首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of neurons projecting to the mammary gland was investigated by using the retrograde tracing method in juvenile pigs (n = 12). Fluorescent retrograde tracer Fast Blue (FB) was injected into the nipple (n = 3) or parenchyma (n = 3) of the second, right thoracic mamma or into the nipple (n = 3) and parenchyma (n = 3) of the last, right abdominal mamma. FB-positive (FB+) mammary gland-projecting neurons were found in some right dorsal root ganglia (DRG) and sympathetic chain ganglia (SChG) only. After injection of the tracer into the second, right thoracic mamma, FB+ neurons were observed in Th9-Th12 DRG but most of them were located in Th11 and Th12 ganglia. As concerns SChG, FB+ neurons were found in Th1-Th4, Th7-Th14 and L1-L4 ganglia. The vast majority of them were located in Th10 and Th11 SChG, which appeared to be the main sources of efferent innervation of this mamma. Neurons projecting to the last right abdominal mamma were found in L1-L3 DRG and L1-L4 SChG but most of them were located in L1-L2 ganglia and L1-L2 ganglia, respectively. This study for the first time has disclosed the localization of neurons supplying the mammary gland in larger domestic animal species, the pig, by using the retrograde tracing method.  相似文献   

2.
In the male pig, the bulbourethral gland (BG) is a particulary well developed accessory genital gland (AGG) which produces complex secretion contributing to the fluid component of semen. The secretory and motor function of AGGs is thought to be under the autonomic nervous system control. Although relatively much is known about the innervation of the prostate gland and, to a lesser degree, of the seminal vesicle, the paucity of data dealing with the innervation of BG is striking. Therefore, combined retrograde tracing and double-labelling immunofluorescence have been used to investigate the distribution and immunohistochemical properties of autonomic and primary afferent neurons projecting to this gland in the pig. BG-projecting neurons were found in some ipsilateral (I) and contralateral (C) sympathetic chain ganglia (SChG), the caudal mesenteric ganglion (CaMG), pelvic ganglia (PG) and some dorsal root ganglia (DRG). Immunohistochemistry revealed that the vast majority of CaMG and SChG BG-projecting neurons contained tyrosine hydroxylase (TH) and dopaminebeta-hydroxylase (DbetaH), and some neuropeptides including neuropeptide Y (NPY), somatostatin (SOM) and galanin (GAL). Three subpopulations of PG neurons supplying BG could be distinguished: 1) cholinergic neurons [vesicular acetylcholine transporter (VAChT)-positive] which also contained vasoactive intestinal polypeptide (VIP), nitric oxide synthase (NOS), SOM and NPY, 2) adrenergic neurons (TH-positive) which also stained for NPY, GAL or leu5-enkephalin (LEU), and 3) non-adrenergic, non-cholinergic neurons (NANC). DRG BG-projecting neurons contained mostly substance P (SP) and/or calcitonin gene-related peptide (CGRP) which sometimes colocalized with GAL. The possible functional significance of the substances found within the neurons is discussed.  相似文献   

3.
Combined retrograde tracing (using fluorescent tracer Fast blue) and double-labelling immunofluorescence were used to study the distribution and immunohistochemical characteristics of neurons projecting to the trapezius muscle in mature male rats (n = 9). As revealed by retrograde tracing, Fast blue-positive (FB+) neurons were located within the ambiguous nucleus and accessory nucleus of the grey matter of the spinal cord. Immunohistochemistry revealed that nearly all the neurons were cholinergic in nature [choline acetyltransferase (ChAT)-positive]. Retrogradely labelled neurons displayed also immunoreactivities to calcitonin gene-related peptide (CGRP; approximately 60% of FB+ neurons), nitric oxide synthase (NOS; 50%), substance P (SP; 35%), Leu5-Enkephalin (LEnk; 10%) and vasoactive intestinal polypeptide (VIP; 5%). The analysis of double-stained tissue sections revealed that all CGRP-, VIP- and LEnk-immunoreactive FB+ perikarya were simultaneously ChAT-positive. The vast majority of the neurons expressing SP- or NOS-immunoreactivity were also cholinergic in nature; however, solitary somata were ChAT-negative. FB+ perikarya were surrounded by numerous varicose nerve fibres (often forming basket-like structures) immunoreactive to LEnk or SP. They were also associated with some CGRP-, NOS- and neuropeptide Y-positive nerve terminals.  相似文献   

4.
Immunohistochemical properties of nerve fibres supplying the joint capsule were previously described in many mammalian species, but the localization of sensory neurons supplying this structure was studied only in laboratory animals, the rat and rabbit. However, there is no comprehensive data on the chemical coding of sensory neurons projecting to the hip joint capsule (HJC). The aim of this study was to establish immunohistochemical properties of sensory neurons supplying HJC in the sheep. The study was carried out on 10 sheep, weighing about 30–40 kg. The animals were injected with a retrograde neural tracer Fast Blue (FB) into HJC. Sections of the spinal ganglia (SpG) with FB‐positive (FB+) neurons were stained using antibodies against calcitonin gene‐related peptide (CGRP) substance P (SP), pituitary adenylate cyclase‐activating peptide (PACAP), nitric oxide synthase (n‐NOS), neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP), Leu‐5‐enkephalin (Leu‐Enk), galanin (GAL) and vesicular acetylcholine transporter (VACHT). The vast majority of FB+ neurons supplying HJC was found in the ganglia from the 5th lumbar to the 2nd sacral. Immunohistochemistry revealed that most of these neurons were immunoreactive to CGRP or SP (80.7 ± 8.0% or 56.4 ± 4.8%, respectively) and many of them stained for PACAP or GAL (52.9 ± 2.9% or 50.6 ± 19.7%, respectively). Other populations of FB+ neurons were those immunoreactive to n‐NOS (37.8 ± 9.7%), NPY (34.6 ± 6.7%), VIP (28.7 ± 4.8%), Leu‐Enk (27.1 ± 14.6) and VACHT (16.7 ± 9.6).  相似文献   

5.
With 4 figures and 1 table In this study, the presence of several neurotransmitters and transmitter synthesizing enzymes was studied in hypoglossal nucleus (HN) of the juvenile (4 months old) female pigs (n = 3). Double‐labeling immunofluorescence revealed neurones expressing cholinacetyltranspherase (ChAT), calcitonin gene‐related peptide (CGRP), nitric oxide synthase (NOS), and somatostatin (SOM). Nerve fibers within HN were ChAT, CGRP, NOS, SOM, substance P (SP), Leu‐5‐enkephalin (Leu‐5‐Enk), ß‐dopamine hydroxylase (DßH), neuropeptide Y (NPY) positive. Virtually all the perikarya contained ChAT, whereas CGRP was present in 47% of the neurones. Nerve cell bodies containing NOS or SOM were only occasionally observed. Immunoreactive nerve fibers were found in a close vicinity of the perikarya, often forming baskets around nerve cell bodies. The results obtained were compared with similar data obtained in other species. The presence of immunoreactive structures, origin of the nerve fibers, and functional significance of the findings are discussed.  相似文献   

6.
Expression of tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH) and choline acetyltransferase (ChAT) was studied with immunohistochemistry, in situ hybridization, RT-PCR and immunoblotting in two populations of neurons of porcine inferior mesenteric ganglion (IMG) projecting to the uterine horn and uterine cervix after axotomy induced by partial or total uterus extirpation in sexually immature gilts. Uterus-projecting neurons of the IMG were identified by retrograde tracing with Fast Blue. Additionally, the distribution of ChAT-positive (ChAT+) and Met-enkephalin-positive (ME+) nerve fibers around uterus-projecting neurons was studied with immunohistochemistry. Immunohistochemistry detected that extirpation-induced axotomy reduced dramatically TH, but not DBH, expression in the uterus-projecting neurons, while the expression level of ChAT remained unchanged. Hybridization in situ performed with molecular probes for TH and ChAT confirmed these findings. RT-PCR did not detect any changes in the expression of TH and ChAT at mRNA level between control and hysterectomized animals. Immunoblotting did not detect significant changes in the expression of TH and DBH in IMG after partial or total extirpation. However, it detected that after total extirpation of the uterus a new form of ChAT with apparent lower molecular mass appears in the IMG of hysterectomized animals. It was found also that the number of ChAT+ and ME+ nerve fibers is lower around axotomy-affected neurons than around neurons in control gilts. The results presented here show clear axotomy-associated changes in the expression of TH, but not DBH and ChAT in the uterus-projecting neurons of the porcine IMG, as well as changes in the expression of ChAT and ME in the preganglionic nerve fibers.  相似文献   

7.
The expression of neuropeptide Y (NPY), galanin (GAL), vasoactive intestinal polypeptide (VIP), pituitary adenylate cyclase-activating peptide (PACAP), somatostatin (SOM) and substance P (SP) was studied in the neurons of the inferior mesenteric ganglion (IMG) projecting to the uterine horn and uterine cervix after uterus extirpation-induced axotomy in sexually immature gilts. The expression was studied with immunohistochemistry, in situ hybridization and RT-PCR. Uterus-projecting neurons were identified by retrograde tracing with Fast Blue (FB). Immunohistochemistry revealed that FB-positive (FB+) uterus-projecting neurons in control animals contained only immunoreactivities to NPY (ca. 50%) and GAL (single neurons). Uterus extirpation increased the occurrence of NPY and GAL in FB+ neurons. No other studied neuropeptides were found in axotomized uterus-projecting neurons. Hybridization in situ revealed the reduction of NPY expression and induction of GAL expression in FB+ neurons. RT-PCR detected induction of GAL expression in the IMG after uterus extirpation. The expression level of NPY and SOM was significant and was not affected by axotomy. The expression level of PACAP was very low and did not differ between IMG of control, partially and totally hysterectomized animals. No VIP and SP expression was detected in all ganglia. The presented data show clear axotomy-related changes in the expression of GAL and NPY in the uterus-projecting neurons of the porcine IMG.  相似文献   

8.
The present study was aimed at disclosing the chemical coding of nerve structures in the porcine ciliary ganglion (CG) using immunohistochemical methods. The substances under investigation included markers of "classical" neurotransmitters, choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT), tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DbetaH) as well as neuropeptides, somatostatin (SOM), galanin (GAL), substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP) and neuropeptide Y (NPY). Immunoreactivity to ChAT and VAChT was found virtually in all the neuronal somata and in numerous intraganglionic, varicose nerve fibres which often formed basket-like formations around the nerve cell bodies. Many CG neurons contained immunoreactivity for SOM (46%) or GAL (29%). Interestingly, a small number (approx. 1%) of the cholinergic somata stained for TH but not for DbetaH; nevertheless, some extra- and intraganglionic nerve fibres displayed immunoreactivity for DbetaH or TH. The CG perikarya stained neither for vasoactive intestinal polypeptide (VIP) nor for neuropeptide Y (NPY), but some NPY- or VIP-positive nerve terminals were observed within nerve bundles distributed outside the ganglion. SP- and CGRP-immunoreactivity was found in some intraganglionic nerve fibres only. The present study revealed that the porcine CG consists of cholinergic neurons many of which contain SOM and GAL. Thus, it can be assumed that in the pig, these neuropeptides are involved, complementary to acetylocholine, in the parasympathetic postganglionic nerve pathway to structures of the eye including the ciliary and iris sphincter muscles.  相似文献   

9.
The aim of the study was to investigate the sensory innervation of the hip joint capsule in the rabbit. Individual animals were injected with retrograde fluorescent tracer Fast Blue (FB) into the lateral aspect of the left hip joint capsule (group LAT, n = 5) or into the medial aspect of the hip joint capsule (group MED, n = 5), respectively. FB‐positive (FB+) neurons were found within ipsilateral lumbar (L) and sacral (S) dorsal root ganglia (DRG) from L7 to S2 (group LAT) and from L6 to S4 (group MED). They were round or oval in shape with a diameter of 20–90 μm. The neurons were evenly distributed throughout the ganglia. The average number of FB+ neurons was 16 ± 2.8 and 27.6 ± 3.5 in rabbits from LAT and MED, respectively. The largest average number of FB+ neurons in animals of group LAT was found within the S1 DRG (8 ± 1.7), while S2 ganglion contained the smallest number of the neurons (3.6 ± 1). In the L7 DRG, the average number of FB+ neurons was 6.2 ± 1.6. In rabbits of MED group, the largest number of FB+ neurons was found within the S1 DRG (13.4 ± 4), while the smallest one was found within the S3 ganglion (1.4 ± 0.4). In L6, L7, S2 and S4 ganglia, the number of retrogradely labelled neurons amounted to 1.6 ± 0.5, 4 ± 1.5, 4.4 ± 1.5 and 2.8 ± 1.7, respectively. The data obtained can be very useful for further investigations regarding the efficacy of denervation in the therapy of hip joint disorders in rabbits.  相似文献   

10.
The distribution of lymphocyte subpopulations from dry secretions, colostrum and blood from 10 healthy adult Hostein-Fresian cows was studied using the TH21A and B26A mouse monoclonal antibodies (MAb) to adult bovine B and T lymphocytes, respectively. The mammary gland lymphocytes (MGL) were isolated from composite sample of all four quarters by density centrifugation over discontinuous gradient of ficoll-diatrizoate. The peripheral blood lymphocytes (PBL) were purified using the ficoll-thrombin method. Isolated PBL and MGL were analyzed using the two fluorochromes method (TFM) and laser flow cytometry (LFC). The mean viability of isolated PBL and MGL from dry secretions and colostrum after the TFM and LFC were 92.4% +/- 3.2%, 91.4% +/- 6.0% and 87.1% +/- 6.1%, respectively. There was a good correlation between the two MAbs and the percentage of surface immunoglobulin (SIg) positive cells in the peripheral blood using the TFM. The PBL yielded a mean percentage of 21.2% B cells, 66.4% T cells and 9.4% "Null cells" (TH21A+; SIg-). The TFM on MGL from dry secretions and colostrum indicated two distinct patterns (group I and II) of SIg and reactivity to MAb markers (p less than 0.001). The MGL data included in group I and group II were gathered from both colostral and dry secretions. In comparison to the distribution of lymphocyte subsets within peripheral blood the mean percentages of B cells, T cells and "Null cells" in the mammary gland were respectively, 2.8%, 88.1% and 5.4% for group I and 3.5%, 89.0% and 15.1% for group II. In the mammary secretions, the use of SIg alone was not considered to be a good marker for B cells; in four animals a mean percentage of 15.6% (13.9/89.0 X 100) of the mammary gland T lymphocytes were also SIg+. Of the TH21A+ MGL, only 18.8% were SIg+ in group II compared with 34.1% for MGL from group I and 69.3% for the PBL. Marked differences in cell size distribution and cell surface antigen density were found when PBL and MGL from dry secretions were compared by LFC using the B26A MAb. The results of this study demonstrate a difference in the percentages of peripheral blood and mammary gland B and T lymphocytes and confirm previous findings in which the T lymphocytes were found to represent the major subpopulation of lymphocytes in bovine mammary secretions. This may represent an essential event in the adoptive transfer of cellular immunity through the colostrum in cattle.  相似文献   

11.
Reason for performing study: In horses, morpho‐functional studies related to the enteric nervous system (ENS) controlling the sphincters are lacking. Objectives: To investigate immunohistochemically the morphology, distribution, density, phenotypes and projections of neurons controlling the ileocaecal junction (ICJ). Methods: Two young horses were anaesthetised and underwent midline laparotomy. The neuronal retrograde fluorescent tracer Fast Blue (FB) was injected into the wall of the ICJ. A post surgical survival time of 30 days was used. Following euthanasia, the ileum and a small portion of caecum were removed. Cryosections were used to investigate the immunoreactivity (IR) of the neurons innervating the ICJ for choline acetyltransferase (ChAT), neuronal nitric oxide synthase (nNOS), substance P (SP), calcitonin gene‐related peptide (CGRP) and neurofilament NF200kDa (NF). Results: Ileal FB‐labelled neurons innervating the ICJ were located in the myenteric plexus (MP) and submucosal plexus (SMP) up to 48 cm and 28 cm, respectively, from the point of the FB injections. Descending MP and SMP neurons were nitrergic (54 ± 11% and 68 ± 4%, respectively), cholinergic (60 ± 19% and 82 ± 11%, respectively), NF‐IR (54 ± 9% and 78 ± 21%, respectively), and SP‐IR (about 20% in both the plexuses). CGRP‐IR was expressed only by SMP descending neurons (45 ± 21%). In both the plexuses descending neurons coexpressing nNOS‐and ChAT‐IR were also observed (25 ± 11% and 61 ± 27%, respectively). Conclusions: The presence of ileal long projecting neurons innervating the ICJ suggests that they are critical for its modulation. Consequently, in bowel diseases in which the resection of the terminal jejunum and proximal ileum are required, it is preferable, whenever possible, to conserve the major portion of the ileum. Potential relevance: The knowledge of the phenotype of ENS neurons of the ileum might be helpful for developing pharmaceutical treatment of the ICJ motility disorders.  相似文献   

12.
Although resiniferatoxin (RTX) becomes more often used in experimental therapies of sensory system disorders, so far there is no data concerning the influence of RTX on the chemical coding of neurons in dorsal root ganglia (DRG) supplying the urinary bladder in the pig, an animal species considered as a reliable animal model for investigation dealing with human lower urinary tract disorders. Retrograde tracer Fast Blue (FB) was injected into the wall of the right half of the urinary bladder in six juvenile female pigs, and three weeks later, bladder instillation of RTX (500 nmol per animal) was carried out in all the animals. After a week, DRGs were harvested from all the pigs and the neurochemical characterization of FB+ neurons was performed using routine single-immunofluorescence labeling technique on 10-microm-thick cryostat sections. RTX instillation resulted in a distinct decrease in the numbers of FB+ cells containing calcitonin gene-related peptide (CGRP), nitric oxide synthase (NOS), somatostatin (SOM) and calbindin (CB) when compared with those found in the healthy animals (18% vs. 36%, 1% vs. 6%, 0.8% vs. 4% and 0.5% vs. 3%, respectively), and an increase in the number of pituitary adenylate cyclase-activating polypeptide (PACAP)- and galanin (GAL)-immunoreactive (IR) nerve cells (51% vs. 26% and 47% vs. 6.5%). The results obtained suggest that RTX could be taken into consideration when the neuroactive agents are planned to be used in experimental therapies of selected neurogenic bladder illnesses.  相似文献   

13.
The area of skin supplied by the afferent fibers in a peripheral nerve is called the cutaneous area (CA) of that nerve. The CA responsive to movement of wool or hair in the genital regions were mapped in 17 ewes, with the identifications of the peripheral nerves and of the spinal nerves contributing to the pudendal plexus being checked at necropsy. Differences were found in the origins and extent of CA of the cutaneous branches from the sacral plexus. The CA of the caudal rectal nerves and of a nerve that passed caudally between the caudal vertebrae and the ventral sacrococcygeus muscle lay lateral to the anus and in the adjacent skin of the tail. The CA of the proximal cutaneous branch and of the distal cutaneous branch from the pudendal nerve (or plexus) overlapped craniocaudally (by approx one-half) the CA of the distal cutaneous branch extending ventrally and ending just caudal to the ipsilateral mammary gland. The deep perineal nerve innervated the skin immediately lateral to the anus and vulva. The dorsal nerve of the clitoris innervated hairs on the ipsilateral half of the vulva. Other fibers in the pudendal nerve were presumed to pass into the mammary branch of the nerve. They innervated the skin ventral to the vulva, the ipsilateral mammary gland, and (in some ewes) areas of the skin cranial to the mammary gland. The CA of the genitofemoral nerve included the ipsilateral teat and the inguinal fossa.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The distribution of sympathetic and sensory neurones innervating the submandibular gland (SMG) in sheep was studied using retrograde tracing technique. The retrograde tracer Fast Blue (FB) was unilaterally injected into the SMG in five juvenile male sheep under general anaesthesia. After a 4-week survival period, all the animals were reanaesthetized, perfused transcardially with 4% buffered paraformaldehyde and ganglia, which could be considered as a potential sources of sympathetic, and afferent innervation of the gland were bilaterally collected. The FB-labelled sympathetic neurones were found in the ipsilateral superior and middle cervical ganglion. Many labelled neurones were distributed in the ipsilateral jugular and nodose ganglia of the vagus nerve and smaller numbers of the nerve cells were also found in ipsilateral C1-C3 dorsal root ganglia (DRG). No labelled neurones were observed in the ipsilateral stellate ganglion, trigeminal ganglion, C4-C8 DRG and in all contralateral ganglia. The present study revealed that the majority of sympathetic neurones projecting to the sheep SMG are found in the superior cervical ganglion but some of them are also distributed in the middle cervical ganglion. Most of the afferent neurones are located in the jugular and nodose ganglia of vagus nerve but C1-C3 DRG also comprise some of these nerve cells.  相似文献   

15.
Botulinum toxin type A (BTX) is a potent neurotoxin, which in recent years has been effectively applied in experimental treatments of many neurogenic disorders of the urinary bladder. BTX is a selective, presynaptically-acting blocking agent of acetylcholine release from nerve terminals what, in turn, leads to the cessation of somatic motor and/or parasympathetic transmission. However, application of this toxin in urological practice is still in the developmental stages and the full mechanism of its action remain elusive. Thus, the present study was aimed at investigating the neurochemical characterization of dorsal root ganglion (DRG) neurons supplying the porcine urinary bladder after BTX treatment. Retrograde tracer Fast Blue (FB) was injected into the urinary bladder wall in six juvenile female pigs and three weeks later, intramural bladder injections of BTX (100 IU per animal) were carried out in all the animals. After a week, DRG from L1 to Cql were harvested from the pigs and neurochemical characterization of FB+ neurons was performed using double- labeling immunofluorescence technique on 10-microm-thick cryostat sections. BTX injections led to a significant decrease in the number of FB+ neurons containing substance P (SP), calcitonin gene-related peptide (CGRP), calbindin (CB), somatostatin (SOM) and neuronal nitric oxide synthase (nNOS) when compared with that found in the healthy animals (19% vs. 45%, 18% vs. 36%, 0.6% vs. 3%, 0.4 vs. 4% and 0.1% vs. 6%, respectively) These data demonstrated that BTX changed the chemical coding of bladder sensory neurons, and therefore this drug should be taken into consideration when it planning experimental therapy of selected neurogenic bladder disorders.  相似文献   

16.
Tetrodotoxin (TTX) mode of action is based on a blocking of fast sodium channels in nerve cell membrane what, in turn, abolishes the propagation of the action potential along the nerve fibers. TTX is currently used in experimental therapies focused on neoplastic or neurogenic pain, however, as for now there is no data concerning the influence of TTX on dorsal root ganglion (DRG) sensory neurons function. Thus, the present study was aimed at characterization of neurochemical coding of porcine sensory bladder-projecting cells after bladder instillation with TTX. Retrograde tracer Fast Blue (FB) was injected into the urinary bladder wall of six juvenile female pigs and three weeks later bladder instillation with TTX (12 microg per animal) was carried out in all animals. A week later, DRGs of interest were harvested from all animals and the neurochemical characterization of FB+ neurons was performed using routine double-immunofluorescence labeling technique on 10-microm-thick cryostat sections. In TTX-treated animals the number of FB+ cells containing galanin (GAL), nitric oxide synthase (NOS), somatostatin (SOM) and calbindin (CB) was 2.5%, 2%, 0.25% and 0.2%, respectively and that of pituitary adenylate cyclase-activating polypeptide (PACAP)-immunoreactive (IR) cells was 43%. These data when compared with previous reports, demonstrated that TTX profoundly changed the chemical coding of porcine bladder-projecting sensory neurons thus implicating that it may be used in case of hypoactivity of afferent part of reflex arc responsible for transmission of sensory information from the urinary bladder.  相似文献   

17.
The neurons in bilateral superior cervical ganglia (SCG) innervating the chick pineal gland were labelled by using the technique of retrograde axonal labelling with cholera toxin B subunit linked to horseradish peroxidase (CTB-HRP). To our results, perikarya of these sympathetic neurons distributed from rostral to caudal in the SCG, and mainly localized in the opposite side of the paravertebral trunk. The fibres of these neurons were collected by the cephalic carotid nerve. According to the sizes of somal area and dendritic field, these sympathetic neurons projecting to the pineal gland were classified into four major groups: group I cells (52.4%) with a small somal area (303.5 μm2 on average) and narrow dendritic field (3767.8 μm2 on average), group II cells (39.0%) with a middle-sized somal area (473.3 μm2) and middle-sized dendritic field (7522.2 μm2), group III cells (6.4%) with a middle-sized somal area (473.4 μm2) and wide dendritic field (13 104.4 μm2), and group IV cells (2.2%) with a large somal area (940.7 μm2) and wide dendritic field (14 553.2 μm2). Of these pineal projecting neurons, most took on a lesser dendritic field. The neurons with small or middle-sized dendritic field from group I and II were about 91.4% of the total neurons labelled with CTB-HRP, and the neurons with wide dendritic field from group III and IV were less with 8.6%.  相似文献   

18.
Mammary tumours are uncommon in mares. Sarcomas of the breast account for less than 1% of all human primary malignancies and, among these types of tumours, malignant fibrous histiocytoma (MFH) is very rare. This report describes a 6‐year‐old uniparous Paint mare that was presented for investigation of right mammary gland enlargement of 3 weeks' duration. The clinical and histopathological findings in this mare with malignant fibrous histiocytoma of the mammary gland as well as complications of bilateral mastectomy are detailed. At one year follow‐up there were no clinical signs of recurrence.  相似文献   

19.
20.
Thyroid hormones (TH) and somatotropin (ST) play critical role in lactation. One explanation of their multiple physiological actions is based on the functional interrelationships among ST, TH, and thyroxin deiodinase (5'D). This enzyme is present in the mammary tissue, milk cellular components, and whole milk and is responsible for intramammary production of triiodothyronine (T3). In rats in which the 5'D isozymes in the mammary gland and in the liver are similarly of type I (5'D-I), an enhancement of mammary 5'D-I causes a reduction of hepatic 5'D-I activities. This opposite rearrangement in the mammary and hepatic deiodinating activities is thought to be a factor of a homeorhetic response characterized by an increased and compartmentalized energy expenditure of the mammary gland. In the cow, the mammary 5'D is the type II (5'D-II) deiodinase. The 5'D-II, owing to its high catalytic efficiency, secures T3 production, making tissues relatively independent from the circulatory levels of TH and from variations in the hepatic 5'D-I activity. No significant alterations of 5'D-II isozymes were found during a low T3 syndrome. Location of tissue deiodinases in the cow, the 5'D-II in the mammary gland, and the 5'D-I in the liver make it so that T3 production in these two tissues can be dissociated in time to secure better local requirement for T3 supporting lactation. To date, attempts to evidence that the alterations in iodothyronines blood levels and in tissues' 5'Ds activity during lactation are due to ST action have not received clear experimental support in either cows or rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号