首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
为研究油菜ASL基因(BnALS)启动子的功能,根据油菜基因组信息,提取得到BnASL基因上游区域的碱基序列,通过设计特异性引物对,利用PCR扩增克隆得到大小为1 048个碱基的片段。序列分析结果显示,该序列富含TATA box和CAAT box等启动子核心调控序列,并有多个与逆境、激素、光响应等表达相关的顺式作用元件,如MBS元件、ABRE元件、HSE元件CGTCA-motif、TGA-motif等。为了进一步研究其启动子功能,将其与β-葡萄糖苷酸酶(GUS)基因融合,构建了植物表达载体p1304-P,通过根癌农杆菌介导法转化烟草(Nicotiana benthamiana),对PCR阳性的再生烟草苗进行GUS组化分析,检测GUS基因在转基因烟草中的瞬时表达情况。结果表明,克隆的BnASL基因上游序列能够驱动GUS基因在烟草根、茎、叶等组织中的表达,推测油菜ALS基因上游的1 048 bp片段具有组成型表达的启动子功能。  相似文献   

2.
目的克隆获得番茄根特异表达启动子,为利用基因工程技术创制番茄新种质奠定基础。方法利用Clontech公司的基因组步移(genome walking)技术,扩增番茄根特异表达基因LeGRP2的上游调控序列,并构建植物表达载体,利用农杆菌介导法转化拟南芥,以GUS为报告基因研究该调控序列的组织表达特异性。结果以番茄基因组DNA为模板,经过2次基因组步移,获得了LeGRP2基因上游1959bp的调控序列(GenBank登录号:EU262719),分析发现含有9个与根特异表达相关的顺式作用元件ROOTMOTIFTAPOX1。转基因拟南芥的组织化学染色分析表明,GUS基因主要在拟南芥的根部特异表达。结论克隆获得了番茄LeGRP2基因启动子,该启动子主要在转基因拟南芥根部表达GUS基因,具有较强的根表达特异性。  相似文献   

3.
为了研究杨树ABF2同源基因的表达规律,从毛果杨基因组DNA中克隆出Pt AREB1基因上游一段1 800 bp序列。序列分析结果表明,该序列含有逆境胁迫响应元件TC-rich repeats、ABA应答元件ABRE和茉莉酸甲酯(Methyl Jasmonate,Me JA)应答元件TGACG-motif等胁迫相关元件。在序列分析的基础上,构建了Pt AREB1基因启动子驱动GUS报告基因的植物表达载体,利用农杆菌介导的花粉管通道法获得转基因拟南芥。结果表明Pt AREB1启动子可以在干旱、ABA、盐、Me JA和SA胁迫下,驱动GUS基因在转基因拟南芥的根、茎和叶中表达。说明Pt AREB1基因可能与干旱、高盐等胁迫应答紧密相关。  相似文献   

4.
根据NCBI中生长素受体蛋白TIR1基因上游1.5kb序列设计引物,以超级杂交稻株1S基因组DNA为模板,PCR扩增得到TIR1基因的启动子片段。将该片段克隆到pMD19-T载体后进行测序,获得长度为1530bp的序列。用PLACE软件分析发现该序列不仅具有启动子的基本元件TATA-box、CAAT-box,并具有多个胁迫响应元件,如光诱导元件、热诱导元件、生长素响应元件等。将该启动子与GUS基因融合,构建成表达载体后,可用于转化植物,为进一步研究水稻生长素受体蛋白TIR1基因的表达调控奠定了基础。  相似文献   

5.
【目的】从玉米幼根基因组DNA中克隆β-葡萄糖苷酶基因根部特异性启动子序列ZmGLU1P,并对其功能进行分析。【方法】利用PCR技术从玉米品种P138幼根基因组DNA中克隆玉米根部特异性启动子片段ZmGLU1P,将其与GUS基因融合,构建植物表达载体pCAMBIA121-ZmGLU1P,转化到EHA105根癌农杆菌中,通过根癌农杆菌介导法转化烟草NC89,对转化烟草植株进行PCR和Southern杂交检测。采集PCR和Southern杂交检测为阳性的转基因烟草的根、茎、叶,进行GUS活性的组织染色检测。【结果】克隆获得了ZmGLU1P片段,其长度为1 846 bp,与已报道的序列同源性达99%以上。转基因烟草植株的PCR和Southern杂交结果显示,成功地获得了转基因阳性植株;GUS活性检测表明,根中GUS活性最强,而在茎和叶等组织中GUS活性甚微,表明ZmGLU1P片段具有根部特异性启动子功能。【结论】玉米β-葡萄糖苷酶基因上游1 846 bp的片段ZmGLU1P具有根部特异性启动子功能,为根部特异性启动子。  相似文献   

6.
利用PCR技术,从油菜(Brassica campestris)基因组DNA中克隆20 ku油体蛋白基因上游903 bp的调控序列NOP,将其与GUS基因融合构建植物表达载体,利用花粉管通道法转化油葵并进行PCR扩增,组织化学染色检测启动子和GUS基因在油葵基因组中的整合和表达情况。结果表明,NOP序列1~903 bp与报道序列同源性为95%,包含驱动基因表达的重要元件及驱动基因在种子中特异表达所必需的核苷酸序列;目的片段已整合到油葵基因组中,NOP具有种子特异性启动子的功能,能够驱动GUS基因在油葵种子中特异性表达,而在油葵根、茎、叶中均不表达。  相似文献   

7.
水稻OsTIR1启动子的克隆及植物表达载体的构建   总被引:2,自引:0,他引:2  
根据NCBI中生长素受体蛋白TIR1基因上游1.5 kb序列设计引物.以超级杂交稻株1S基因组DNA为模板,PCR扩增得到TIR1基因的启动子片段.将该片段克隆到pMD19-T载体后进行测序,获得长度为1 530 bp的序列.用PLACE软件分析发现该序列不仅具有启动子的基本元件TATA-box、CAAT-box,并具有多个胁迫响应元件,如光诱导元件、热诱导元件、生长素响应元件等.将该启动子与GUS基因融合,构建成表达载体后,可用于转化植物,为进一步研究水稻生长索受体蛋白TIR1基因的表达调控奠定了基础.  相似文献   

8.
[目的]克隆水稻TFL2(OsTFL2)启动子序列,并分析其结构和功能,为深入研究OsTFL2基因对水稻开花和花发育的调控机理提供理论参考.[方法]采用同源克隆方法克隆OsTFL2基因启动子序列,利用PLACE和PlantCARE分析其结构和功能,并将其连接至携带β-葡萄糖苷酸酶(GUS)基因的pCAMBIA1301载体以构建pCAMBIA1301-Pro-moter植物表达载体,通过农杆菌介导转化水稻品种农垦58愈伤组织,通过对转基因植株进行GUS组织化学染色以分析该基因启动子的表达特性和调控功能.[结果]克隆获得的OsTFL2基因起始密码子上游启动子序列1.8 kb,该序列除含有真核生物典型启动子元件TATA-box和CAAT-box外,还含有花粉特异识别的顺式作用元件Pollen1lelat52(AGAAA)、开花基因转录相关的多功能转录因子CACTFTPPCA1(PACT,Y=C/T)、CCAAT box1(CCAAT)、DOFCORE(AAAG)和GATA box(GATA)、分生组织特异性元件CCGTCC-box及多个光诱导元件或光诱导相关元件如G-box、Box I、CATT-motif、GATA-motif和GT1-motif等,推测OsTFL2基因通过上述作用元件参与调控水稻花发育及开花.通过PCR检测共筛选获得16株阳性转基因植株,对其进行GUS组织化学染色,结果发现水稻的外颖、花、花药、柱头和子房中均可检测到明显的GUS色斑,而在叶片、茎尖和根尖无明显的GUS色斑,说明OsTFL2启动子能驱动GUS基因在水稻外颖、花药和子房中表达.[结论]OsTFL2基因启动子具有启动活性和组织表达特异性,可在一定程度上影响OsTFL2基因表达,对水稻花生长发育和开花发挥重要调控作用.  相似文献   

9.
以湘晚籼13号为材料,克隆了水稻OsFAH基因启动子,构建了OsFAH启动子与GUS基因融合表达载体,并转化拟南芥。序列分析结果表明,该启动子包含了启动子核心序列TATA–box和CAAT–box以及光响应元件等。GUS染色结果表明:在拟南芥幼嫩的子叶、下胚轴和真叶中,GUS的表达较强;随着叶片的衰老,GUS表达减弱;在根中,GUS主要在主根的维管柱内表达;黑暗处理会使GUS表达减弱;在黑暗条件下,OsFAH基因表达下调。  相似文献   

10.
根据木薯细胞壁转化酶基因MeCWINV4已知编码区序列与木薯基因组数据库中预测的MeCWINV4基因序列信息设计引物,从木薯基因组DNA中对该基因的潜在启动子区进行PCR扩增,经测序比对成功获得1 639 bp序列,其中包含74 bp编码区序列和1 565 bp潜在启动子区序列。用Plant CARE和PLACE软件分析该序列的顺式作用元件,发现该启动子包含CAAT box和TATA box保守元件、大量光反应相关元件与应对高低温胁迫和激素响应相关元件。将MeCWINV4启动子片段取代pVKH表达载体中的CaMV 35S启动子与GUS连接,构建成融合表达载体pVKH-CW4-GUS,通过农杆菌真空渗透法在烟草叶片中进行瞬时表达。结果表明,该启动子驱动了GUS基因在烟草叶片中的表达。说明MeCWINV4启动子具有启动子活性,可以启动目的基因的转录,为进一步研究该基因的调控机制奠定了基础。  相似文献   

11.
白桦BpGT14基因启动子克隆及表达活性分析   总被引:1,自引:1,他引:0  
本文利用SiteFinding-PCR方法克隆了白桦BpGT14基因起始密码子ATG上游2 169 bp序列,并通过PLACE启动子预测工具对其进行元件分析。结果表明,该启动子片段含有启动子核心元件及多种逆境及激素响应元件,同时具有植物苯丙烷及木质素生物合成的MYB类转录因子的重要结合基序。研究选取了其中含有启动子核心元件的1 156 bp片段构建了pBpGT14∷GUS植物表达载体,利用农杆菌侵染的方法将pBpGT14∷GUS报告基因瞬时转化烟草植株,鉴定该启动子在烟草中的表达活性及对非生物胁迫和激素的响应模式。对转基因烟草植株进行GUS染色,结果表明该启动子具有启动活性,且在茎段处活性较高;进一步分析非生物胁迫对烟草中GUS酶活性的影响,表明该启动子对ABA、NaCl、PEG及高温处理均有明显响应,且对于NaCl及PEG处理响应迅速。为了更好的鉴定白桦BpGT14基因启动子在白桦细胞中的启动活性及响应模式,本文构建了pBpGT14∷GFP载体并瞬时转化白桦茎段悬浮细胞,进行研究。GFP转录水平分析结果与GUS酶活性结果基本一致,但其中部分时间点仍存在差异。选取PEG处理3、6、12及24 h的转GFP基因白桦茎段悬浮细胞,在显微镜下观察其绿色荧光蛋白,以此揭示该启动子对干旱的响应模式。结果表明,该启动子在白桦茎段悬浮细胞中启动了GFP的表达,在处理初期(3 h),荧光效果明显;随着处理时间的增加,细胞脱水明显,且在细胞壁表现高亮度荧光。   相似文献   

12.
【目的】克隆万寿菊番茄红素β-环化酶基因和其启动子,进行生物学信息分析,并预测启动子功能,为万寿菊类胡萝卜素的代谢机制和叶黄素含量的调控提供参考依据。【方法】通过RT-PCR技术从万寿菊总RNA中克隆得到TeLCYb的cDNA序列;应用生物学方法分析其DNA序列及其编码蛋白质序列特征,使用DNAMAN和在线软件Box Shade对其氨基酸序列同源性比对分析,并利用MEGA6.0构建进化树,分析其亲缘关系;根据其cDNA序列利用FPNI-PCR法克隆其启动子序列,利用Plant Care在线数据库分析万寿菊TeLCYb启动子调控元件,构建启动子缺失表达载体pTeLCYb(-1969)∷GUS和pTeLCYb(-1140)∷GUS,利用农杆菌介导法侵染烟草,以GUS为报告基因研究不同调控元件的活性。【结果】从万寿菊中成功克隆TeLCYb,生物信息学分析发现,其全长共1 865 bp,开放阅读框为1 527 bp,编码508个氨基酸,氨基酸序列同源比对结果表明其与西洋蒲公英和菊花的同源性最高,且具有LCYb蛋白质特有的保守功能位点和特征多肽序列,在进化上与菊科单独聚为一枝。在已知基因序列的基础上获得长度为1 806 bp的TeLCYb启动子序列,生物学信息分析表明:该启动子除包含核心启动子元件TATA-box、CAAT-box外,还含有多种光应答元件和激素响应元件,其中光响应元件有13个,激素响应元件有5个,此外还具有MYBHv1结合位点元件、耐热响应元件、生理调控作用元件等顺式调控元件。GUS化学组织染色结果显示不同长度启动子均能够驱动GUS在茎、叶、花药及柱头中表达,但不同组织GUS染色蓝色斑点深度不同,其中花器官中花药和柱头中GUS酶活性最强;相对于启动子pTeLCYb(-1969),pTeLCYb(-1140)启动子还能够驱动GUS在根、叶和花萼中特异性表达,且各组织中GUS酶活性明显强于启动子pTeLCYb(-1969)的GUS化学组织染色结果。【结论】不同长度TeLCYb启动子均能驱动下游GUS的表达,但启动子的作用部位和作用强度存在差异,推测在ATG上游1 140 bp和164 bp区间的光响应元件可能具有增强子的功能,而全长启动子特有的激素响应元件和热响应元件可能具有抑制或降低启动子功能的作用。  相似文献   

13.
[目的]构建玉米淀粉分支酶sbeⅡb基因种子特异表达启动子。[方法]LA-PCR扩增了玉米淀粉分支酶sbeⅡb基因启动子序列,并克隆到pMD18-TVector上。再将启动子克隆到pBI121载体上,构建植物表达载体pBI121-sbeⅡb。把GUS基因连到pBI121-sbeⅡb上构建pSBE-GUS后利用农杆菌介导法转化烟草。分别进行PCR和Southern杂交检测,并对经基因枪轰击和农杆菌介导的烟草种子、根、茎及叶进行GUS组织化学分析和荧光检测。[结果]测序结果与GenBank中发表的玉米sbeⅡb基因启动子同源性达98.52%。共培养和筛选培养后获得4株转pSBE-GUS植株,叶片仅有少量蓝斑出现,而根和茎部未见蓝斑,但烟草种子有大量蓝斑显出,初步推断sbeⅡb基因启动子能启动GUS在种子中特异表达。[结论]成功构建了玉米淀粉分支酶sbeⅡb基因种子特异表达启动子。  相似文献   

14.
通过PCR方法对洋葱花青素合成酶基因(AcANS)上游启动子序列进行扩增,获得长度为1.8 kb和2.2 kb的两种片段,命名为ANSPM1和ANSPM2。序列分析表明,克隆到的两个启动子除含有多个TATA-box、CAAT-box等基本启动子元件,还含有与MYB转录因子结合的元件,以及参与光响应、逆境、激素应答的顺式作用元件。同时构建ANSPM1和ANSPM2驱动GUS报告基因的植物表达载体,通过洋葱表皮细胞瞬时表达分析,表明两个启动子均有活性。  相似文献   

15.
【目的】克隆水稻氨基酸透性酶基因OsAAP14的启动子序列并分析其时空表达特性,为解析氨基酸转运基因生物学功能及了解水稻对有机氮源的响应和氨基酸吸收利用提供理论依据。【方法】PCR扩增OsAAP14基因的启动子序列,并与pCAMBIA1391Z空载体质粒连接构建出启动子-GUS表达载体,并通过农杆菌介导侵染水稻中花11愈伤组织,获得OsAAP14基因的启动子-GUS转基因植株,通过对转基因植株不同组织部位进行GUS染色,并采用石蜡切片技术观察各组织细胞部位表达,经5种不同氨基酸处理后进行根部GUS染色,结合实时荧光定量PCR检测OsAAP14基因在GUS染色部位的相对表达量,最后综合分析该基因的时空表达特性。【结果】克隆获得OsAAP14基因启动子序列为1993 bp,与参考序列日本晴OsAAP14(LOC_Os04g56470)序列一致。该启动子序列含有MBS、P-box、ABRE、CGTCA-motif等激素或胁迫响应元件。从OsAAP14基因的启动子-GUS植株T0代中鉴定获得16个阳性转基因株系。T1代材料不同组织部位GUS染色及实时荧光定量PCR结果均显示,OsAAP14基因在水稻芽伸长的基部和叶片相对表达量较高,在根、叶鞘和穗也有一定表达,但在茎中的相对表达量最低。石蜡切片分析结果显示,OsAAP14基因在根部皮层薄壁细胞、叶片的叶肉细胞、穗的颖壳内部细胞有较高的表达。碱性氨基酸的组氨酸处理下根中的OsAAP14基因表达量随着处理时间的增加显著提高(P<0.05,下同),且赤霉素和脱落酸处理下,根中的OsAAP14基因相对表达量也显著提高。【结论】OsAAP14基因在水稻不同组织均有表达,正常情况(未处理)下在水稻基部和叶片中相对表达量较高,但外源氨基酸和激素处理时,在根中该基因被诱导表达上调,说明OsAAP14基因正常情况下可能主要参与调控水稻地上部分氨基酸的运输,但当外界氨基酸和激素含量增加时则参与调控水稻根部氨基酸的运输。  相似文献   

16.
根据基因芯片数据库和RT-PCR验证得到1个高活性的水稻组成型表达基因(TIGR Locus:LOC-Os07g34589),用PCR技术从籼稻品种明恢63基因组中克隆得到其上游启动子PSUI1,长度为1 941bp;将其与β-glucuronidase(GUS)报告基因融合构建植物表达载体DX2181b-PSUI1,利用玉米Ubiquitin启动子融合GUS报告基因构建表达载体DX2181b-PUbi作为对照,通过根癌农杆菌(Agrobacterium tumefaciens)介导法将DX2181b-PSUI1和DX2181b-PUbi转化粳稻品种中花11。组织化学染色表明,含DX2181b-PSUI1的转基因植株中,GUS基因在幼苗期叶片、叶鞘、根,抽穗期叶片、叶鞘、茎秆、颖壳、雄蕊和成熟期的叶片、叶鞘、茎秆、胚、胚乳中均有表达,说明PSUI1为组成型启动子。对GUS表达活性进行定量分析表明,PSUI1启动子的活性约为玉米Ubiquitin启动子活性的1/3~1/2,但是PSUI1表现出了更好的表达稳定性。  相似文献   

17.
  目的  SPL(SQUAMOSA promoter binding protein-like)是植物特有的转录因子,参与植物幼年期向成年期的转变、营养生长向生殖生长的转变、花发育、孢子发生、叶片和根发育、逆境响应等多个过程,在植物的生长发育过程中起着非常重要的作用。探究白桦中BpSPL6基因启动子区的顺式作用元件,以及该启动子在正常和胁迫条件下的表达模式,可为进一步研究BpSPL6基因的功能提供参考,也可为了解白桦的抗逆机制提供依据。  方法  以本实验室组培白桦的总DNA为模板,经PCR克隆了BpSPL6基因上游1 703 bp的启动子序列,用PLACE和Plant CARE在线软件分析启动子区的顺式作用元件。构建BpSPL6基因启动子驱动GUS报告基因的植物表达载体并转化拟南芥,探究其组织表达特性和胁迫条件下的表达模式。  结果  PCR成功克隆了BpSPL6基因上游1 703 bp的启动子序列,对启动子区的顺式作用元件预测发现除了含有核心启动元件TATA-box、CAAT-box外,还包括2种特异组织表达元件(根、花粉),10种激素响应元件(生长素、赤霉素、水杨酸、脱落酸),4种脱水响应元件等。对转基因拟南芥进行GUS染色结果表明,BpSPL6基因启动子驱动的GUS基因在转基因拟南芥中的表达具有时空特异性。在拟南芥的整个发育过程中,BpSPL6基因启动子驱动GUS基因在真叶叶片中表达,但是表达部位不同。随着叶片的生长,首先在叶片的顶端表达,随后扩展到叶片的叶脉并直至整个叶片,并且表达量逐渐升高。同时BpSPL6基因启动子驱动的 GUS 基因在拟南芥营养生长时期的根部都有表达。并且经氯化钠和甘露醇胁迫后其表达量降低。对比两种胁迫,受到氯化钠胁迫后GUS基因的表达量变化更大,说明对氯化钠胁迫的响应更加强烈。  结论  BpSPL6基因可能参与了植物的叶片、根发育以及对盐和干旱胁迫的响应。   相似文献   

18.
运用基因组步移技术分离获得了CaKR1基因上游-1594 bp的启动子序列,命名为CaKR1p,发现其中含有SA、ABA、低温等信号应答原件以及其它诸如W盒等应答逆境胁迫的调控原件。进一步构建CaKR1p与GUS报告基因融合的植物表达载体,获得了烟草转基因植株及其相应的T1代株系,利用T1代转基因株系分析了CaKR1p在几种外源激素处理下的GUS基因的表达,结果表明外源激素SA、JA和ABA的诱导处理均可激活该启动子下游报告基因GUS的表达,说明CaKR1的表达和作用受到SA、ABA以及JA等信号通路调节。  相似文献   

19.
徐亚维  王丕武  柴晓杰 《安徽农业科学》2010,38(36):20538-20541
[目的]构建玉米淀粉分支酶sbeⅡb基因种子特异表达启动子。[方法]LA-PCR扩增了玉米淀粉分支酶sbeⅡb基因启动子序列,并克隆到pMD18-TVector上。再将启动子克隆到pBI121载体上,构建植物表达载体pBI121-sbeⅡb。把GUS基因连到pBI121-sbeⅡb上构建pSBE-GUS后利用农杆菌介导法转化烟草。分别进行PCR和Southern杂交检测,并对经基因枪轰击和农杆菌介导的烟草种子、根、茎及叶进行GUS组织化学分析和荧光检测。[结果]测序结果与GenBank中发表的玉米sbeⅡb基因启动子同源性达98.52%。共培养和筛选培养后获得4株转pSBE-GUS植株,叶片仅有少量蓝斑出现,而根和茎部未见蓝斑,但烟草种子有大量蓝斑显出,初步推断sbeⅡb基因启动子能启动GUS在种子中特异表达。[结论]成功构建了玉米淀粉分支酶sbeⅡb基因种子特异表达启动子。  相似文献   

20.
Dicer酶是类似于RNase Ⅲ的核酸内切酶,能够特异性地将双链RNA剪切成约20 nt的小RNA,在基因沉默途径中起到非常重要的作用。从拟南芥中分离出DCL1基因上游启动子序列2 kb及DCL1基因的5′端1 kb序列,构建了含有该启动子和GUS报告基因的植物表达载体,通过农杆菌介导法转化拟南芥,并对转基因植株进行GUS 组织化学染色及荧光定量分析,结果表明,在DCL1基因启动子的驱动下,报告基因GUS主要在拟南芥的叶片中表达,在幼嫩的叶片及茎尖中表达量也比较高,茎中的表达量较低,在根中只有微量的表达。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号