive backcrosses. These lines have now reached the BC5 generation. Plants of the lines resemble morphologically the recurrent parent, but do not show pollen restoration, indicating that the cytoplasm of the rufipogon strain induced male sterility and that the gene Rf j does not act as the restorer.  相似文献   

12.
Hybrids between indica and japonica rice varieties usually show partial sterility, and are a major limiting factor in the utilization of heterosis at subspecific level. When studying male-gamete (pollen) abortion, a possibly important cause for sterility, six loci (S-a, S-b, S-c, S-d, S-e and S-f) for F1 pollen sterility were identified. Here we report genetic and linkage analysis of S-c locus using molecular markers in a cross between Taichung 65, a japonica variety carrying allele S-c j, and its isogenic line TISL5, carrying alleleS-c j. Our results show that pollen sterility occurring in the hybrids is controlled by one locus. We used 208 RFLP markers, as well as 500 RAPD primers, to survey the polymorphism between Taichung 65 and TISL5. Six RFLP markers located on a small region of chromosome 3, detected different RFLP patterns. Co-segregation analysis of fertility and RFLP patterns with 123 F2 plants confirmed that the markers RG227, RG391, R1420 were completely linked with the S-c locus. The genetic distances between the markers C730, RG166 and RG369 and the S-c locus were 0.5 cM, 3.4 cM, and 3.4 cM respectively. Distorted F2 ratios were also observed for these 4 RFLP markers in the cross. This result suggests that the `one locus sporo-gametophytic' model could explain F1 hybrid pollen sterility in cultivated rice. RG227, the completely linked marker, has been converted to STS marker for marker-assisted selection. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Summary In common rice, Oryza sativa L. (n=12), the gene Am for non-glutinous is dominant over the gene am for glutinous. In African rice, O. glaberrima Steud. (n=12), no spontaneous glutinous strain has been found, but recently a glutinous strain of glaberrima was induced by EMS-treatment.The interspecific cytoplasm substitution line with sativa cytoplasm and glaberrima nucleus is male sterile. It has been confirmed that the complete restoration of pollen fertility in this male sterile line is attributed to a single dominant nuclear gene Rf j.Trial to transfer gene am from sativa to glaberrima was commenced with backcrosses of the F1 hybrid (glutinous sativa cv. Iwai-mochi × glaberrima ) to glaberrima type plants of the substitution line homozygous for Rf j,using the latter as the pollen parent. At the B1 step, highly fertile glaberrima type Am/am plants were obtained. Thereafter plants of this type were backcrossed to normal glaberrima as the recurrent pollen parent to complete the nuclear substitution. It was confirmed that the EMS-induced glutinous character of glaberrima was a monogenic recessive and that the same gene controls the expression of glutinous character in the different rice species, sativa and glaberrima.  相似文献   

14.
Summary From 28 Indica-Japonica crosses, two Indica cultivars, V.20B and Sattari were identified to possess male sterile cytoplasm with fertility restoring genes. It was possible to develop a new Japonica cytoplasmic genetic male sterile line (Zhunghua-1) on Indica male sterile cytoplasm (V 20B) by repeated backcrossing the complete pollen sterile plants of V 20B x Zhunghua-1 to the recurring male parent, Zhunghua-1. The study indicated that it would be possible to develop male sterile lines rom indica-japonica crosses only when there is sufficient amount of reciprocal differences with respect to pollen sterility. Further, it was inferred that it would be easier to develop Japonica male sterile lines on Indica cytoplasm than developing Indica male sterile line with japonica cytoplasm.  相似文献   

15.
Summary Recurrent backcrossing has been carried out with a view to transfer a gene for non-glutinous endosperm from two strains of O. glaberrima (Wx g /Wx g ) to glutinous japonica and indica varieties (wx/wx) of Oryza sativa. In the course of backcrosses Wx g /wx segregants were crossed with each of the two glutinous varieties of sativa as the respective recurrent male parent. The wx/wx and Wx g /wx segregants in the successive generations were consistently fully fertile and semi-sterile, respectively. The semi-sterility of Wx g /wx plants was attributable to abortion of most of the pollen grains carrying the gene wx. The nucleus but not cytoplasm was related to the semi-sterility. The Wx g /Wx plants having the gene for non-glutinous endosperm of a glaberrima strain and a japonica variety of sativa were also semi-sterile. Both wx- and Wx-megaspores in the plants heterozygous for the gene Wx g were deleteriously affected. The results could be explained by assuming that a factor tightly linked with the gene Wx g of glaberrima sterilizes gametes not carrying it in the heterozygotes and that the gametocidal action is exerted when combined with the sativa nucleus by the recurrent backcross method.  相似文献   

16.
Summary Crosses between a wild species C. chacoense and three cultivated species of chili pepper viz. C. annuum, C. frutescens and C. chinense yielded hybrids when C. chacoense was the seed parent but the reciprocal crosses were unsuccessful. C. chacoense × C. annuum F1 hybrids were partly fertile and therefore an F2 population could be raised; the other two F1 hybrids were totally sterile. Chromosome pairing in the F1 plants resulted largely in bivalents and a few multivalents and univalents. The genomes of the four species share large homologies and the role of chromosome structural changes in genome differentiation is suggested. Hybrid sterility is the major reproductive isolation mechanism.  相似文献   

17.
J. H. Oard  J. Hu  J. N. Rutger 《Euphytica》1991,55(2):179-186
Summary Twenty-six male sterile plants grown in the field were recovered in the M7 generation from ethyl methane sulfonate-treated material of the rice cultivar M-201. Fertility increased five-fold when ratooned plants from the field were grown in a growth chamber with a 12 hour daylength. Crosses between mutant and normal fertile cultivars produced fertile F1 plants. Female fertility was normal as judged by percent seed set from unbagged panicles of parental and recombinant lines. Transgressive segregation for fertility was observed for all crosses in the F2 and F3 generations. Five of 37 F3 male sterile plants showed moderate levels of seed fertility under winter greenhouse conditions and reduced seed set when transplanted to summer field plots. Fertility data from reciprocal crosses suggested cytoplasmic factors had little or no effect on levels of male sterility in the mutant lines. Chi-squared analyses of F2 and F3 generation results indicated male sterility of the mutants is conditioned by two nuclear genes with epistatic effects.  相似文献   

18.
The male sterile plants that segregated in a BC5F2 of `C. sericeus × C. cajan var. TT-5' population were maintained by sib mating. The male sterile plants were crossed with ICPL-85012.Approximately 50% of the F1 plants were sterile. F2 plants derived from the fertile F1 plants did not segregate for male sterility. The reciprocal hybrid i.e. ICPL-85012 × Fertile derivatives from C. sericeus × TT-5, did not express male sterility. However, among the 12 F2 plant to row progenies, two segregated 25% male sterile plants and remaining 10 did not segregate. The segregation pattern in subsequent progenies revealed that the sterility was under control of a single recessive allele. Studies on the backcross and their BC1F2 and BC1F3progenies revealed another sterility gene which was found to be dominant in inheritance. This paper shows that what was thought to be cytoplasmic male sterility from C. sericeus cytoplasm is actually a single dominant gene possibly acting in concert with a single recessive gene to mimic cytoplasmic male sterility. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Summary Identification and location of fertility restoring genes facilitates their deployment in a hybrid breeding program involving cytoplasmic male sterility (CMS) system. The study aimed to locate fertility restorer genes of CMSWA system on specific chromosomes of rice using primary trisomics of IR36 (restorer), CMS (IR58025A) and maintainer (IR58025B) lines. Primary trisomic series (Triplo 1 to 12) was crossed as maternal parent with the maintainer line IR58025B. The selected trisomic and disomic F1 plants were testcrossed as male parents with the CMS line IR58025A. Plants in testcross families derived from disomic F1 plants (Group I crosses) were all diploid; however, in the testcross families derived from trisomic F1 plants (Group II crosses), some trisomic plants were observed. Diploid plants in all testcross families were analyzed for pollen fertility using 1% IKI stain. All testeross families from Group I crosses segregated in the ratio of 2 fertile: 1 partially fertile+partially sterile: 1 sterile plants indicating that fertility restoration was controlled by two independent dominant genes: one of the genes was stronger than the other. Testcross families from Group II crosses segregated in 2 fertile: 1 partially fertile+ partially sterile: 1 sterile plants in crosses involving Triplo 1, 4, 5, 6, 8, 9, 11 and 12, but families involving triplo 7 and triplo 10 showed significantly higher X2 values, indicating that the two fertility restorer genes were located on chromosome 7 and 10. Stronger restorer gene (Rf-WA-1) was located on chromosome 7 and weaker restorer gene (Rf-WA-2) was located on chromosome 10. These findings should facilitate tagging of these genes with molecular markers with the ultimate aim to practice marker-aided selection for fertility restoration ability.  相似文献   

20.
Summary Pearl millet (Pennisetum glaucum (L.) R. Br.) hybrids based on the A1 cytoplasmic-nuclear male-sterile (CMS) lines are more susceptible to smut (Tolyposporium penicillariae Bref.) than open-pollinated varieties. Seventy eight pairs of hybrids, made onto male-sterile (A) lines and their counterpart maintainer (B) lines, were evaluated to examine the effects of male sterility and genetic resistance of parental lines on the smut severity of hybrids. The A-line hybrids had higher smut severity and lower selfed seedset than the counterpart B-line hybrids, indicating that it is the CMS-mediated male sterility rather than the A1 cytoplasm per se that caused greater smut severity of A-line hybrids. However, with the use of resistant parental lines even male-sterile hybrids of A-lines, in several cases, were as resistant as some of the highly resistant male-fertile hybrids of B-lines. It would be possible to produce smut resistant hybrids (< 10% severity) on A-lines, albeit in low frequency, even if only one parent of a hybrid were resistant. However, the probability of producing such hybrids would be higher when both parents were resistant to smut. Thus, improvement in smut resistance of parental lines and fertility restoration ability of pollinators would provide the most effective genetic approach to smut disease management in hybrids.Submitted as JA No 1737 by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号