首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various extractants used in current analytical procedures for the fractionation of sulphur (S) in soils were compared with respect to their ability to dissolve Al hydroxy sulphate minerals of defined composition (basaluminite, K alunite, mixtures of basaluminite and Na alunite). The minerals were synthesized and aged in the laboratory at 20°C and 50°C. The dissolution kinetics at 20°C of these Al hydroxy sulphates in deionized water, 0.02M HCl and 0.02M NaOH were also investigated. The dissolution stability of the Al hydroxy sulphate minerals increased in the order basaluminite < K alunite < Na alunite. The dissolving power of the reagents used increased in the order H2O ≤ 0.016M KH2PO4? 0.02M HCl ≈ acidic NH4 oxalate ≈ 0.5M NaHCO3 < Na2 CO3/NaHCO3 < 0.1M NH4F < 0.5M NH4F < 0.05M NaOH ≤ 0.05M LiOH. In Al hydroxy sulphate-containing soils, inorganic S is probably understimated and ester sulphate S overestimated, if the inorganic S pool is assessed by extraction with KH2PO4, Ca(H2PO4)2 or NaHCO3 solutions. The dissolution of all studied Al hydroxy sulphates, particularly that of K and Na alunite, in H2O and 0.02 M HCl is strongly delayed by kinetic restraints. Thus it seems unlikely that Al3+ or SO2?4 activites in soil solutions are strictly regulated by precipitation/dissolution equilibria of these minerals except for horizons with extraordinarily slow seepage water movement.  相似文献   

2.
Current methods for determining inorganic sulphur (S) in aerated mineral soil horizons often result in underestimates. To overcome this defect we developed a new method combining a batch extraction with 0.5 m NH4F solution at a soil:solution ratio of 1:5 with a subsequent analysis of the mobilized SO42– by ion chromatography. The ammonium fluoride extraction enables us to characterize inorganic sulphate in non‐calcareous forest soils. It is more efficient than conventional procedures in which inorganic S is extracted with phosphate or bicarbonate solution. In contrast to the extraction with strongly alkaline reagents (NaOH, KOH, LiOH), the NH4+–NH3 buffer system in NH4F prevents the pH of the suspension from exceeding 9.0 and thus the undesired conversion of organic S into SO42– by auto‐oxidation and hydrolysis of ester sulphate. In a comparison we demonstrated that the inorganic S in six German forest soils is underestimated by up to 50% or 200 kg S ha?1 in the uppermost 60 cm, if it is assessed by extraction with 0.016 m KH2PO4 or 0.5 m NaHCO3 instead of 0.5 m NH4F. Conversely, the pool of ester sulphate is overestimated almost threefold.  相似文献   

3.
To investigate the potential of synchrotron‐based X‐ray Absorption Near‐Edge Structure spectroscopy (XANES) at the sulphur (S) K‐edge for a discrimination of adsorbed and precipitated sulphate in soils and soil particles, XANES spectra of ionic sulphate compounds and Al/Fe hydroxy sulphate minerals were compared with spectra of SO42? adsorbed to ferrihydrite, goethite, haematite, gibbsite or allophane. Ionic sulphate and hydroxy sulphate precipitates had broader white‐lines (WL) at 2482.5 eV (full width at half maximum (FWHM) of edge‐normalized spectra, 2.4–4.2 eV; Al hydroxy sulphates, 3.0 eV) than SO42? adsorbed to Al/Fe oxyhydroxides or allophane (FWHM, 1.8–2.4 eV). The ratio of the white‐line (WL) height to the height of the post‐edge feature at 2499 eV (WL/PEF) was larger for SO42? adsorbed to Al/Fe oxyhydroxides or allophane (8.1–11.9) than for Al/Fe hydroxy sulphates and ionic sulphates (3.9–5.7). The WL/PEF ratio of edge‐normalized S K‐edge XANES spectra can be used to distinguish adsorbed from precipitated SO42? in soils and also at microsites of soil particles. The contribution of adsorbed and precipitated SO42? to the total SO42? pool can be roughly quantified. Adsorbed ester sulphate may result in overestimation of precipitated SO42?. The spectra of most soils could be fitted by linear combination fitting (LCF), yielding a similar partitioning between adsorbed and precipitated SO42? as an evaluation of the WL/PEF ratio. The SO42? pool of German forest soils on silicate parent material in most cases was strongly dominated by adsorbed SO42?; however, in three German forest soils subject to elevated atmospheric S deposition, a considerable portion of the SO42? pool was precipitated SO42?, most likely Al hydroxy sulphate. The same is true for Nicaraguan Eutric and Vitric Andosols subject to high volcanogenic S input. In the subsoil of the Vitric Andosol, adsorbed SO42? and Al hydroxy sulphate coexist on a micron scale.  相似文献   

4.
Abstract

Although over 40% of excretal S is returned to intensively sheep ‐grazed pastures as faecal S, limited information is available on faecal S fractions, their water solubility and temporal distribution. This study reports results obtained from sheep faeces returned to grazed pastures which have received long‐term annual sulphate applications for 15–20 years. Five freshly‐voided sheep faecal samples (<100 g moist faeces per sample) per sampling were randomly collected at approximately one month intervals over a one‐year growing season. Faeces were fractionated into total S, inorganic SO4 2‐, ester SO4 2‐, Hi‐reducible S and C‐bonded S. Results obtained showed that faecal total S, ester SO4 2‐ Hi‐reducible S and C‐bonded S fractions varied significantly throughout the year. Carbon‐bonded S was the dominant (>80%) faecal S fraction, regardless of faecal total S content or the time of year faecal samples were deposited. Faecal ester SO4 2‐ and inorganic _SO4 2‐fractions accounted for 3.3–7.1% and 0.1–14% of faecal total S respectively. Thus approximately 3.4–21.1% of faecal total S was estimated to be potentially leached or readily available to pasture plants. The Hi‐reducible faecal S fraction was significantly‐correlated (r = 0.59***; *** = P 0.001) with HCl‐extractable faecal inorganic S, which was considered to represent faecal total SO4 2‐ (ester SO4 2‐ and inorganic SO4 2‐ fractions).

The solubility of different faecal S fractions was determined by sequential extraction of ground (< 1 mm) faeces three times (30 minutes per extraction) with water or 0.01 M Ca(H2PO4)2 solution (1: 5 ratio of faecal DM: extractant). Both amounts of water‐extractable and Ca(H2PO4)‐extractable faecal S fractions were found to vary significantly throughout the year. Ca(H2PO4)2 tended to extract more inorganic faecal S than water, attributed to the presence of phosphate and the low pH (pH=4) of Ca(H2PO4)2 extractant. A significant proportion (15–25%) of faecal S was extracted by water and most (70%) of this water‐extractable faecal S was in the organic S fraction. Water‐extractable inorganic faecal S probably originated from the faecal total SO4 2‐ fraction as shown by their significant correlation (r = 0.45** ‐0.63***; ** = P≤ 0.01; *** = P≤ 0.001). Some of the faecal S in water extracts may also originate from the faecal C‐bonded S fraction, as a significant correlation was obtained between C‐bonded faecal S and either water‐extractable faecal organic S (r = 0.53–0.57***; *** = P ≤ 0.001) or water‐extractable faecal inorganic S (r = 0.40–0.41*; * = P ≤ 0.05).

Significant amounts of faecal inorganic SO4 2‐ and ester SO4 2‐ fractions were removed by Ca(H2PO4)2 extractant. The Ca(H2PO4)2‐extractable faecal inorganic S was significantly correlated (r = 0.73***; *** = P 0.001) with water‐extractable faecal inorganic S.  相似文献   

5.
Abstract

Highly calcareous soils are abundant in Iran. The calcium carbonate equivalent (CCE) of these soils reach up to 650 g kg?1. Although phosphorus (P) fertilizer is being widely used in these soils, little information, if any, is available about P status in such soils. The objectives of this study were to 1) determine inorganic P forms in 18 surface soils of southern Iran, 2) study P readsorption during different stages of fractionation schemes, 3) assess the ability of NaOH to extract aluminum (Al)‐P, and 4) evaluate the relationships between P availability indices and inorganic P forms. Eighteen soil samples with a wide range of physicochemical properties were selected for this study. Inorganic P forms was determined by sequential extraction with NaHCO3, NH4OAc, NH4F, NaOH, citrate dithionite (CD), and H2SO4, which are referred to as Ca2‐P, Ca8‐P, Al‐P, Fe‐P, occluded P (O‐P), and Ca10‐P. Phosphorus readsorption in different stages was determined by 1 M MgCl2. Furthermore, a fractionation scheme without an NH4F step was used to evaluate the ability of NaOH to extract Al‐P. NaHCO3 (Olsen‐P) and MgCl2‐extractable P (Exch‐P) were regarded as P-availability indices. The abundance of different P forms was in the order Ca2‐P<Fe‐P<Al‐P<O‐P<Ca8‐P<Ca10‐P. Ca2‐P was highly correlated with Olsen‐P and Exch‐P. Ca2‐P, Olsen‐P, and Exch‐P showed a relationship with CCE, citrate–bicarbonate–dithionite extractable Fe (Fed), and Al (Ald). Phosphorus readsorption appeared to be important only in the Ca8‐P step, and the content of readsorbed P was related to Ca8‐P, CCE, and clay content of the soils. In the present study, Al‐P and Fe‐P accounted for 10 and 5% of the sum of the inorganic P fractions, respectively, and Fe‐P showed a strong relationship with Feo, whereas Al‐P showed a significant relationship with oxalate‐extractable Al (Alo) and Ald. It was found that one extraction with NaOH is not a good indicator for Fe‐ and Al‐P, and the ability of NaOH to extract Al‐P was reduced with increase in Al‐P content.  相似文献   

6.
Abstract

Al toxicity in plants is related to the activity of Al3+ and Al‐hydroxy monomers in the soil solution, whereas Al complexed with ligands such as fluoride (F), sulphate (SO4 2‐), and oxalate is not toxic. Estimation of toxic Al relies on measurement of “labile”; Al after short contact times with colorimetric reagents or cation‐exchange resins. However, shifts in equilibrium may result in non‐toxic forms of Al reacting with the complexing agent or resin.

A series of laboratory experiments tested the degree to which labile Al is related to Al3+ in simplified media and compared methods of estimating labile Al in the presence of organic ligands and in soils. Cation‐exchange resins extracted more than the theoretical concentration of Al3+ from solutions containing a range of concentrations of OH and SO4 2‐. More Al was extracted in 15 s by 8‐hydroxy‐quinoline than by Chelex‐100 from solutions of Al‐humate at pH 4. In sands which had been spiked with Al and organic matter, the estimation of labile Al varied with both the method of measurement and type of extract. The cations present in commonly used soil‐extracting chloride solutions can decrease the proportion of organically complexed Al.  相似文献   

7.
Total S, extractable SO4, and SO4? retention capacity were determined in a range of soils covering the dominant soil groups in Portugal which are expected to show S deficiency. Total S was relatively low (83–435 mg S kg?1) in all soils and KH2PO4? extractable SO4 was, in general, low for plant growth, ranging from 0.9 to 32.2 mg S kg?1. SO4? retention capacity ranged from ?33.1 to 64.7 mg S kg?1 and was negative in many (14 out of 20) of the soils. Most of the soils are expected to be S deficient and show extensive leaching of SO4. Other selected soil properties that may affect the chemistry of SO4 were determined. A highly significant simple correlation was obtained between SO4 adsorbed and extractable Al by the Mehra and Jackson method (CDB-Al) (r = 0.74; P < 0.001). A multiple regression which included silt improved the correlation of SO4 adsorbed with CDB-Al (r = 0.79; P < 0.001).  相似文献   

8.
Abstract

Surface horizons from Podzolic and Gleysolic soils were collected in various parts of the province of Quebec, Canada, and equilibrated with various amounts of KH2PO4 in 0.01 M CaCl2 for 48 hours. P sorption data conformed to the linear form of the Langmuir and Freundlich equations. P solubility isotherms showed evidence of hydroxyapatite formation in most samples studied, whereas equilibration solutions of only few samples were saturated with respect to either dicalcium phoshate dihydrate or octocalcium phosphate. These reaction products were associated to soil pH and levels of added phosphate. The average values of the Langmuir sorption maximum for these studied Gleysolic and Podzolic samples were 763 and 1096 μg/g respectively. These values were higher than those obtained by the segmented and modified Freundlich models.

Relationships between the soil characteristics and P sorption parameters were evaluated by regression analysis. Among all variables, oxalate‐extractable Fe plus Al content of the Podzolic samples and the ratio of oxalate—extractable Al to clay of the Gleysolic samples gave the best significant correlation coefficients. Furthermore, soil pH and various ratios such as pyrophosphate‐extractable Fe and Al, oxalate‐extractable Fe and organic matter to clay were found to be significantly correlated only with the P sorption parameters of the Gleysolic samples.  相似文献   

9.
Determination of the labile soil carbon (C) and nitrogen (N) fractions and measurement of their isotopic signatures (δ13C and δ15N) has been used widely for characterizing soil C and N transformations. However, methodological questions and comparison of results of different authors have not been fully solved. We studied concentrations and δ13C and δ15N of salt‐extractable organic carbon (SEOC), inorganic (N–NH4+ and N–NO3?) and organic nitrogen (SEON) and salt‐extractable microbial C (SEMC) and N (SEMN) in 0.05 and 0.5 m K2SO4 extracts from a range of soils in Russia. Despite differences in acidity, organic matter and N content and C and N availability in the studied soils, we found consistent patterns of effects of K2SO4 concentration on C and N extractability. Organic C and N were extracted 1.6–5.5 times more effectively with 0.5 m K2SO4 than with 0.05 m K2SO4. Extra SEOC extractability with greater K2SO4 concentrations did not depend on soil properties within a wide range of pH and organic matter concentrations, but the effect was more pronounced in the most acidic and organic‐rich mountain Umbrisols. Extractable microbial C was not affected by K2SO4 concentrations, while SEMN was greater when extracted with 0.5 m K2SO4. We demonstrate that the δ13C and δ15N values of extractable non‐microbial and microbial C and N are not affected by K2SO4 concentrations, but use of a small concentration of extract (0.05 m K2SO4) gives more consistent isotopic results than a larger concentration (0.5 m ).  相似文献   

10.
Abstract

This study was to determine the effect of soil amendments on the fractionation of selenium (Se) using incubation experiments under simulated upland and flooded conditions. The treatments were as follows: 1) control [soil + sodium selenite (Na2SeO3) (1 mg Se kg‐1)]; 2) control + calcium carbonate (CaCO3) (5 g kg‐1); 3) control + alfalfa (40 g kg‐1); and 4) control + CaCO3 (5 g kg‐1) + alfalfa (40 g kg‐1). After a 90‐day incubation, soil was sampled and fractionated into five fractions: 1) potassium sulfate (K2SO4)‐soluble fraction (available to plants); 2) potassium dihydrogen phosphate (KH2PO4)‐exchangeable fraction (potentially available); 3) ammonium hydroxide (NH3H2O)‐soluble fraction (potentially available); 4) hydrochloric acid (HCl)‐extractable fraction (unavailable); and 5) residual fraction (unavailable). Compared with the control, CaCO3 increased the K2SO4 fraction at the expense of the NH3H2O fraction. Alfalfa increased both the K2SO4 and residual fractions but reduced the KH2PO4 and NH3H2O fractions. The CaCO3‐alfalfa treatment had a similar effect to the alfalfa treatment alone. The comparison between the upland and flooded conditions showed that the flooded condition generally increased the residual fraction and decreased the potentially‐available fractions. In general, CaCO3 was a better amendment because it not only increased the available fraction but also maintained the potentially available fractions at a high level. The application of Na2SeO3 and use of appropriate soil amendments can improve Se availability in soil.  相似文献   

11.
Tobacco plants (Nicotiana tabacum L. cv NC82) were supplied with (NH4)2SO4, or NH4Cl at root‐zone pH of 6.0 and 4.5 in hydroponic culture for 28 days. Dry matter accumulation, total N and C content, and leaf area and number were not affected by the NH4 + source or root‐zone pH. Plants supplied with NH4C1 accumulated up to 1.2 mM Cl g DW‐1, but accumulated 37% less inorganic H2PO4 and 47% less SO4 2‐ than plants supplied with (NH)2SO4. The large Cl accumulation resulted in NH4C1 –supplied plants having a 31% higher inorganic anion (NO3 , H2, PO4 , SO4 2‐, and Cl) charge. This higher inorganic anion charge in the NH4C1‐supplied plants was balanced by a similar increase in K+ charge. Plants supplied with NH4Cl accumulated greater concentrations of Cl in leaves (up to 5.1% of DW) than plants supplied with (NH4)2SO4 (less than ‐% DW). Despite the high Cl concentration of leaves in NH4Cl supplied plants, these plants showed no symptoms of Cl toxicity. This demonstrates that toxicity symptoms are not due solely to an interaction between high Cl concentration in tissue and NH4 + nutrition. The increase in root‐zone acidity to pH 4.5 from 6.0 did not induce toxicity symptoms.  相似文献   

12.
Abstract

A modified selenium (Se) fractionation procedure was used to study Se distribution in three soils (two silt loams and one silty clay). This sequential procedure consisted of: i) 0.2 M potassium sulfate (K2SO4)‐soluble fraction, ii) 0.1 M potassium dihydrogen phosphate (KH2PO4)‐exchangeable fraction, iii) 0.5 M ammonium hydroxide (NH3H2O)‐soluble fraction, iv) 6 M hydrochloric acid (HCl)‐extractable fraction, and v) residual fraction digested with perchloric (HClO4) and sulfuric (H2SO4) acids. The fractionation procedure had high recovery rates (92.5 to 106%). The Se distribution in soil was controlled by soil properties, such as pH, oxide, clay, and calcium carbonate (CaCO3) contents. In the untreated soil samples, residual Se fraction was dominant. In the Se‐enriched soils, the silty clay had significantly more Se in the NH3H2O and residual fractions while in the two silt loams the largest were KH2PO4 and residual fractions. The Se availability in the two silt loams was higher than in the silty clay. The Se availability pattern in the untreated soils was: unavailable (HCl + residual fractions) >> potentially available (KH2PO4 + NH3H2O fractions) > available (K2SO4 fraction), while in the Se‐enriched soils it was potentially available > unavailable > available.  相似文献   

13.
The influence of the relation between NO3 and NH4 in the nutrient solution on yield and organic and inorganic ion contents of tomato plants. . Tomato plants were grown in aerated media of oppositly varying supply of (NH4)2SO4-and NaNO3 with a constant N-quantity of 15 meq/1 or a quantity of NH4-, NO3 or (NO3 + NH4) increasing from 3 to 30 meq.N/1. Yield and ion content were determined. A maximum yield was achieved by a mixed N-supply i.e. 4 to 5 parts NO3, 1 part NH4-N and 7, 5 meq N/l. The “(C-A) value” was calculated by the content of the cationions “C” (=K+ + Na+ + Ca++ + Mg++ + NH4+) and the inorganic anions “A” (= NO3? + Cl? + H2PO4? + SO4). The “(C-A)” value is equivalent to the content of the organic anions. Furthermore we determined the citrate, malate, oxalate, and pektinate content. These make up 60–80% of the (C-A) value. The NO3- and K content increase considerably, the Ca-, Mg-, Na-, Citrate, Malate and Oxalate content increase less pronounced, the Cl-, H2PO4- and SO4- content decrease as the NO3 content increases from 0–80%. If the medium contains 80–100% NO3 - N, the NO3 and K content remain almost constant, while the Ca-, Mg-, citrate, malate and oxalate content especially increase in this case. The K content decreases in the presence of a high (NH4)2SO4 supply. Parallel to this the value (C-A) decreases greatly, so that it is less than the sum of the determined organic anions. In this case the content of organic anions obviously does not correlate with the (C-A) value. The yield correlates with the carboxylate contents. (C-A) values of 150–170 mval/100 gm. d. m. cause a lowering of the yield. The plants contain an almost equal amount of citrate, malate and oxalate. Depending on the N-concentration of the medium, the malate content will be a bit more than the amount of citrate in case of maximum yield. If there is a lack or toxicity in the medium the citrate content will be higher than the malate content. The yield per dry weight correlates positivly with the quotients of citrate and malate.  相似文献   

14.
Four frequently used extractants (H2O, 0.1 M NaCl, 0.016 M KH2PO4, and 0.5 M NaHCO3) as well as different extraction conditions have been tested for sulphate extraction from gypsum‐free agricultural soils. Water is the preferable extractant for soils with pH > 6. Two extraction steps have to be carried out for complete extraction (> 95%). A 0.016 M KH2PO4 solution was found to be the most efficient extractant for soils with a pH < 6 within a single extraction step. A shaking frequency of 170 min‐1 and a duration of extraction of 4 hours are the optimized conditions for the sulphate extraction with H2O and KH2PO4 solution.  相似文献   

15.
The persistence of the insecticidal protein of Bacillus thuringiensis (Bt) is enhanced by the reactivity with soil particles and may constitute a hazard to the soil ecosystem; however, studies on the fate of the Bt toxin in soil, especially in the presence of inorganic salts, are limited. The effects of different concentrations of KNO3, KH2PO4 and NH4H2PO4 on the adsorption of Bacillus thuringiensis toxin by kaolinite, montmorillonite, goethite and silicon dioxide were investigated. Results showed that small salt concentrations tended to enhance toxin adsorption, whereas large concentrations (> 10 mmol litre?1) inhibited sorption. Similar results were observed regardless of the order in which toxin and inorganic salt were added. The degree to which individual salts affected adsorption decreased in the sequence for minerals, goethite > kaolinite ≥ montmorillonite > silicon dioxide, and for ions, H2PO4? > NO3?, NH4+ > K+. Our results indicate that inorganic salts can markedly influence the adsorption of Bt toxin by soil minerals. This investigation will help in evaluating the behaviour and fate of Bt toxins in the soil environment.  相似文献   

16.
The formation of basic aluminium sulphate (BAS) minerals [(K,Na)nAlx(OH)y(SO4)z] has often been invoked to explain sulphate retention in soils. These minerals have not yet, however, been directly observed in the soil. We extracted the clay fractions of Andosols intercepting large inputs of volcanogenic sulphur dioxide and acids (HCl, HF), simply by dispersing clays with Na+‐resins in deionized water without any other chemical treatment. Clay fractions concentrate 39–63% of total sulphur content of soil. Transmission electron microscopy coupled with energy‐dispersive analysis revealed the presence of BAS particles, appearing as nodules and spheres. These particles have an equivalent diameter smaller than 0.2 µm. They have an Al:S ratio close to 2.2 and 3.8 and are possibly amorphous aluminite or basaluminite, respectively. They seem to have been formed in microenvironments enriched in sulphate, but also in fluoride anions. Their formation seems to have been enhanced by the combination of large inputs of acids and SO2 and an effective Al supply from weathering of volcanic glass.  相似文献   

17.
Yield responses of irrigated, field‐grown cotton to phosphorus fertilizer application in Australia have been variable. In an attempt to understand better this variability, the distribution of fertilizer P within soil P fractions was identified using 32P and 33P radioisotopes. The soil chosen, an alkaline, grey, cracking clay (Vertosol), was representative of those used for growing cotton in Australia. Chang and Jackson fractionation of soil P from samples collected within 1 h of application indicated that 49, 7 and 13% of the P fertilizer was present as 0.5 m NH4F, 0.1 m NaOH and 1 m H2SO4 extractable P, respectively. Over 89% of the P fertilizer was recovered as Colwell extractable P in these samples, suggesting that the majority of these reaction products was in a highly plant‐available form. Fertilizer‐P remained in an available form within the band 51 days after application, and 68% of the applied fertilizer‐P was recovered as Colwell‐P (1071 mg kg?1). The Colwell‐P concentration in the band was 35 times that in the unfertilized soil. Thus, the variability in crop response to P fertilizer application in these soils is not a consequence of fertilizer‐P becoming unavailable to plants. These results confirm the suitability of the Colwell (1963) sodium bicarbonate extraction method for measuring available P in these soils.  相似文献   

18.
In most phosphorus (P) sorption studies, P is added as an inorganic salt to a predefined background solution such as calcium chloride (CaCl2) or potassium chloride (KCl); however, in many regions, the application of P to agricultural fields is in the form of animal manure. The purpose of this study, therefore, was to compare the sorption behavior of dissolved reactive P (DRP) in monopotassium phosphate (KH2PO4)–amended CaCl2 and KCl solutions with sorption behavior of DRP in three different animal manure extracts. Phosphorus single‐point isotherms (PSI) were conducted on eight soils with the following solutions: KH2PO4‐amended 0.01 M CaCl2 solution, KH2PO4‐amended 0.03 M KCl solution, water‐extracted dairy manure, water‐extracted poultry litter, and swine lagoon effluent. The PSI values for the dairy manure extract were significantly lower than the CaCl2 solution for all eight soils and lower than the KCl solution for six soils. The PSI values were significantly higher, on the other hand, for poultry litter extract and swine effluent than the inorganic solutions in four and five of the soils, respectively. Our observations that the sorption of DRP in manure solutions differs significantly from that of KH2PO4‐amended CaCl2 and KCl solutions indicates that manure application rates based on sorption data collected from inorganic P salt experiments may be inaccurate.  相似文献   

19.
The availability of C and N to the soil microbial biomass is an important determinant of the rates of soil N transformations. Here, we present evidence that changes in C and N availability affect the 15N natural abundance of the microbial biomass relative to other soil N pools. We analysed the 15N natural abundance signature of the chloroform‐labile, extractable, NO3, NH4+ and soil total N pools across a cattle manure gradient associated with a water reservoir in semiarid, high‐desert grassland. High levels of C and N in soil total, extractable, NO3, NH4+ and chloroform‐labile fractions were found close to the reservoir. The δ15N value of chloroform‐labile N was similar to that of extractable (organic + inorganic) N and NO3 at greater C availability close to the reservoir, but was 15N‐enriched relative to these N‐pools at lesser C availability farther away. Possible mechanisms for this variable 15N‐enrichment include isotope fractionation during N assimilation and dissimilation, and changes in substrate use from a less to a more 15N‐enriched substrate with decreasing C availability.  相似文献   

20.
Limiting the use of phosphorous (P) in intensive agriculture is necessary to decrease losses to surface waters. Balanced fertilizer application (P supply equals P offtake by the crop) is a first step to limit the use of P. However, it is questioned whether this balance approach is sufficient to maintain soil fertility. A long‐term field experiment (17 yr), on grazed grassland, has been conducted on sandy soil, marine clay soil and peat soil to obtain insight into the effects of balanced P fertilizer application on soil test P values and to explain the results by changes in P pools in the soil. The balance approach led to a gradual decline in plant available P, measured as P‐AL, in the topsoil (<0.10 m deep). This decline was accompanied by a decline in oxalate extractable P, dithionite extractable P and inorganic P (0.5 m H2SO4). The decline in these mineral P pools in the topsoil was (partly) compensated by an increase in the amount of organic P. There was evidence for the accumulation of P in an occluded form, especially at one of sites which received P as Gafsa rock phosphate [Ca3(PO4)2].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号