首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In a previous investigation on the reciprocal difference of interspecific hybridization between three different flower colors of Iris dichotoma and Iris domestica in the F1 offspring from crosses where I. domestica was a maternal parent were similar in morphological and cytological characters to their maternal parent. This could be evidence of apomixis; however, matroclinal progeny with complete morphological similarity to the maternal parent could be attributed to the heterozygosity for these characters in the pollen parent. The F1 plants were investigated in order to identify apomixis in I. domestica. Four matroclinal plants were randomly selected from each F1 population produced from Iris domestica × Iris dichotoma that had three different colors of flowers and were allowed to self-pollinate to establish an F2 population. All of the F2 plants had no segregation to I. domestica in their morphological characters. In addition, 13 reciprocal F1 plants were detected by 25,719 single nucleotide polymorphism (SNP) markers. When I. dichotoma plants with three different flower colors were used as maternal parents, all the progenies were genuine hybrids. When I. domestica were used as maternal parents, all the F1 plants were apomictic progenies. Apomixis of I. domestica was successfully identified and SNP markers identified F1 hybrids derived from six interspecific crosses between I. dichotoma and I. domestica, which provides a reference for authenticating offspring identity during Iris cross breeding in the future.  相似文献   

2.
The hybrid vigor typical of F1 cultivars is used to boost biomass production of sorghum (Sorghum bicolor (L.) Moench). The high dry-matter yielding F1 cultivar Kazetachi uniquely shows extremely late flowering and a long culm, and is greatly different from its parents. We investigated the genetic mechanisms underlying these phenotypes by quantitative trait locus (QTL) analysis of recombinant inbred lines derived from a male-fertile line and a restorer line and grown in 3 years. QTL analysis for six traits (days-to-heading, culm length, culm width, culm number, panicle length, panicle number) revealed that the unique phenotypes of the F1 plants were controlled by the genetic combination of 12 or more QTLs detected in at least 2 years. Two putative QTLs for days-to-heading (qDH1 on SBI-01 and qDH6 on SBI-06) would strongly affect the other phenotypes because of their co-localization with QTLs for other traits, as supported by significant phenotypic correlations. These QTLs would be useful for understanding the association of plant type with biomass production in sorghum.  相似文献   

3.
Forsythia suspensa and F.Courtaneur’ were used as female parents to cross with Abeliophyllum distichum in 2011 and an intergeneric hybrid of F. suspensa × A. distichum was obtained, though with very low seed set. The morphological characteristics, flower fragrance and volatile organic compounds of flowers were analysed. The intergeneric hybrid had intermediate morphological characteristics of both parents and flower fragrance and was confirmed as a true intergeneric hybrid by amplified fragment length polymorphism (AFLP) markers. Compared with its mother parent (F. suspensa), flowers of the intergeneric hybrid are pale yellow with delicate fragrance. Volatile organic compounds of flowers were retrieved by purge-and-trap techniques, and determined by gas chromatography and mass spectrometry (GC–MS). The main volatile organic components of F. suspensa were isoprenoids, while the main volatile organic components of A. distichum and the hybrid of F. suspensa × A. distichum were aliphatics. To determine the time and the site of intergeneric hybridizing barriers occured, the pollen tubes’ behavior after pollination was observed under fluorescence microscopy. It was found that significant pre-fertilization incompatibility existed in intergeneric crossing combinations [F. ‘Courtaneur’ (Pin) × A. distichum (Thrum) and F. suspensa (Pin) × A. distichum (Thrum)], and only a few pollen tubes of A. distichum penetrated into the ovaries of Forsythia. In our research, an intergeneric hybrid between Forsythia and Abeliophyllum was obtained for the first time, which will provide a solid foundation for expanding the flower color range of Forsythia and breeding fragrant-flowered cultivars.  相似文献   

4.
Compact growth is an important quality criterion in horticulture. Many Campanula species and cultivars exhibit elongated growth which is suppressed by chemical retardation and cultural practice during production to accommodate to the consumer’s desire. The production of compact plants via transformation with wild type Agrobacterium rhizogenes is an approach with great potential to produce plants that are non-GMO. Efficient transformation and regeneration procedures vary widely among both plant genera and species. Here we present a transformation protocol for Campanula. Hairy roots were produced on 26–90% of the petioles that were used for transformation of C. portenschlagiana (Cp), a C. takesimana × C. punctata hybrid (Chybr) and C. glomerata (Cg). Isolated hairy roots grew autonomously and vigorously without added hormones. The Cg hairy roots produced chlorophyll and generated plantlets in response to treatments with cytokinin (42 µM 2iP) and auxin (0.67 µM NAA). In contrast, regeneration attempts of transformed Cp and Chybr roots lead neither to the production of chlorophyll nor to the regeneration of shoots. Agropine A. rhizogenes strains integrate split T-DNA in TL- and TR-DNA fragments into the plant genome. In this study, regenerated plants of Cg did not contain TR-DNA, indicating that a selective pressure against this T-DNA fragment may exist in Campanula.  相似文献   

5.
6.
Broadening the genetic base of the C genome of Brassica napus canola by use of B. oleracea is important. In this study, the prospect of developing B. napus canola lines from B. napus?×?B. oleracea var. alboglabra, botrytis, italica and capitata crosses and the effect of backcrossing the F1’s to B. napus were investigated. The efficiency of the production of the F1’s varied depending on the B. oleracea variant used in the cross. Fertility of the F1 plants was low—produced, on average, about 0.7 F2 seeds per self-pollination and similar number of BC1 seeds on backcrossing to B. napus. The F3 population showed greater fertility than the BC1F2; however, this difference diminished with the advancement of generation. The advanced generation populations, whether derived from F2 or BC1, showed similar fertility and produced similar size silique with similar number of seeds per silique. Progeny of all F1’s and BC1’s stabilized into B. napus, although B. oleracea plant was expected, especially in the progeny of F1 (ACC) owing to elimination of the A chromosomes during meiosis. Segregation distortion for erucic acid alleles occurred in both F2 and BC1 resulting significantly fewer zero-erucic plants than expected; however, plants with?≤?15% erucic acid frequently yielded zero-erucic progeny. No consistent correlation between parent and progeny generation was found for seed glucosinolate content; however, selection for this trait was effective and B. napus canola lines were obtained from all crosses. Silique length showed positive correlation with seed set; the advanced generation populations, whether derived from F2 or BC1, were similar for these traits. SSR marker analysis showed that genetically diverse canola lines can be developed by using different variants of B. oleracea in B. napus?×?B. oleracea interspecific crosses.  相似文献   

7.
Striga is an important parasitic weed causing substantial economic losses in cereal and legume crop production in sub-Saharan Africa. Integrated Striga management approaches such as a combined use of Striga resistant varieties and Fusarium oxysporum f.sp. strigae (FOS), a biocontrol agent of Striga, are an option to control the parasite and to boost sorghum productivity. Understanding host gene action influencing Striga resistance, with or without FOS treatment, is key to developing improved sorghum varieties with durable resistance and high yield. The objective of this study was to determine the gene action and inheritance of Striga resistance using genetically diverse populations of sorghum involving FOS treatment. Twelve sorghum parents selected for Striga resistance, FOS compatibility or superior agronomic performances were crossed using a bi-parental mating scheme. The selected male and female parents and their F1 progenies, backcross derivatives and the F2 segregants were field evaluated at three locations in Tanzania known for their severe Striga infestations using a lattice experimental design with two replications. The following data were collected and subjected to generation mean analysis (GMA): days-to-50% flowering (DFL), seed yield per plant (SYP) and number of Striga per plant (SN). GMA showed the preponderance of additive genetic action contributing to the total genetic variation in the evaluated sorghum populations. The additive genetic effect for DFL, SYP and SN, with and without FOS treatments, ranged from 72.02 to 86.65% and 41.49 to 95.44%, 75.62 to 91.42% and 71.83 to 91.89%, and 77.35 to 93.56% and 72.86 to 95.84%, in that order. The contribution of non-additive genetic effects was minimal and varied among generations. FOS application reduced DFL and SN and improved SYP in most of the tested sorghum populations. DFL of sorghum populations was reduced by a mean of 8 days under FOS treatment compared to the untreated control in families such as 675 × 654, AS435 × AS426 and 1563 × AS436. FOS treatment improved SYP with a mean of 6.44 g plant?1 in 3424 × 3993 and 3984 × 672. The numbers of Striga plants were reduced with a mean of 16 plants due to FOS treatment in the crosses of 675 × 654, 1563 × AS436, 4567 × AS424, and 3984 × 672. The study demonstrated that additive genes were predominantly responsible for the inheritance of Striga resistance in sorghum. Pure line cultivar development targeting reduced DFL, SN and high SYP in the selected populations may provide enhanced response to selection for integrated Striga management (ISM) programme.  相似文献   

8.
Two new varieties of interspecific hybrids of Passiflora have been developed from the cross between P. gardneri versus P. gibertii, both registered under the Passiflora Society International. Twelve putative hybrids were analyzed. Hybridization was confirmed using RAPD and SSR markers. Primer UBC11 (5′-CCGGCCTTAC-3′) generated informative bands. Primer SSR Pe75 has amplified species-specific fragments and a heterozygote status was observed with two parent bands 300 and 350 bp. The molecular markers generated have been analyzed for the presence or absence of specific informative bands. Based on the morphological characterization, we have identified two hybrid varieties: P. ‘Gabriela’ and P. ‘Bella’. P. ‘Gabriela’ produced flowers in bluish tones, bluish petals on the adaxial and abaxial faces, light blue sepals on the adaxial and light green on the abaxial faces, corona with the base of filaments in intense lilac color and white apex. P. ‘Bella’ produced flowers in lilac tones, intense lilac petals on the adaxial and abaxial faces, dark lilac sepals with whitish edges on the adaxial and light green on the abaxial faces, corona with the base of filaments in intense lilac color and white apex. The cytogenetic analysis verified that the hybrids have the same chromosomal number as the parents (2n = 18); the formation of bivalents between the homeologous chromosomes (n = 9) was observad, leading to regular meiosis, which allows the sexual reproduction and use of these hybrids in breeding programs.  相似文献   

9.
Peach powdery mildew is one of the major diseases of the peach. Various sources of resistance to PPM have thus been identified, including the single dominant locus Vr2 carried by the peach rootstock ‘Pamirskij 5’. To map Vr2, a linkage map based on microsatellite markers was constructed from the F2 progeny (WP2) derived from the cross ‘Weeping Flower Peach’ × ‘Pamirskij 5’. Self-pollinations of the parents were also performed. Under greenhouse conditions, all progenies were scored after artificial inoculations in two classes of reactions to PPM (resistant/susceptible). In addition to Vr2, WP2 segregated for three other traits from ‘Weeping Flower Peach’: Rm1 for green peach aphid resistance, Di2 for double-flower and pl for weeping-growth habit. With their genomic locations unknown or underdocumented, all were phenotyped as Mendelian characters and mapped: Vr2 mapped at the top of LG8, at 3.3 cM, close to the CPSCT018 marker; Rm1 mapped at the bottom of LG1, at a position of 116.5 cM, cosegregating with the UDAp-467 marker and in the same region as Rm2 from ‘Rubira’®; Di2 mapped at 28.8 cM on LG6, close to the MA027a marker; and pl mapped at 44.1 cM on LG3 between the MA039a and SSRLG3_16m46 markers. Furthermore, this study revealed, for the first time, a pseudo-linkage between two traits of the peach: Vr2 and the Gr locus, which controls the red/green color of foliage. The present work therefore constitutes a significant preliminary step for implementing marker-assisted selection for the four major traits targeted in this study.  相似文献   

10.
Interspecific hybrids were developed between Trifolium alexandrinum cultivar Wardan × Trifolium vesiculosum and T. alexandrinum cultivar BL1 × T. vesiculosum through embryo rescue, as the crosses failed to set seed under natural conditions. Trifolium vesiculosum was used as a donor/male parent in this study as it is reported to possess tolerance to stem rot and high forage yield. Fertilization in crossed florets of the crosses was manifested from the recovery of swollen ovaries (< 7.80%) and confirmed from the presence of one degenerated ovule in most (> 93.00%) of the swollen ovaries. The hybrid embryos at various developmental stages (heart, torpedo and cotyledonary) were rescued at a frequency of 2.56% from Wardan × T. vesiculosum and 6.12% from BL1 × T. vesiculosum. Differentiation occurred only in the cotyledonary stage embryos, resulting in 17 putative interspecific hybrid plantlets. The assessment of plantlet hybridity through SSR markers (for the alleles inherited from the donor parent), micromorphological leaf traits (leaf texture and stomata) and morphological characters (plant height, leaflet length and width) confirmed production of two interspecific hybrids designated as AV1 and BV3 representing both the crosses. AV1 displayed moderate resistance and BV3 was resistant to stem rot.  相似文献   

11.
Thorough understanding of the genetic mechanisms governing drought adaptive traits can facilitate drought resistance improvement. This study was conducted to identify chromosome regions harbouring QTLs contributing for water stress resistance in wheat. A RIL mapping population derived from a cross between W7984 (Synthetic) and Opata 85 was phenotyped for root length and root dry weight under water stress and non-stress growing conditions. ANOVA showed highly significant (p ≤ 0.01) variation among the RILs for both traits. Root length and root dry weight showed positive and significant (p ≤ 0.01) phenotypic correlation. Broad sense heritability was 86% for root length under stress and 65% for root dry weight under non-stress conditions. A total of eight root length and five root dry weight QTLs were identified under both water conditions. Root length QTLs Qrln.uwa.1BL, Qrln.uwa.2DS, Qrln.uwa.5AL and Qrln.uwa.6AL combined explained 43% of phenotypic variation under non-stress condition. Opata was the source of favourable alleles for root length QTLs under non-stress condition except for Qrln.uwa.6AL. Four stress specific root length QTLs, Qrls.uwa.1AS, Qrls.uwa.3AL, Qrls.uwa.7BL.1 and Qrls.uwa.7BL.2 jointly explained 47% of phenotypic variation. Synthetic wheat contributed favourable alleles for Qrls.uwa.1AS and Qrls.uwa.3AL. Two stable root dry weight QTLs on chromosomes 4AL and 5AL were consistently found in both water conditions. Three validation populations were developed by crossing cultivars Lang, Yitpi, and Chara with Synthetic W7984 to transfer two of the QTLs identified under stress condition. The F2.3 and F3.4 validation lines were phenotyped under the same level of water stress as RILs to examine the effect of these QTLs. There were 13.5 and 14.5% increases in average root length due to the inheritance of Qrls.uwa.1AS and Qrls.uwa.3AL, respectively. The result indicated that closely linked SSR markers Xbarc148 (Qrls.uwa.1AS) and Xgwm391 (Qrls.uwa.3AL) can be incorporated into MAS for water stress improvement in wheat.  相似文献   

12.
Sugar beet hybrid varieties are produced through the crosses between male sterile lines and the multigerm pollinators. The uniformity of pollinators used for hybrid crosses depends on the presence of self-sterility (S s ) and self-fertility (S f ) genes. The aim of the study was to analyze correlation between hybrid performance and genetic distance or heterozygosity of the sugar beet pollinators. Twelve diploid pollinators classified as self-sterile (S s ) or self-fertile (S f ) and two cytoplasmic male sterile (CMS) lines were crossed in line × tester scheme, producing 24 F1 hybrids. The parents and the hybrids were evaluated for root yield and quality traits, from which F1 performance, combining abilities, mid-parent and high-parent heterosis were calculated. Parental genetic distance and diversity of the pollinators were estimated by SSR markers and, together with GCA and F1 performance, correlated with the heterosis effects. The S f hybrids had better GCA and higher values of root yield, root weight, and root circumference than the S s hybrids. Heterosis was recorded in more combinations with the S f than with the S s pollinators. Parameters of genetic diversity were higher in the S s (Na = 3.125; Ne = 2.341; He = 0.555) than in the S f pollinators (Na = 3.000; Ne = 2.188; He = 0.510). Genetic distance between the tested pollinators and the CMS lines was low (0.072–0.224) indicating that the genetic base of the investigated germplasm was narrow. Correlation of the heterosis effects with GD and heterozygosity was detected only for the root yield traits.  相似文献   

13.
To better understand the underlying mechanisms of agronomic traits related to drought resistance and discover candidate genes or chromosome segments for drought-tolerant rice breeding, a fundamental introgression population, BC3, derived from the backcross of local upland rice cv. Haogelao (donor parent) and super yield lowland rice cv. Shennong265 (recurrent parent) had been constructed before 2006. Previous quantitative trait locus (QTL) mapping results using 180 and 94 BC3F6,7 rice introgression lines (ILs) with 187 and 130 simple sequence repeat (SSR) markers for agronomy and physiology traits under drought in the field have been reported in 2009 and 2012, respectively. In this report, we conducted further QTL mapping for grain yield component traits under water-stressed (WS) and well-watered (WW) field conditions during 3 years (2012, 2013 and 2014). We used 62 SSR markers, 41 of which were newly screened, and 492 BC4F2,4 core lines derived from the fourth backcross between D123, an elite drought-tolerant IL (BC3F7), and Shennong265. Under WS conditions, a total of 19 QTLs were detected, all of which were associated with the new SSRs. Each QTL was only identified in 1 year and one site except for qPL-12-1 and qPL-5, which additively increased panicle length under drought stress. qPL-12-1 was detected in 2013 between new marker RM1337 and old marker RM3455 (34.39 cM) and was a major QTL with high reliability and 15.36% phenotypic variance. qPL-5 was a minor QTL detected in 2013 and 2014 between new marker RM5693 and old marker RM3476. Two QTLs for plant height (qPHL-3-1 and qPHP-12) were detected under both WS and WW conditions in 1 year and one site. qPHL-3-1, a major QTL from Shennong265 for decreasing plant height of leaf located on chromosome 3 between two new markers, explained 22.57% of phenotypic variation with high reliability under WS conditions. On the contrary, qPHP-12 was a minor QTL for increasing plant height of panicle from Haogelao on chromosome 12. Except for these two QTLs, all other 17 QTLs mapped under WS conditions were not mapped under WW conditions; thus, they were all related to drought tolerance. Thirteen QTLs mapped from Haogelao under WS conditions showed improved drought tolerance. However, a major QTL for delayed heading date from Shennong265, qDHD-12, enhanced drought tolerance, was located on chromosome 12 between new marker RM1337 and old marker RM3455 (11.11 cM), explained 21.84% of phenotypic variance and showed a negative additive effect (shortening delay days under WS compared with WW). Importantly, chromosome 12 was enriched with seven QTLs, five of which, including major qDHD-12, congregated near new marker RM1337. In addition, four of the seven QTLs improved drought resistance and were located between RM1337 and RM3455, including three minor QTLs from Haogelao for thousand kernel weight, tiller number and panicle length, respectively, and the major QTL qDHD-12 from Shennong265. These results strongly suggested that the newly screened RM1337 marker may be used for marker-assisted selection (MAS) in drought-tolerant rice breeding and that there is a pleiotropic gene or cluster of genes linked to drought tolerance. Another major QTL (qTKW-1-2) for increasing thousand kernel weight from Haogelao was also identified under WW conditions. These results are helpful for MAS in rice breeding and drought-resistant gene cloning.  相似文献   

14.
T-type is a common chloroplast DNA type among modern potato varieties (Solanum tuberosum), their progenitor Chilean tuberosum, and a diploid wild species S. tarijense. To recreate Chilean tuberosum, we made 983 pollinations between 10 accessions of T-type chloroplast DNA-holding S. tarijense used as females and 32 Andean tetraploid landraces (Andigena) used as males, from which 14 tetraploid hybrids were obtained. These interspecific hybrids grew vigorously with long stolons, flowered well with high male and female fertilities, and matured 1 month later than modern varieties. Seedlings of selfed and sib-crossed interspecific hybrids were artificially selected for tuber yield under long days. The selected clones were grown in the field, of which two clones produced over 1 kg of edible tubers per plant. These results lend experimental support to the hypothesis that the Chilean tuberosum originated by selection for long-day adaptability from tetraploid hybrids that occurred by fertilization of a 2n egg of S. tarijense and n pollen of Andigena.  相似文献   

15.
Tomato is affected by a large number of arthropod pests, among which the whitefly (Bemisia tabaci) is considered to be one of the most destructive. Several accessions of the wild species of Solanum galapagense, including accession LA1401, are considered resistant to whitefly (B. tabaci). This resistance has been associated with the presence of type IV glandular trichomes on the leaf surface. Our research aimed to study the inheritance of type IV glandular trichome density and its association with resistance to whitefly (B. tabaci biotype B) in populations derived from the interspecific cross Solanum lycopersicum × S. galapagense ‘LA1401.’ High estimates for both broad-sense and narrow-sense heritabilities of type IV glandular trichome densities suggest that inheritance of this trait is not complex. Whitefly resistance was associated with high density of type IV glandular trichomes. F2 (S. galapagense × S. lycopersicum) population plants selected for the highest densities of type IV glandular trichomes showed similar levels of resistance to those found in the donor of resistance LA1401.  相似文献   

16.
This experiment was carried out to investigate whether and how much field resistance to late blight, caused by Phytophthora infestans, is present in the local cultivated potato germplasm. In total 36 entries were compared in a field experiment in an area highly conducive to late blight development. Of the 36 cultivars 32 were local cultivars belonging to five Solanum species, S. tuberosum (1 accession), S. andigena (18), S. juzepczukii (2), S. stenotomum (9) and S. ajanhuiri (2). The other four cultivars were derived from breeding programmes, one being the Dutch cultivar Alpha used as a highly susceptible control. The 36 cultivars were planted according to a simple 6 × 6 lattice design with three replicates. Each replicate was divided in six incomplete blocks each with six cultivars. The disease severity was assessed weekly during 9 weeks starting 48 days after planting. The area under the disease progress curve (AUDPC) was used as a measure of the field resistance. Nine isolates from surrounding potato fields were tested for their virulence to the resistance genes R1–R11 using 22 differential cultivars. The components of the field resistance of 19 of these cultivars were compared in the greenhouse using a local isolate with virulence to all known R-genes, except to R9. The nine isolates represented seven races with a race complexity varying from 7 to 10 virulence factors. All isolates carried virulence against R1, R2, R3, R7, R10 and R11, while virulence against R9 was absent. The AUDPC among the 32 local cultivars ranged from very large, significantly larger than that of ‘Alpha’ to very small. The AUDPC from S. stenotomum accessions ranged from very large to intermediate, those from S. andigena accessions from large to very small. Especially among the S. andigena accessions interesting levels of field resistance were found. Four components of field resistance were assessed, latency period (LP), lesion size (LS), lesion growth rate (LGR) and relative sporulation area (RSA). All four showed a considerable variation among the cultivars. The LP ranged from 3½ to 6 days. The LS ranged from 225 mm2 to 20 mm2. The LGR varied about six-fold, the RSA more than 10-fold. The components tended to vary in association with one another. LP and LGR were well associated with each other and had a significant correlation with the AUDPC.  相似文献   

17.
The germplasm of valuable for breeding wild allotetraploid potato species Solanum stoloniferum is rarely used because of pre- and postzygotic reproductive barriers with cultivated potatoes. One of the factors that complicate crosses between S. stoloniferum and S. tuberosum is unilateral incompatibility (UI). Here, we present the results of application of S. verrucosum and S v S v -lines for overcoming UI in crosses with S. stoloniferum and of generating male fertile hybrids derived from this species. S v S v -lines are F2 S. tuberosum dihaploid × S. verrucosum that are male fertile and have D/γ-type cytoplasm. Since they are homozygous for S v gene from S. verrucosum, they were expected to have the same ability for elimination of prezygotic incompatibility as this species. Three accessions of S. verrucosum and seven S v S v -lines were pollinated by 26 accessions of S. stoloniferum. The crosses with S. verrucosum failed or had low efficacy (1.5–2.4 seeds per pollination). On the other hand, use of S v S v -lines was more efficient: 15.8 seeds per pollination. In spite of low percentage of germination (1.9%), 40 seedlings of interspecific hybrids were produced. The experiment on hybridization between S v S v -lines and S. stoloniferum has been reproduced with the accession PI 205522 of the wild species, which had DNA markers of PVY and LB resistance genes and W/γ cytoplasm: 950 hybrid seeds and 12 viable seedlings were produced. The genome of the seedlings was doubled by colchicine treatment, which generated hexaploids that formed highly fertile pollen and set seeds from self-pollination. We were able to cross them as females with the variety Katahdin.  相似文献   

18.
The success of breeding for barley leaf rust (BLR) resistance relies on regular discovery, characterization and mapping of new resistance sources. Greenhouse and field studies revealed that the barley cultivars Baronesse, Patty and RAH1995 carry good levels of adult plant resistance (APR) to BLR. Doubled haploid populations [(Baronesse/Stirling (B/S), Patty/Tallon (P/T) and RAH1995/Baudin (R/B)] were investigated in this study to understand inheritance and map resistance to BLR. The seedlings of two populations (B/S and R/B) segregated for leaf rust response that conformed to a single gene ratio (\({\text{X}}_{1:1}^{2}\) = 0.12, P > 0.7 for B/S and \({\text{X}}_{1:1}^{2}\) = 0.34, P > 0.5 for R/B) whereas seedlings of third population (P/T) segregated for two-gene ratio (\({\text{X}}_{1:1}^{2}\) = 0.17, P > 0.6) when tested in greenhouse. It was concluded that the single gene in Baudin and one of the two genes in Tallon is likely Rph12, whereas gene responsible for seedling resistance in Stirling is Rph9.am (allele of Rph12). The second seedling gene in Tallon is uncharacterized. In the field, APR was noted in lines that were susceptible as seedlings. A range of disease responses (CI 5–90) was observed in all three populations. Marker trait association analysis detected three QTLs each in populations B/S (QRph.sun-2H.1, QRph.sun-5H.1 and QRph.sun-6H.1) and R/B (QRph.sun-1H, QRph.sun-2H.2, QRph.sun-3H and QRph.sun-6H.2), and four QTLs in population P/T (QRph.sun-6H.2, QRph.sun-1H.2, QRph.sun-5H.2 and QRph.sun-7H) that significantly contributed to low leaf rust disease coefficients. High frequency of QRph. sun-5H.1, QRph. sun-6H.1, QRph. sun-1H.1, QRph. sun-2H.2, QRph. sun-6H.2, QRph. sun-7H (based on presence of the marker, closely associated to the respective QTLs) was observed in international commercial barley germplasm and hence providing an opportunity for rapid integration into breeding programmes. The identified candidate markers closely linked to these QTLs will assist in selecting and assembling new APR gene combinations; expectantly this will help in achieving good levels of durable resistance for controlling BLR.  相似文献   

19.
20.
The timing of spring bud flush (TBF) in tea plants (Camellia sinensis) is an adaptive critical and economically important trait; thus, it has been a focus of many tea-breeding programs. Previously, we reported the mapping of two major and partial linked TBF QTLs onto the LG01 of C. sinensis using a full-sib population of ‘Longjing 43’ × ‘Baihaozao’. In this study, we further tested the QTL stability and expression variation in different years, experimental sites, and crossing parents. We genotyped 157 additional F1 individuals from the ‘Longjing 43’ × ‘Baihaozao’ cross and 173 F1 individuals from ‘Wuniuzao’ × ‘Longjing 43’ cross with 16 and 17 SSR markers on LG01, respectively. We also recorded the TBF trait of the two populations at Hangzhou and/or Shengzhou sites in the spring of 2014, 2015 and/or 2017. The TBF QTLs were significant (P < 0.001 at the chromosome-wide level) in all tested years, sites, and populations, but the explained phenotypic variation ranged considerable (26.2–40.5%, two QTLs were considered together in the Interval Mapping). Interestingly, the QTLs only segregated in ‘Longjing 43’ among the three parents involved. After grouping the individuals by the genotypes of the two markers closest to the QTLs, a maximum difference of 9.22 days for the average TBF was observed between the earliest and latest groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号