首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Oaks (Quercus sp.) account for nearly one-third of the sawtimber harvest in Wisconsin. As trees age, their ability to respond to thinning is reduced; therefore, the objective of this study was to determine whether thinning previously unthinned oak stands of advanced age (≥ 60 yr) would achieve biological, financial, and operational objectives. During 2014, we conducted an inventory of 25 oak stands in northern Wisconsin. Fifteen received their first thinning 8–14 yr ago at ages 60–78 yr and 10 had never been thinned. Stand-level volume growth, logging costs, and net present values were estimated for each site. The age and site index of the thinned and unthinned sites were not significantly different (p > .10). Thinned and unthinned sites grew comparable net volumes per ha (5.09 and 5.90 m3, respectively); however, because this growth was concentrated on fewer trees, the trees on the thinned sites responded vigorously to thinning. As age at first thinning increased, growth response was reduced (p = .067); however, thinning still increased the growth of residual trees. Thinned sites had higher net present values compared to unthinned sites (p < .01) and logging costs were 10.6% lower (p = 0.06). Overall, for stands between 60 and 78 years old, thinning was beneficial financially, operationally, and biologically.  相似文献   

2.
We assessed the effects of thinning (0, 20 and 30 % extraction of basal area) and canopy type (pine–beech vs. pine plots, beech accounting for 12 % of total basal area) on radial growth of dominant and codominant Scots pine at inter-annual scale and on microclimatic conditions, radial growth and xylogenesis 9 years after thinning at intra-annual scale. Thinning weakly affected pine growth, which was enhanced 3 years after harvesting. Over time, a gradual reduction in pine growth in mixed canopy relative to pure canopy occurred only in unthinned plots apparently due to beech expansion. Indeed, 9 years after thinning, a higher seasonal radial increment and a greater number of tracheids were produced under pine canopy in the unthinned plots, whereas no differences between canopy types were observed in the thinned plots. Radial increment and tracheid production were mainly affected by tree water status (air and soil humidity, throughfall). The differences of tree water status caused by treatments, and plausibly disparities in tree size and tree-to-tree competition, were the main drivers explaining the patterns observed for radial increment and xylogenesis. Our results suggest that the negative effects of beech competition on Scots pine growth in similar mixed forest may be controlled to some extent by thinning.  相似文献   

3.
We studied the effects of two types of selective thinning on beech stands formed by a shelterwood cut in 1910 — with lower number of crop trees and higher thinning intensity (T1) and higher number of crop trees with lower thinning intensity (T2). The stands were thinned in 1980, 1991 and 2001. Despite a lower stand density after thinning, the annual basal area increments of thinned stands in both thinning periods (1980–1991 and 1991–2002) were around 20% higher compared to those of the control (unthinned) stands. The mean annual basal area increment of dominant trees was 30–56% larger in the thinned plots compared to the control plots. Of 176 initial crop trees in the T1, 72% were chosen again during the last thinning. In the T2, 258 crop trees were chosen in the first thinning, and only 62% of these trees were chosen again during the last thinning. Only crown suppression and diameter classes of crop trees significantly influenced their basal area increment when diameter classes, crown size, crown suppression, and social status were tested. In the thinned stands, the dominant trees are more uniformly distributed if compared to the dominant trees in the control plots. Finally, the herbaceous cover and the species diversity were higher in the thinned plots.  相似文献   

4.
Ponderosa pine (Pinus ponderosa Dougl. ex P. Laws) forest stand density has increased significantly over the last century (Covington et al. 1997). To understand the effect of increased intraspecific competition, tree size (height and diameter at breast height (DBH)) and leaf area to sapwood area ratio (A(L):A(S)) on water relations, we compared hydraulic conductance from soil to leaf (kl) and transpiration per unit leaf area (Q(L)) of ponderosa pine trees in an unthinned plot to trees in a thinned plot in the first and second years after thinning in a dense Arizona forest. We calculated kl and Q(L) based on whole- tree sap flux measured with heat dissipation sensors. Thinning increased tree predawn water potential within two weeks of treatment. Effects of thinning on kl and Q(L) depended on DBH, A(L):A(S) and drought severity. During severe drought in the first growing season after thinning, kl and Q(L) of trees with low A(L):A(S) (160-250 mm DBH; 9-11 m height) were lower in the thinned plot than the unthinned plot, suggesting a reduction in stomatal conductance (g(s)) or reduced sapwood specific conductivity (K(S)), or both, in response to thinning. In contrast kl and Q(L) were similar in the thinned plot and unthinned plot for trees with high A(L):A(S) (260-360 mm DBH; 13-16 m height). During non-drought periods, kl and Q(L) were greater in the thinned plot than in the unthinned plot for all but the largest trees. Contrary to previous studies of ponderosa pine, A(L):A(S) was positively correlated with tree height and DBH. Furthermore, kl and Q(L) showed a weak negative correlation with tree height and a strong negative correlation with A(S) and thus A(L):A(S) in both the thinned and unthinned plots, suggesting that trees with high A(L):A(S) had lower g(s). Our results highlight the important influence of stand competitive environment on tree-size-related variation in A(L):A(S) and the roles of A(L):A(S) and drought on whole-tree water relations in response to thinning.  相似文献   

5.
[目的]以河南登封林场栓皮栎人工林为研究对象,研究抚育间伐对林分不同生长阶段林木株数、林木直径分布和树高分布的影响,为制定科学合理的抚育经营措施奠定理论和技术基础.[方法]在株数强度为31.55%的间伐林分和条件基本一致的未间伐林分内,分别设置1个1 hm2样地,间伐作业2 a后获取每木检尺数据,分别利用Normal分...  相似文献   

6.
This study analyses the effects of thinning on stand transpiration in a typical mixed spruce and pine forest in the southern boreal zone. Studies of transpiration are important for models of water, energy and carbon exchange, and forest management, like thinning, would change those processes. Tree transpiration was measured by the tissue heat-balance sapflow technique, on a reference plot and a thinning plot situated in a 50-year-old stand in central Sweden. Sapflow was measured during one season (1998) on both plots before thinning, to establish reference values. In winter 1998/1999 24% of the basal area was removed from the thinning plot. Thinning was done so as to preserve the initial species composition and the size distribution. The measurements continued after thinning during the growing seasons of 1999 and 2000. The climate showed remarkable differences between the 3 years; 1998 was wet and cool, with frequent rain, and the soil-water content was high throughout the year. In contrast, 1999 was dry and warm, and the soil-water content decreased to very low values, ca. 5–6% by volume. In 2000, the weather was more normal, with variable conditions. Stand transpiration was similar on both plots during the year before thinning; the plot to be thinned transpired 6% more than the reference plot. After thinning, transpiration was initially ca. 40% lower on the thinned plot, but the difference diminished successively. When the following drought was at its worst, the thinned plot transpired up to seven times more than the reference plot. During the second season after thinning, the thinned plot transpired ca. 20% more than the reference plot. The increased transpiration of the thinned plot could not be attributed to environmental variables, but was most probably caused by changes in biological factors, such as a fertilization effect.  相似文献   

7.
We analyzed the structure of pollarded oak forest and biometric indices of pollarded oak species in relation to aspect in northern Zagros forests, western Iran. A number of 319 circular plots (0.1 ha) were established using a systematic random method over the study area. In each plot, for all trees (diameter at breast height ≥5 cm) diameter was measured and tree species was recorded. Total height, trunk height, and major and minor diameter axis of the crown of two trees in each plot (nearest tree to the center of the plot and the largest tree in term of diameter) were measured. As the dispersion of slope and altitude classes in the study area were identical, the effect of these factors was assumed to be constant. To evaluate the effect of aspect on biometric indices of oak trees a comparison was used for each oak species separately. The results indicated that the forest species composition differed statistically significant in main aspects except for easterly and westerly aspects (P < 0.01). The diameter of similar oak trees was significantly different except for Lebanon oak in northerly and southerly and Gall oak in easterly and westerly aspects (P < 0.01), but there was no significant difference between the total height and crown area of similar oak species in different aspects. Differences in diameter, height, and crown area distributions showed a significant difference in main aspects. The basal area and tree density in northerly and southerly aspects were significantly different (P < 0.05).  相似文献   

8.
McJannet D  Vertessy R 《Tree physiology》2001,21(12-13):1001-1008
We conducted thinning trials in a 5-year-old Eucalyptus globulus ssp. globulus Labill plantation near Warrenbayne, northeastern Victoria, Australia, where soil salinization and waterlogging are common, and assessed treatment effects on tree growth, water use and survival. Half-hectare plots were thinned from the original density of 1100 stems ha(-1) to densities of 800, 600 and 400 stems ha(-1), and stem diameter increment, leaf area index, transpiration, canopy interception and depth of tree water source monitored for 21 months. Two drought periods occurred during the study, rainfall was 30% below the long-term average and there was severe mortality in all three plots. Analysis of deuterium abundance in soil and xylem water indicated that the trees accessed water only from the top meter of the soil profile. Transpiration rates were higher in the most heavily thinned plot than in the least thinned plot, which underwent a reduction in basal area during the study. The most heavily thinned plot increased in basal area by 10% during the study. Edge trees had significantly greater diameters than trees from the middle of the plots.  相似文献   

9.
Thinning of Korean pine (Pinus koraiensis Sieb. et Zucc.) is used to facilitate timber and cone production. The present study in Northeast China investigated the effects of thinning intensity on individual tree growth, temporal variation in cone yield, and seed quality in Korean pine plantation. In 2005, five thinning intensity levels (none, extreme, heavy, moderate and light) were set in 15 permanent plots in a 32-year-old Korean pine plantation at Mengjiagang Forest Farm, Jiamusi City, Heilongjiang Province. We recorded tree growth and seed cone production from 2013 to 2016, i.e., from 8 to 11 years after thinning. Except for height growth, thinning increased tree growth (diameter at breast height and crown size) and improved cone yield. The extreme thinning treatment (to 300 trees per hectare) resulted in the largest tree diameter, tree volume, crown size and 4-year cone production per tree. The highest cone yield per tree in the mast year (2014) was observed when stands were thinned to 500 trees per hectare (heavy thinning). Although the best cone and seed quality and the largest cone and seed mass per tree were recorded in the heavily thinned stand, no significant differences were found between heavy and moderate thinning stands (750 trees per hectare). At the stand level, the moderately thinned stand had the highest basal area, stock volume and seed cone production per stand. Our results suggest that thinning to 750 trees per hectare will improve timber and cone productivity in 40-year-old P. koraiensis stands.  相似文献   

10.
Trees must respond to many environmental factors during their development, and light is one of the main stimuli regulating tree growth. Thinning of forest stands by selective tree removal is a common tool in forest management that increases light intensity. However, morphological and anatomical adaptations of individual shoots to the new environmental conditions created by thinning are still poorly understood. In this study, we evaluated shoot morphology (shoot length, needle number, projected leaf area) and anatomy (tracheid lumen area, tracheid number, tracheid dimensions, xylem area, potential hydraulic conductivity) in three Norway spruce (Picea abies/L./Karst.) families exposed to different thinning regimes. We compared shoot characteristics of upper-canopy (i.e. sun-exposed) and lower-canopy (i.e. shaded) current-year shoots in a control plot and a plot thinned to 50 % stand density the previous year. One tree per family was chosen in each treatment, and five shoots were taken per canopy position. We found that upper-canopy shoots in both plots had higher values than lower-canopy shoots for all studied parameters, except lumen roundness and tracheid frequency (i.e. tracheid number per xylem area). Thinning had little effect on shoot morphology and anatomy 1 year after thinning, except for small but significant changes in tracheid dimensions. Needles were more sensitive to altered light conditions, as projected leaf area of shoot, needle number and leaf hydraulic conductivity changed after thinning. Differences between upper- and lower-canopy shoots did not seem to be influenced by thinning and were almost the same in both plots. Our results suggest that lower-canopy shoots require several years to modify their morphology and anatomy to new light conditions following thinning. The slow light adaptation of the lower canopy may be of practical importance in forest management: thinned stands may be predisposed to drought stress because newly exposed shoots experience increased illumination and transpiration after thinning.  相似文献   

11.
In the intermediate cutting intensity experiment of a Cunninghamia lanceolata plantation for 20 years, the changing pattern of natural thinning in these stands, with different intermediate cutting intensities, was studied. The relationship between the number of trees removed by natural thinning and stand density and site conditions was explained. The mathematical equation M = K 1·K 2 of natural thinning lines of C. lanceolata stand density management maps was tested and the relationship of diameter, height and canopy structure of stands with different intermediate cutting intensities are proposed. Our study of natural thinning in these stands indicates that the starting and peak periods of natural thinning in the check and slightly thinned plots were both early. The amount of thinned wood was large and the course of thinning proceeded continuously. The three levels of thinning: the slight thinning period, the intensive thinning period and the continued thinning period could be divided on the basis of the amount of thinned wood. Natural thinning would be a very long process without artificial interference. The starting and peak periods of thinning in the middle and strong intermediate felling are both late and present intermittence. Their thinning stages were not clearly evident. Through our studies, we also discovered that stand density and site conditions had important effects on the number of dead and dying trees, but that density was more important than site conditions. By way of tests, the relative error of the mathematical equation of natural thinning lines of C. lanceolata stand density management maps was 3.91% and the precision was relatively high. The practical test results of the stands, given different intermediate cutting intensities and different site indices, show that the relative error of the check plots was 5.23%, while the relative errors of the other tested items were all < 5%, well within the allowable experimental error. The mathematical equation was comparatively practical. The study demonstrated the distribution laws of diameter and height classes of the stand at different intermediate cutting intensities. From this study we also obtained the growth differences and changing dynamics of the height to the first branch, canopy length and relative canopy height of the stand at different intermediate cutting intensities and various related patterns with an increase of stand age and proposed a mathematical model relating stand age and the single-tree periodic volume increment. __________ Translated from Scientia Silvae Sinicae, 2006, 42(1): 55–62 [[译自: 林业科学]  相似文献   

12.
杉木人工复层林试验初报   总被引:2,自引:0,他引:2  
本研究探讨杉木人工复层林营造技术。通过对40年生杉木林不同程度的疏伐,采用1年生杉木实生苗在其林冠下营造复层林,3a的试验结果表明:不同疏伐区内的下层木平均树高为对照区的42.4%~51.1%,平均地径为对照区的39.6%~49.6%,成活率为对照区的64.7%~98.1%;不同处理区间的栽植木生长具有极显著差异,在复层林中以B区的下层木成活与生长为最佳,初步认为维持杉木人工复层林的下层木正常生长,林内相对照度必须达到50%以上。  相似文献   

13.
The stand density of a forest affects the vertical distribution of foliage. Understanding the dynamics of this response is important for the study of crown structure and function, carbon-budget estimation, and forest management. We investigated the effect of tree density on the vertical distribution of foliage, branch, and stem growth, and ratio of biomass increment in aboveground tissues; by monitoring all first-order branches of five trees each from thinned and unthinned control stands of 10-year-old Chamaecyparis obtusa for four consecutive years. In the control stand, the foliage crown shifted upward with height growth but the foliage quantity of the whole crown did not increase. In addition, the vertical distribution of leaf mass shifted from lower-crown skewed to upper-crown skewed. In the thinned stand in contrast, the foliage quantity of individual crowns increased two-fold within 4 years, while the vertical distribution of leaf mass remained lower-crown skewed. The two stands had similar production rates, numbers of first-order branches per unit of tree height, and total lengths of first-order branches. However, the mortality rate of first-order branches and self-pruning within a first-order branch were significantly higher in the control stand than in the thinned stand, which resulted in a higher ratio of biomass increment in branch. Thinning induced a higher ratio of biomass increment in foliage and lower in branch. The increased foliage quantity and variation in ratio of biomass increment after thinning stimulated stem growth of residual trees. These results provide information that will be useful when considering thinning regimes and stand management.  相似文献   

14.
The effects of long rotation periods and heavy low thinning on chestnut (Castanea sativa Mill.) coppices have been evaluated from a bio-ecological point of view. Aboveground tree biomass and its partitioning, bio-ecological indexes such as litter production, leaf area index (LAI), radiation regime, and growth efficiency have been analyzed for 4 years in thinned and unthinned permanent plots established in a coppice stand aged 11 years under normal rotation (NR) and in a coppice stand aged 35 years under long rotation (LR). A decrease in LAI, litter production and growth rate with the age was observed. LR showed high current annual increments (>16.0 m3 ha−1 per year and 8.0 Mg ha−1 per year for volume and aboveground biomass, respectively). Only slight differences in growth efficiency were observed. The adoption of heavy thinning (one third of basal area removal) affected stocking and determined significant differences in the light regime below the canopy, amount of gaps in canopy cover and LAI values, particularly in the years immediately after thinning, whereas slight differences were observed in growth efficiency. Nevertheless, chestnut showed a good aptitude, more evident in the younger stand, to re-build a homogeneous canopy cover: only a few years after thinning, canopy cover characteristics of thinned plots were similar to those of control plots and differences were not significant. Growth and increments in thinned plots were practically the same as in control plots, a consequence of consistently higher performances of released trees in the thinned plots. The results concur to a positive evaluation of a cultivation system based on long rotation periods and heavy thinnings, not only for the obtainable revenue, but especially from a bio-ecological point of view and make it a valid alternative either to abandonment or traditional over-exploitation of chestnut coppice stands.  相似文献   

15.
Sustainable forest management ought to include the production of non-use value, mainly in forests with low value of direct production. Predictions on climate change points out increase in aridity and changes in fire regime (increasing fire risk, recurrence and severity), particularly in the Mediterranean Basin. However, we have to question whether this implies a decrease in forest resilience and productivity. In summer 1994, large forest fires burned a huge surface of Aleppo pine stands in Spain. In areas naturally regenerated, we carried out early thinning and sampled 18 plots. In winter 2008 and 2009, we inventoried all pine trees in sampling plots, recording total height, diameter and canopy cover for scaling-up results to stand-level estimation. In addition, we destructively sampled 54 individual pine trees, selecting various thinning and dating treatments, to measure and estimate biomass and partitioning. The date of thinning influenced allometric relationships, earlier thinning stimulated the productivity of individual pine saplings, increasing the three components of carbon intake. Although, the total net carbon value was lower in almost all thinned plots (at least for short periods after thinning), differences were actually found depending on the cutting age and thinning severity. Control and thinned plots (mainly those thinned earlier and heavier) showed similar amounts of carbon but comprised in a low number of living trees with high productivity. Thus, productivity and carbon storage assessment should be monitored, in the long-term, to check prediction of proposed models for evaluation on early treatments.  相似文献   

16.
Many aquatic habitats in coastal Oregon have been impacted by historic land use practices that led to losses of in-stream wood and associated degraded fish habitats. Many of these streams are now bordered by stands of dense second growth forests(30–80 years) that are incorporated into riparian buffer zones with low wood recruitment and storage. Thinning in riparian zones is one management option to increase the rate of large tree growth and eventually larger in-stream wood, however, it raises concern about impacts on current wood recruitment, among other issues. Using a forest growth simulation model coupled to a model of in-stream wood recruitment, we explore riparian management alternatives in a Douglas-fir plantation in coastal Oregon. Alternatives included:(1) no treatment,(2) single and double entry thinning, without and with a 10-m buffer, and(3) thinning combined with mechanical introduction of some portion of the thinned trees into the stream(tree tipping). Compared to no treatment, single and double entry thinning on one side of a channel, without a 10-m buffer, reduce cumulative instream wood volume by 33 and 42 %, respectively, after100 years(includes decay). Maintaining a 10-m buffer reduces the in-stream wood loss to 7 %(single entry thin)and 11 %(double entry). To completely offset the losses of in-stream wood in a single entry thin(on one or both sides of the stream), in the absence or presence of a 10-m buffer,requires a 12–14 % rate of tree tipping. Relative to the notreatment alternative, cumulative in-stream wood storage can be increased up to 24 % in a double-entry thin with no buffer by tipping 15–20 % of the thinned trees(increased to 48 % if thinning and tipping simultaneously on both sides of the stream). The predicted increases in in-stream wood that can occur during a thin with tree tipping may be effective for restoring fish habitat, particularly in aquatic systems that have poor habitat conditions and low levels of in-stream wood due to historic land use activities.  相似文献   

17.
Conifers and other trees are constantly adapting to changes in light conditions, water/nutrient supply and temperatures by physiological and morphological modifications of their foliage. However, the relationship between physiological processes and anatomical characteristics of foliage has been little explored in trees. In this study we evaluated needle structure and function in Norway spruce families exposed to different light conditions and transpiration regimes. We compared needle characteristics of sun-exposed and shaded current-year needles in a control plot and a thinned plot with 50% reduction in stand density. Whole-tree transpiration rates remained similar across plots, but increased transpiration of lower branches after thinning implies that sun-exposed needles in the thinned plot were subjected to higher water stress than sun-exposed needles in the control plot. In general, morphological and anatomical needle parameters increased with increasing tree height and light intensity. Needle width, needle cross-section area, needle stele area and needle flatness (the ratio of needle thickness to needle width) differed most between the upper and lower canopy. The parameters that were most sensitive to the altered needle water status of the upper canopy after thinning were needle thickness, needle flatness and percentage of stele area in needle area. These results show that studies comparing needle structure or function between tree species should consider not only tree height and light gradients, but also needle water status. Unaccounted for differences in needle water status may have contributed to the variable relationship between needle structure and irradiance that has been observed among conifers.  相似文献   

18.
A small scale agroforestry study which was begun in 1952 was revisited in 1985 to evaluate the long-term influence of site preparation and grazing on tree growth and survival in a Douglas-fir (Pseudotsuga menziesii)-white oak (Quercus garryana)-sheep silvopastoral system. In 1952–1953, two-year-old Douglas-fir seedlings were planted at the rate of 2500 trees/ha under three levels of site preparation: (1) no treatment, (2) oak thinned by 50%, and (3) oak clearcut. From 1954 to 1960, yearling ewes grazed one-half of each of the three thinning treatments for 3–4 weeks each spring. The conifers have been undisturbed since grazing was discontinued in 1960. Survival of planted conifers averaged 64% in 1985 and did not vary among either site preparation or grazing treatments. From 1964 to 1985, trees on the thinned and clearcut plantations grew an average of 1060 and 990 cm in height, respectively, compared to 900 cm on the unthinned plantation. Diameter at breast height (dbh) averaged 3.8 and 5.6 cm greater on thinned or clearcut plantations, respectively, than on the unthinned control by 1985 (p < 0.05). Conifers on grazed plantations had increased height and dbh growth during the first 12 years of plantation life, averaging 63 cm taller (p < 0.10) and 0.7 cm greater in dbh (p < 0.05) than the ungrazed plots by 1964. By 1985 the difference in height (122 cm) and dbh (1.0 cm) between grazed and ungrazed plantations was not statistically significant. These data suggest that although site preparation can positively influence conifer growth, total clearfelling is no better than thinning oaks. Furthermore, proper grazing can increase height and dbh growth of the conifers during and immediately after the grazing years.  相似文献   

19.
Altogether 82 plots (261 estimations) of Picea abies (L.) Karst, and 193 plots (360 estimations) of Pinus sylvestris (L.) stands were estimated by a vertical tube. The “crown free projection”, CFP, of stands thinned in three methods with different thinning grades was measured: unthinned, heavily and very heavily thinned, heavily thinned delayed first thinning, extra heavily thinned and thinned from the top. Basal area (m2ha?1) density (stems ha?1) and diameter sum (m ha?1) were plotted against CFP. Basal area was the best practical measure of stand in this study. Generally Scots pine stands have higher CFP and the curves are steeper than in Norway spruce stands. Depending on the grade of thinning, heavily and very heavily thinned spruce stands, delayed first thinning included, have CFP values of 10–15% and stands thinned from the top, 20–40%, compared with 30–80% and 30–60% respectively in pine stands. Extra heavily thinned stands have the highest CFP, 20–80% in spruce and 50–90% in pine stands. The CFP levels after thinning are too high in pine stands for avoidance of sucker and sprout production of aspen and birch. In dense Norway spruce stands thinned from the top or heavily and very heavily thinned, the CFP values are low enough (≤30%) to diminish the production of suckers.  相似文献   

20.
Thinning is the main forestry measure to increase tree growth by reducing stand tree density and competition for resources. A thinning experiment was established in 1993 on a 32-year-old Pinus nigra Arn. stand in central Spain. The response of growth, climate-growth relationships and intrinsic water use efficiency (WUEi) to a stand density reduction were compared between moderate thinned plots and a control plot by a combined analysis of basal area increments (BAI), and C and O stable isotope ratios (δ13Cc and δ18Oc). BAI in the control plot showed a decreasing trend that was avoided by thinning in the thinned plot. Thinning also partially buffered tree-ring response to climate and trees were less sensitive to precipitation although more sensitive to temperature. Δ13Cc in the thinned plot was not modified indicating that stomatal conductance (g) and photosynthetic capacity (A) did not change or change in the same direction. However, δ18Oc decreased in the control plot (unrelated to δ18O of precipitation) but not in the thinned plot, suggesting a relative increase of temperature and irradiance and/or a decrease of air humidity after reducing the density consistent with an increase in A, g and BAI. As WUEi did not increase in the thinned plot, faster growth in this plot was caused by higher abundance of resources per tree. The trend of WUEi in both plots indicated low-moderate CO2-induced improvements. Thinning might be a useful adaptation measure against climate change in these plantations reducing their vulnerability to droughts. However, because WUEi was not affected, the positive growth response might be limited if droughts and warming continue and certain thresholds are exceeded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号