首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Data from thirty-three experiments conducted at three ADAS Experimental Husbandry Farms were used to compare unwilted non-additive-treated silage with silage treated with formic acid, a formalin and formic-acid mixture, a calcium-formate and sodium-nitrite mixture, a formalin and sulphuric-acid mixture and wilted silage made without or with formic acid or a formalin and formic-acid mixture.
Formic acid significantly reduced pH and wilting significantly increased silage pH compared with other treatments. Formalin-acid mixtures significantly reduced pH compared with untreated silage. Formic acid in conjunction with formalin or wilting significantly increased water-soluble carbohydrate in silage compared with other treatments except wilting. Formic acid either alone or combined with either formalin or wilting significantly reduced silage butyric acid content compared with other treatments. Formic acid treatment either alone or combined with formalin significantly increased lactic acid as a proportion of total silage acids compared with other treatments except sulphuric acid-formalin.
All treatments significantly increased silage dry matter (DM) intake compared with untreated silage and intakes of wilted silage were significantly greater than of unwilted silage. Daily liveweight gains on all treatments were significantly higher than on untreated silage.
Herbage water-soluble carbohydrate necessary for successful preservation as silage without additive use was approximately 30 g (kg DM)−1 and with additives containing formic acid it was approximately 25 g (kg DM)−1.
It is suggested that formic acid application to unwilted silage either alone or in conjuction with formalin was the best treatment for improving subsequent preservation as silage, and that animal performance was enhanced by addition of acid-formalin additives to unwilted herbage or formic-acid application to unwilted or wilted herbage.  相似文献   

2.
An Italian ryegrass and hybrid ryegrass sward was harvested on 11 May 1994. The mean dry‐matter (DM) content of the herbage was 197 g kg–1 fresh matter (FM), and mean nitrogen and water‐soluble carbohydrate contents were 20 and 272 g kg–1 DM respectively. Approximately 72% of total nitrogen (TN) was in the form of protein‐nitrogen. The herbage was treated with either no additive, formic acid (3·3 l t–1) (Add‐F, BP) or inoculant (2·3 l t–1) (Live‐system, Genus) and ensiled in 100 t silos. Changes in effluent composition with time showed that silage fermentation and protein breakdown were delayed by treatment with formic acid. Formic acid and inoculant treatments also inhibited amino acid catabolism during ensilage. All silages were well fermented at opening with pH values < 4·0 and ammonia‐N concentrations of ≤ 50 g kg–1 TN after 120 d ensilage. Treatment had an effect on protein breakdown as measured by free amino acid concentration, with values of 21·5, 18·2 and 13·2 mol kg–1 N at opening (191 d) for untreated, formic acid‐treated and inoculated silages respectively. Amino acid catabolism occurred to the greatest extent in untreated silages with significant decreases in glutamic acid, lysine and arginine, and increases in gamma amino butyric acid and ornithine. The silages were offered ad libitum without concentrate supplementation to thirty‐six Charolais beef steers for a period of 69 d (mean live weight 401 kg). Silage dry‐matter intakes and liveweight gains were significantly (P < 0·05) higher on the treated silages. Silage dry‐matter intakes were 7·42, 8·41 and 8·23 kg d–1 (s.e.d. 0·27) with liveweight gains of 0·66, 0·94 and 0·89 kg d–1 (s.e.d. 0·058) for untreated, formic acid‐treated and inoculated silage‐fed cattle respectively. In conclusion, additives increased the intake of silage and liveweight gain by the beef steers, and it is suggested that this may be caused in part by the amino acid balance in these silages.  相似文献   

3.
In experiment 1, a mixture of perennial ryegrass and white clover (176 g DM kg?1) was ensiled with no addition, or with the application of Lactobacillus plantarum, 3 × 106(g fresh weight of herbage)?1 or enterobacteria, 3 × 106 (g fresh weight of herbage)?1 or both of these inoculants. Silos were incubated at either 18°C or 26°C for 7 d and sealing of half of the silos was delayed for 48 h. In experiment 2, cocksfoot (247 g DM kg?1) was ensiled with no additive, with the application of L. plantarum, 4 × 106 (g fresh weight of herbage)?1 enterobacteria, 4 × 106 (g fresh weight of herbage)?1 or ammonium nitrate, 5 g (kg herbage)?1. Silos were incubated at 18°C and sealing was delayed for 48 h. In neither experiment were the untreated silages of satisfactory quality after 35 d ensilage, having pH's of 4·3 and 6·4. and ammonia-N concentrations of 139 and 209 g N (kg total N)?1 in experiments 1 and 2 respectively. The poorer fermentation in experiment 2 reflected the lower water-soluble carbohydrate (WSC) content of the ensiled herbage (136 and 53 g WSC (kg DM)?1 in experiments 1 and 2 respectively). Inoculation with L. plantarum significantly reduced silage pH and the concentrations of ammonia-N (experiment 1 only) and ethanol and increased lactic acid concentrations. Inoculation with enterobacteria had only minor effects in each experiment. In experiment 1, incubation at 26°C increased the rate of fermentation in the silos as pH was significantly lower after 7d incubation at 26°C than at 18°C, but this effect had largely disappeared after 35 d incubation. When sealing of the silos was delayed for 48 h, the resulting silages had significantly higher pH and ammonia-N contents than silages from silos that had been sealed immediately after filling. In experiment 2, addition of ammonium nitrate significantly reduced the concentrations of ethanol and acetic acid in silages opened after 7 d. After 35 d the concentrations of ethanol were significantly reduced and those of ammonia-N increased by the addition of ammonium nitrate. There were marked increases in silage pH between 7 and 35 d ensilage and in the concentrations of ammonia-N and acetic acid in the silages that had been inoculated with ammonium nitrate at ensilage.  相似文献   

4.
A laboratory-scale experiment was conducted with lucerne (Medicago sativa) to determine the effects of acid treatment on proteolysis during ensiling and during subsequent in vitro ruminal protein incubations. Lucerne [300 g dry matter (DM) kg?1 forage] was either untreated (control) or treated with sulphuric, formic or trichloroacetic acid (a protein precipitant that stops enzyme activity) at levels sufficient to adjust immediately forage pH to 4·0, then conserved as either silage or hay. Time-course data indicated that non-protein nitrogen (N) formation was 70–90% complete after 1 d of fermentation in the silo. Non-protein N concentrations (g kg?1 total N) were 177 at ensiling and increased to 567 (control), 426 (sulphuric), 398 (formic) and 263 (trichloroacetic) after 60 d of ensiling. Because non-protein N in silage treated with formic and sulphuric acids was nearly three times greater than that in silage treated with trichloroacetic acid, it is clear that the typical acid treatments only slow proteolysis and do not destroy protease activity during ensiling. The ruminal protein degradation rate of conserved forages was slower than that of fresh-cut forage that was preserved with dry ice immediately after cutting. The degradation rate of all acid-treated forages was similar, indicating a consistent effect on ruminal degradation regardless of method of preservation. There was a clear effect of acid treatment on reducing the rate and extent of ruminal degradation of protein in lucerne hay.  相似文献   

5.
A second cut of lucerne was wilted to 500 g DM kg−1 and either left untreated (control) or treated with formic acid (4.5 1 fresh forage t−1) or with a commercial inoculum of lactic acid bacteria (105 colony forming units (cfu) g forage−1). The forages were ensiled in 2-t capacity silos for 8 months, and later fed to six lambs (mean initial weight 27.7 ±1.60 kg) in a 3x3 duplicated Latin square with 27-d periods. Portions of the untreated and additive-treated forages were also ensiled in laboratory silos at 25 ° C for intervals up to 42 d. Results from the laboratory silos showed that the major increase in ammonia-N in silage occurred between 40 h and 7 d of fermentation; during this period, both formic acid and the inoculant produced a smaller increase in ammonia-N, than did the control. The pH of inoculated silage declined from 5.74 to 4.57 in 7 d, but it took 14 d for the pH of the control silage to fall below 5.0. Formic acid treatment immediately reduced the silage pH from 5.74 to 5.10 ( P < 0·01); the pH then remained unchanged until 21 d, after which it decreased slightly. When compared with control, lambs fed formic acid-treated silage consumed more ( P < 0·05) digestible organic matter; the response was associated with a trend towards decreased concentration of ammonia in plasma. Inoculation of lucerne silage did not ( P < 0·05) affect voluntary intake but increased ( P <0.05) apparent digestibility of fibre and tended to increase N retention.  相似文献   

6.
Herbage from the first regrowth of perennial ryegrass-based swards was directly ensiled after treatment with a bacterial inoculant/enzyme preparation (SIL-ALL, Alltech UK) at 3·0 1 t?1, formic acid (850 g kg?1) at 2·59 1 t?1 or no additive (Control). The mean dry matter (DM) and water-soluble carbohydrate concentrations of the grass were 185 and 24·0 g kg?1 (fresh basis) respectively. Lactic acid concentrations after ensiling increased at a lower rate in formic acid-treated herbage than with the other treatments. All silages were well preserved and formic acid-treated silage had a lower ultimate concentration of lactic acid and higher concentration of water-soluble carbohydrate. Effluent output was increased on a proportional basis by ?0·06 with formic treatment, whereas the inoculant reduced effluent output by 0·05 in comparison with the mean effluent production of the control silage. The in vivo digestibilities of the silages were determined using sheep. The digestibilities of DM, organic matter and energy were significantly higher with inoculant-treated silage than with formic acid treatment, whereas values for the control silage were intermediate. The three silages were offered ad libitum to forty dairy cows with individual recording of daily intakes for a 10-week period in a randomized block experiment with four treatments. Sixteen animals were offered the control silage with half of these offered 3 kg concentrates per day (C3) and the other half offered 7 kg concentrates per day (C7). Twelve animals were allocated to each of the additive-treated silages, with concentrates offered at 5 kg d?1. Treatment effects on animal performance were measured in weeks 7–10. To compare animal performance for the treated silages with the control, an estimate of performance at 5 kg concentrates per day was obtained by regression using values obtained at 3 and 7 kg concentrates. In comparison with estimated silage intake for the control silage with 5 kg d?1 concentrates, inoculant and formic acid treatment of the silages increased dry matter intake by 0·04 (P > 0·05) and 0·13 (P > 0·01) respectively. In comparison with estimated milk production and yield of fat plus protein for the control treatment with 5 kg d?1 concentrates, neither inoculant treatment nor formic acid treatment produced any significant differences.  相似文献   

7.
Three silages were prepared from herbage treated with either an inoculant (Ecosyl, Imperial Chemical Industries plc) at 3.21 t?1, formic acid (850 g kg?1, Add F BP Chemicals International Ltd) at 2·3 1 t?1, or no additive (control). The herbage used was the first regrowth from perennial ryegrass swards. It was ensiled unwilted, and had mean dry matter and water soluble carbohydrate concentrations at ensiling of 154 and 24·1 g kg?1 respectively. Time course studies showed only minor effects of additive treatment on fermentation patterns within the silo and all three silages had good fermentations. Over an 88 d feeding period, commencing on day 7 of lactation, forty-eight British Friesian cows were used to evaluate the silages in a three-treatment, randomized-block design experiment. The animals were stalled individually, offered the silages ad libitum, and in addition received 5 kg d?1 of a supplement containing 196 g kg?1 crude protein. On the basis of the data recorded during the final 28 d on treatment the animals receiving the inoculant-treated silage consumed 12 and 10% more silage dry matter and produced 2·1 and 2·3 kg d?1 more milk than those given the control and formic acid-treated silages respectively. Over the total experimental period the milk yields were 1957, 1894 and 2094 (±41·3) kg for animals receiving the control, formic acid- and inoculant-treated silages respectively. Animals offered the formic acid treated silage produced milk of significantly higher fat concentration than those given the other two silages. Total ration digestibility studies, conducted with three cows per treatment, indicated no significant differences in digestibility coefficients, nitrogen utilization or metabolizable energy concentrations of the three treatment diets. It is concluded that the higher milk yield recorded with the inoculant-treated silage, and the higher milk fat concentration with the formic acid-treated silage, over that obtained with the control silage, were due to the increases in ME intake of 5 and 16 MJ d?1 for the formic acid and inoculant-treated silages respectively.  相似文献   

8.
Twenty-four British Friesian cows were allocated between six grazing treatments (two levels of herbage mass x three levels of daily herbage allowance) in a balanced change-over design with four periods of 12 d each at monthly intervals. Herbage OM mass ranged from 3790 to 5770 kg ha-1 measured to ground level and daily herbage DM allowances were 30, 60 and 90 g per kg animal live weight. Herbage OM intake was lower at high than at low herbage mass (24·6 vs 26·3 g per kg LW), and was 26·9, 26·6 and 22·9 g per kg LW respectively at daily herbage DM allowances of 90, 60 and 30 g per kg LW. Milk yield was not affected by herbage mass but was depressed at the low herbage allowance.  相似文献   

9.
Pure perennial ryegrass or perennial ryegrass/white clover mixtures (70:30 and 40:60 on a fresh-matter basis) were ensiled in laboratory silos either untreated or alter treatment with freshly cultured Lactobacillus (Lb.) plantarun or freshly cultured Lb. plantarum plus Lactococcus (Lc.) lactis. freeze-dried Lb. plantarum or freeze-dried Lb. Plantarum plus sodium formate, sodium formate or formic acid. The effect of these additives on silage fermentation characteristics and quality of the resultant silages was examined. There were significant interactions between treatments and herbages for all silage quality parameters measured, except for acetic acid concentration. The influence of additives on the final pH of all silages was small but statistically significant. Lactic acid concentration was not directly related to herbage mixture, overall mean values ranging from 118 to 120 ± 1.5 g kg?1 dry matter (DM), but wider variation was seen between treatments for individual herbage mixtures. Acetic acid concentrations were significantly (P<0·001) affected by herbage mixture ensiled, increasing linearly as clover content increased from zero to 60%. Untreated control and formic acid-treated silages contained significantly (p<0·001) higher acetic acid concentrations than those treated with other additives. Silage ammonia N concentrations were significantly (p<0 001) influenced by herbage mixture. Lowest ammonia N concentrations (< 50 g kg?1 DM) were observed in silages that had been treated with formic acid, freshly cultured Lb. plantarum or Lb. plantarum plus Lc. lactis. The fraction 1 leaf protein (FILP) contents of silages were significantly (P <0·001) affected by both treatment and herbage mixture, with consistently and significantly higher values found in freshly cultured inoculant-treated silages. A poor correlation (r2= 0·12) existed between ammonia N and FILP in all silages. The inclusion of up to 60% white clover in the ensiled herbage did not adversely affect final silage quality. However, additive treatment markedly influenced the residual FILP content of silages, those treated with freshly cultured inoculants having the highest values.  相似文献   

10.
The aim of the experiment was to assess the effect of applying, at commercially recommended rates, formic acid or formic acid/formaldehyde at ensilage upon the subsequent digestion of the silages by cattle. Three wilted grass silages were made from perennial ryegrass ensiled at a DM concentration of 206 g kg−1 after a poor wilting period of 49 h without additive application and with application of 2.5 litres t−1 of formic acid or of 4.5 litres t−1 of a mixture of (gkg−1) 500 formic acid, 200 sulphuric acid and 200 formatin giving an application rate of 15 g formaldehyde kg−1 herbage crude protein (N × 6.25).
The silages were fed to cattle equipped with rumen cannulae and duodenal re-entrant cannulae. Results from analyses of silage composition and from the digestion of organic matter and N showed no major differences between silages. The efficiency of rumen microbial N synthesis, the rumen degradability of silage N (determined in vivo or in sacco ) and in vivo digestion of individual amino acids were also unaffected by additive treatment. These results indicate that poor wilting conditions before ensilage restricted the effectiveness of additive treatment; the ineffectiveness of formaldehyde in reducing the rumen degradability of silage N may also have been related to the low rate of formaldehyde application.  相似文献   

11.
A factorial experiment was carried out to evaluate the effects of level of nitrogen (N) application to grassland and subsequent treatment of the herbage at ensiling with formic acid on the rate of silage fermentation, dry-matter (DM) recovery, aerobic stability and effluent production. Herbage from the primary regrowth of predominantly perennial ryegrass swards received either 72 (LN), 126 (MN) or 180 (HN) kg N ha?1. The herbages were harvested and yield estimated after a 50-day regrowth interval. After storage for 24 h in polythene bags, the herbages were ensiled, unwilled, in laboratory silos (6 kg capacity) either untreated (UT) or treated with formic acid (F) at 3 ml (kg herbage)?1. Three silos per treatment were opened and sampled on days 1, 3, 6, 15, 50 and 105 after ensiling. The mean herbage yields for the LN, MN and HN swards were 5.2, 6.3 and 6.2 (s.e. = 0.27) t DM ha?1 and there was no carryover effect of nitrogen treatment on the yield of a subsequent 22-day regrowth harvested on 2 September. As level of fertilizer N application increased, concentrations in the herbage at mowing of crude protein, nitrate and ash increased, DM decreased and water-soluble carbohydrate and in vitro DM digestibility remained unchanged. Increasing the rate of N fertilizer to the sward resulted in higher silage pH (P< 0.001) and ammonia N concentrations (P <0.001) at each time of sampling. Increasing the rate of fertilizer N increased effluent output (P < 0.001) and DM recovery (P < 0.001). Aerobic stability was improved (P <0.001) by use of high rates of N fertilizer application. Formic acid treatment restricted fermentation and increased effluent output (P <0.001) but had no effect (P > 0.05) on DM recovery. It is concluded that the rate and extent of pH decline was reduced with increasing N application, associated with increased buffering capacity and decreased DM concentrations of the herbage at ensiling. However, increasing the level of N fertilizer applied increased DM recovery and effluent output, and improved aerobic stability of the resulting silages.  相似文献   

12.
Effects of formic acid, formaldehyde and two levels of tannic acid on changes in the distribution of nitrogen (N) and plant enzymatic activity during ensilage of lucerne (Medicago sativa) were studied. Lucerne [300 g dry matter (DM) kg?1 forage] silages were prepared untreated (control) and with formic acid (4 g kg?1 DM), formaldehyde (1 g kg?1 DM) and two levels of tannic acid (20 and 50 g kg?1 DM) as additives. Inhibition of proteolysis by formic acid was more effective than the other additives during the first 7 d of ensiling. Tannic acid was as effective at inhibiting production of non‐protein‐N, ammonia‐N and free amino acid‐N as formic acid and formaldehyde. However, increased concentrations of non‐protein‐N and free amino acid‐N in silage from day 1 to 35 of ensiling were less with the higher level of tannic acid than that in the control and other additive‐treated silages. Carboxypeptidase lost its activity slowly with increasing time of ensiling. At day 2, it still had 0·79 of the original activity in the control silage. After 21 d of ensiling, high levels of carboxypeptidase activity, proportionately 0·41, 0·49, 0·10, 0·35 and 0·30 of the original activity, remained in the control silage, and silages made with formic acid, formaldehyde, and low and high levels of tannic acid respectively. There were higher levels of activity of acid proteinase in formic acid‐treated silage than in the control silage until day 2 of ensilage indicating that the reduction of proteolysis by formic acid was probably due to acidifying the forage below the pH optima of plant protease. Aminopeptidase activity in all silages declined rapidly after ensiling.  相似文献   

13.
Data from twenty experiments, conducted at ADAS Research Centres in England and Wales during 1986–92, were used to determine effluent production from additive-treated grass silages made in large-scale bunker silos. The additives compared were formic acid at 4·0 l t–1, rolled barley at 44·0 kg t–1, dried molassed sugar beet feed at 40·0 kg t–1 and liquid inoculants at 2·2 l t–1 together with a non-additive-treated control. The silages were made from herbage with an average dry-matter (DM) content of 177 (s.e. 3·8) g kg–1 and water-soluble carbohydrate content of 140 g kg–1 DM. Average silage toluene DM content was 213 (s.e. 3·8) g kg–1. The formic acid and sugar beet feed silages were both well fermented, whereas the other silages were less well fermented. Effluent produced was determined as either effluent production (l t–1 grass ensiled) during the 52-d period in which it was measured or peak flow (l h–1) during the first 2 d of ensilage. Compared with non-additive-treated silage, dried molassed sugar beet feed significantly reduced both effluent production (27%) and peak flow (36%). Formic acid significantly increased peak flow (51%), but had little effect upon effluent production, and significantly reduced effluent N and lactic acid content. Barley and inoculant treatment had no significant effect upon effluent production. In general, poor relationships were found between DM content and effluent production. Nevertheless for silages, except those treated with absorbents or formic acid, a significant (P < 0·001) negative relationship between silage effluent production (l t–1 grass ensiled) and the DM (g kg–1) content of the ensiled grass was found.  相似文献   

14.
Herbage, predominantly perennial ryegrass (Lolium perenne) grown in Northern Ireland, was harvested at four dates from June to October 1996 (H1, H2, H3 and H4). At each harvest approximately one-fifth of the grass harvested was artificially dried and pelleted (G). The remainder of the grass was either wilted for 28–52 h (W), depending on the weather conditions, or ensiled directly, i.e. unwilted (UW). Within the W and UW treatments an inoculant or formic acid additive was applied to the herbage before ensiling. After a minimum ensiling period of 10 weeks, sixty steers, mean initial live weight 432 (s.d. 37) kg, were offered the twenty forages in a four-period partially balanced changeover design experiment. Each period was of 2 weeks’ duration. Dry-matter (DM) intakes were recorded daily, with intakes in the second week of each period used in the statistical analysis of the data. The digestibility of each of the forages was also determined in vivo using four castrated male sheep per silage. Wilting increased the DM content of the silage and the pH, the largest increase in DM content occurring at the second harvest. On average, wilting proportionally increased silage DM intake by 0·21 compared with the unwilted silage (P < 0·001), but the intake of the wilted silage was not significantly different from that of the artificially dried and pelleted grass (P > 0·05). The intake of the wilted silage was higher than that of the unwilted silage at each harvest, the proportional increases being 0·22 (P < 0·001), 0·41 (P < 0·001), 0·19 (P < 0·001) and 0·05 (P > 0·05) at harvests H1, H2, H3 and H4 respectively. Treatment of the grass with formic acid before ensiling resulted in a proportional increase in silage intake of 0·08 compared with the inoculant-treated silage (P < 0·05). Compared with the inoculant-treated silage, formic acid increased silage intake by 0·08, 0·02, 0·14 and 0·10 at harvests H1 (P > 0·05), H2 (P > 0·05), H3 (P < 0·01) and H4 (P < 0·05). The results of this study indicate that the effect of wilting on silage intake varies across different harvests and additive treatments. The difference in response to wilting across different harvests is mainly a result of the prevailing weather conditions during wilting.  相似文献   

15.
Two experiments are described in which two levels of winter feeding and three levels of herbage allowance during the grazing season were imposed upon March/April calving British Friesian dairy cows. The winter treatments resulted in differences in live weight and milk yield at turnout of 35 and 53 kg and 3·4 and 3·2 kg d-1 for the two trials. Subsequently, when grazed at generous herbage allowances, the cows were able to compensate for much of this difference but when herbage was restricted the milk yield differences were accentuated. Groups of cows from each winter treatment were offered 25, 50 or 75 (Experiment 1) and 30, 50 or 70 (Experiment 2) g herbage DM per kg LW daily during the grazing season. Daily herbage intakes on the three allowances in each trial were 14·1, 13·3, 10·7 and 12·5, 12·1, 11·5 kg OM and milk yields were 16·0, 15·3, 12·5 and 15·2, 14·3, 11·8 kg SCM respectively. Both intake and milk production were depressed once the cows were forced to consume more than 50% of herbage on offer or to graze the sward down to a mean height of less than 8–10 cm. Grazing behaviour observations indicated that under rotational managements the cows did not compensate for restrictions in available herbage by grazing longer. Highest levels of milk production per unit area were observed in both trials when production per cow was depressed by 20–25%.  相似文献   

16.
Four grass silages, all made in mid-July from second-harvest perennial ryegrass swards, were compared in a 16-week feeding experiment with twelve Ayrshire cows. Two silages were unwilted and two wilted. All the silages received formic acid ('Add-F') at the rate of 3 litres t-1 either with formalin at the rate of 1 litre t-1 or without formalin. The unwilted and wilted silages had mean dry matter (DM) concentrations of 200 and 243 g kg-1, and in vitro D-values of 0·293 and 0·272 respectively. The silages were offered ad libitum plus 6 kg concentrates per cow per day. The daily intakes of unwilted and wilted silage DM were 10·2 and 9·2 kg per cow respectively on the formic acid treatment, and 10·2 and 9·2 kg on the formic acid + formalin treatment. The mean daily milk yield on the unwilted silage treatments was 19·2 kg per cow which was significantly higher than the yield of 17·2 kg per cow on the wilted silage treatments. The formalin had no significant effect on milk yield. The four silage treatments had small and non-significant effects on milk composition. It is concluded that the unwilted silages, which had excellent fermentation characteristics, were superior to the wilted silages as a feed for dairy cows.  相似文献   

17.
Mown herbage of timothy–meadow fescue (dry matter 218 (LDM) or 539 (HDM) g kg?1) was ensiled in laboratory silos to evaluate silage additives. For LDM silage, additives including formic acid (a blend of formic acid, sodium formate, propionic acid, benzoic acid, glycerol and another blend of formic acid and ammonium formate, both applied at 5 L t?1) were able to restrict fermentation and thereby improve intake potential of the silage. Aerobic stability (AS) of total mixed ration (TMR) was also improved. LDM grass treated with homofermentative lactic acid bacteria (hoLAB) resulted in silage containing lactic acid at 132 g kg?1 DM, ammonium‐N <40 g kg?1 total N, and pH < 3·8, and the AS was poor (<36 h). The treatment including heterofermentative strain (Lactobacillus brevis) produced more acetic acid and better AS than hoLAB. Salt treatment (sodium benzoate, potassium sorbate, sodium nitrite) reduced pH compared to the Control treatment (3·89 vs. 4·24) and improved AS of TMR. The LDM Control silage had good AS, but the TMR based on it had poor AS. All additives were able to lower pH on HDM silages also, but other benefits of using additives were minimal. The treatment including L. brevis on HDM was able to improve AS of TMR.  相似文献   

18.
Lucerne ( Medicago sativa ), field wilted to 330 g dry matter (DM) kg−1, and whole-plant maize ( Zea mays ), 383 g DM kg−1, were treated with formic acid (FA) at the rate of 4-5 1 t−1 fresh forage. The effects of FA treatment on proteolysis and amino acid degradation was investigated at several intervals over a 90-d period of ensilage in laboratory silos. Formic acid treatment produced different patterns of pH decline during ensilage of the two forages, suggesting some degree of crop specificity in response to FA treatment. After 7 d of ensilage of lucerne there were increases of 81% in nonprotein nitrogen (NPN), and 104% in free amino acid nitrogen (FAA-N), but with FA-treated lucerne the increases were 39% and 31%, respectively. FA treatment resulted in a reduction in the concentration of most free amino acids in lucerne silage, with the exception of glutamic acid and serine; the branched chain amino acids as well as glycine, tyrosine and proline were significantly (P<0·05) reduced after 3 d of ensilage. By contrast, FA treatment of maize did not significantly ( p <0·05) affect the NPN content nor was there a consistent pattern in the changes in FAA-N. Formic acid treatment of maize did produce a significant reduction ( P <0·05) in the concentration of most individual free amino acids at 90 d of ensilage. Overall, FA treatment had a more predictable effect on proteolysis and amino acid degradation in ensiled lucerne than in ensiled whole-plant maize.  相似文献   

19.
Two silages were made from perennial ryegrass ensiled without wilting in 2-t capacity silos with the application of either formic acid or an enzyme mixture of cellulases and hemicellulases. Effluent losses were monitored over the ensiling period. Subsequent silage analysis showed that the enzyme-treated silage had higher concentrations of residual water soluble carbohydrate, lactic acid and acetic acid, and lower concentrations of cellulose, ADF and NDF. Effluent production was higher with the enzyme silage (formic acid, 211 1 t?1; enzyme, 2671 t?1). The silages were either offered as the sole diet or supplemented with rapeseed meal at two levels (60 or 120 g fresh weight kg?1 silage DM offered) to growing steers equipped with rumen cannulae and T-piece duodenal cannulae. Apparent whole tract digestibilities for DM, OM, N, ADF and NDF were similar for all diets although nitrogen retention (g d?1) was increased with supplementation of both silages (formic acid, 21·1; formic acid + 60 g, 23·5; formic acid+ 120 g, 28·5; enzyme, 22·6; enzyme + 60 g, 25·8; enzyme+ 120 g, 31·6). Rumen pH, ammonia and total volatile fatty acids patterns were similar. Supplementation increased the amount of organic matter apparently digested in the rumen (ADOMR) with formic acid-treated silage but not with enzyme-treated silage. Liveweight gains were similar for both unsupplemented silages (0·49 kg d?1). These increased to 0·55 and 0·65 kg d?1 for formic + 60 and formic + 120 respectively. Liveweight gains for the corresponding enzyme-treated supplemented diets were 0·81 and 0·91 kg d?1 respectively. Liveweight gains on supplemented enzyme-treated diets were significantly (P < 0·05) greater than those on formic acid-treated diets.  相似文献   

20.
Three grass silages made in sunny weather in early July from second-harvest perennial ryegrass were compared in a 16-week feeding experiment with twelve Ayrshire cows. The silages were either unwilted or wilted with and without conditioning, and had mean dry matter (DM) concentrations of 201, 261 and 272 g kg−1, and in vitro DOMD concentrations of 650, 669 and 672 g kg−1 DM respectively. All the silages had formic acid ('Add-F') applied at a rate of 2.6 litres t−1 and were offered ad libitum plus 6 kg concentrates per cow per d. The daily intakes of silage DM were 905 kg per cow on the unwilted treatment and 9.86 and 9.65 kg on the wilted treatments with and without conditioning respectively. Daily milk yields were 171, 17.6 and 17.4 kg per cow on the unwilted, and wilted with and without conditioning treatments respectively and were not significantly different. Fat concentrations in the milk were not affected significantly by treatment, whereas the crude protein and solids-not-fat concentrations were significantly higher on the wilted than on the unwilted treatment. The efficiency of utilization of metabolizable energy for lactation was 6–7% lower with the wilted than with the unwilted silages and it is concluded that the unwilted silage was superior to the wilted silages as a feed for dairy cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号