首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Assessments of the effects of deforestation, post-clearance tillage methods and farming systems treatments on soil properties were made from 1978 through 1987 on agricultural watersheds near Ibadan, southwestern Nigeria. These experiments were conducted in two phases: Phase I from 1978 through 1981 and Phase II from 1983 to 1987, with 1 year (1982) as a transition phase when all plots were sown with mucuna (Mucuna utilis). There were six treatments in Phase I involving combinations of land clearing and tillage methods: (1) manual clearing with no-till (MC-NT); (2) manual clearing with plough-till (MC-PT); (3) shear-blade clearing with no-till (SB-NT); (4) tree-pusher/root rake clearing with no-till (TP-NT); (5) tree-pusher/root-rake clearing with plough-till (TP-PT); (6) traditional farming (TF). The six treatments were replicated twice in a completely randomized design. The traditional treatment of Phase I was discontinued during Phase II. The five farming systems studied during Phase II with a no-till system in all treatments were: (1) alley cropping with Leucaena leucocephala established on the contour at 4-m intervals; (2) and (3) fallowing with Mucuna utilis on severely degraded and moderately degraded watersheds, respectively, for 1 year followed by maize-cowpea rotation for another; (4) and (5) ley farming involving establishment of pasture in the first year on severely and moderately degraded plots, respectively, controlled grazing in the second year, and growing maize (Zea mays)-cowpea (Vigna unguiculata) in the third year. All treatments, imposed on watersheds of 2–4 ha each, were replicated twice. The soil properties analyzed were particle size distribution, total aggregation and mean weight diameter of aggregates, soil bulk density, penetrometer resistance, water retention characteristics, infiltration capacity and saturated hydraulic conductivity. These properties were measured under the forest cover in 1978, and once every year during the dry season thereafter during Phases I and II. Prior to deforestation, mean soil bulk density was 0·72 Mg m−3 and 1·30 Mg m−3, soil penetration resistance was 32·4 KPa and 90·7 KPa, and mean weight diameter of aggregates was 3·7 mm and 3·2 mm for 0–5 cm and 5–10 cm depths, respectively. The infiltration rate was excessive (54–334 cm hr−1) and saturated hydraulic conductivity was rapid (166–499 cm hr−1) under the forest cover. Furthermore, water transmission properties varied significantly even over short distances of about 1 m. Deforestation and cultivation increased soil bulk density and penetration resistance but decreased mean weight diameter of aggregates. One year after deforestation in 1980, mean soil bulk density was 1·41 Mg m−3 for 0–5 cm depth and 1·58 Mg m−3 for 5–10 cm depth. Soil bulk density and penetration resistance were generally higher for NT than for PT methods, and the penetration resistance was extremely high in all treatments by 1985. During Phase II, soil bulk density was high during the grazing cycle of the ley farming treatment. Sand content at 0–5 cm depth increased and clay content decreased with cultivation duration. Soon after deforestation, saturated hydraulic conductivity and equilibrium infiltration rate in cleared and cultivated land declined to only 20–30 per cent of that under forest. Mean saturated hydraulic conductivity following deforestation was 46·0 cm hr−1 for 0–5 cm depth and 53·7 cm hr−1 for 5–10 cm depth. Further, infiltration rate declined with deforestation and cultivation duration in all cropping systems treatments. During Phase I, mean infiltration rate was 115·8 cm hr−1 under forest cover in 1978, 20·9 cm hr−1 in 1979, 17·4 cm hr−1 in 1980 and 20·9 cm hr−1 in 1981. During Phase II, mean infiltration rate was 8·5 cm hr−1 in 1982, 11·9 cm hr−1 in 1983, 11·0 cm hr−1 in 1984, 11·3 cm hr−1 in 1985 and 5·3 cm hr−1 in 1986. Infiltration rate was generally high in ley farming and mucuna fallowing treatments. Natural fallowing drastically improved the infiltration rate from 19·2 cm hr−1 in 1982 to 193·2 cm hr−1 in 1986, a ten-fold increase within 5 years of fallowing. High-energy soil water retention characteristics in Phase I were affected by those treatments that caused soil compaction by mechanized clearing and no-till systems. Soil water retention at 0·01 MPa potential in 1979 was 19·2 per cent (gravimetrics) for SB, 17·9 per cent for TP, 15·9 per cent for MC and 17·8 per cent for TF methods. With regards to tillage, soil water retention was 17·8 per cent for NT compared with 16·8 per cent for PT. During Phase II, water retention characteristics were not affected by the farming system treatments. Mean soil water retention (average of 4 years' data from 1982 to 1986) at 0·01 MPa for 0–5 cm depth was 16·6 per cent for alley cropping, 16·7 per cent for mucuna fallowing and 16·8 per cent for ley farming. Mean soil water retention for 1·5 MPa suction was 9·3 per cent for alley cropping, 8·7 per cent for mucuna fallowing, and 9·3 per cent for ley farming. Water retention at 1·5 MPa suction correlated with the clay and soil organic carbon content.  相似文献   

2.
The aim of this study was to measure the in situ soil CO2 flux from grassland, afforested land and reclaimed coalmine overburden dumps by using the automated soil CO2 flux system (LICOR‐8100® infrared gas analyzer, LICOR Inc., Lincoln, NE). The highest soil CO2 flux was observed in natural grassland (11·16 µmol CO2 m−2s−1), whereas the flux was reduced by 38 and 59 per cent in mowed site and at 15‐cm depth, respectively. The flux from afforested area was found 5·70 µmol CO2 m−2s−1, which is 50 per cent lower than natural grassland. In the reclaimed coalmine overburden dumps, the average flux under tree plantation was found to be lowest in winter and summer (0·89–1·12 µmol CO2 m−2s−1) and highest during late monsoon (3–3·5 µmol CO2 m−2s−1). During late monsoon, the moisture content was found to be higher (6–7·5 per cent), which leads to higher microbial activity and decomposition. In the same area under grass cover, soil CO2 flux was found to be higher (8·94 µmol CO2 m−2s−1) compared with tree plantation areas because of higher root respiration and microbial activity. The rate of CO2 flux was found to be determined predominantly by soil moisture and soil temperature. Our study indicates that the forest ecosystem plays a crucial role in combating global warming than grassland; however, to reduce CO2 flux from grassland, mowing is necessary. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Soil erosion and runoff were monitored from 1988 to 1990 on a Miamian soil (Typic Hapludalf) of 5-6 per cent slope using field runoff plots. Four treatments were studied: (i) disk-plough up and down the slope to 0.3 m depth (DP); (ii) disk-plough up and down the slope followed by a protective netting (PN); (iii) uncultivated fallow without any vegetation followed by surface soil removal (R); (iv) uncultivated fallow with natural vegetation followed by ploughing (F). Mean annual runoff losses were 6, 114 and 128 mm, or 4, 20 and 18 per cent of the rainfall, and mean annual soil losses were 1.2, 85.0 and 64.0 Mg ha−1 in 1988, 1989 and 1990, respectively. Mean runoff amounts were 26, 69, 116 and 118mm and mean annual soil losses were 0.4, 23.2, 58.6 and 118 Mg ha−1 for the F, PN, DP and R treatments, respectively. In comparison with DP, PN decreased annual runoff by 40.3 per cent and annual soil loss by 79.5 per cent. The high mean soil loss for the R treatment was due to erosion following soil removal. An additional 2920 Mg ha−1 of surface soil was removed from the R treatment in May 1990. The F treatment reduced runoff by 78, 77 and 62 per cent and reduced soil loss by 99.7, 99.4 and 98.4 per cent compared with the R, DP and PN treatments, respectively. Mean losses of K, Ca, Mg and P were 1.3, 4, 1 and 01 kg ha−1, respectively for F, 3, 16, 5 and 0.3kg ha−1, respectively, for PN, 5, 31, 1 and 0.6kg ha−1, respectively, for DP, and 3, 32, 12 and 0.4 kg ha−1, respectively, for R. Soil and nutrient losses for each treatment were in the order R > DP > PN > F. The soil organic carbon (SOC) content was significantly affected by soil erosion and management treatments, and ranged from 0.98 per cent for the R treatment to 2.3 per cent for the F treatment. Soil surface removal for the R treatment in 1990 reduced water-stable aggregates (WSA) by 9.0 per cent, SOC by 0.6 per cent, and clay content of the uppermost 0-50 mm depth by about 7.0 per cent. Mean total porosity (ft) ranged from 0.43 for the F to 0.52 for the DP treatment. Cumulative infiltration for 3h ranged from 13 cm for R to 34cm for PN, with corresponding infiltration rates of 4 cm h−1 and 13 cm h−1, respectively. Regardless of the treatment, there were also temporal changes in soil properties. In comparison with 1988, measurements made in 1990 showed a significant decrease in WSA of 21.3 per cent, an increase in clay content of 2.8 per cent, and a decrease in SOC of 0.39 per cent. Runoff and soil losses were significantly correlated with the mean weight diameter (MWD), SOC, bulk density (pb) and available water capacity (AWC). Plant height measured 8 weeks after planting (WAP) for the R treatment was reduced by 33.3 per cent, 33.0 per cent and 29.0 per cent compared withh DP, PN and F, respectively. Nitrogen uptake by maize plants (Zea mays L.) 10 WAP for the R treatment was lower by 15 per cent, 8 per cent, and 6 per cent compared with the DP, PN and F treatments, respectively, while P uptake was lower by 33 per cent, 32 per cent and 29 per cent, respectively, compared with the same treatments. Grain yield was 9.78 Mg ha−1 for PN, 9.76 Mg ha−1 for DP, 8.64 Mg ha−1 for F and 6.60 Mg ha−1 for R during the 1990 crop season. Grain yield was reduced by about 32.4 per cent in the R treatment compared with the PN treatment, representing a maize grain yield reduction of 158 kg ha−1 for each centimeter of soil lost.  相似文献   

4.
Temporal changes in soil chemical and nutritional properties were evaluated in a long-term experiment conducted on Alfisols in West Africa. Effects of land use and cropping duration on soil chemical properties at 0–5 cm and 5–10 cm depths were evaluated for five treatments: (1) alley cropping with Leucaena leucocephala established on the contour at 4-m intervals; (2) mucuna (Mucuna utilis) fallowing for 1 year followed by maize (Zea mays)-cowpea (Vigna unguiculata) cultivation for 2 years on severely degraded land; (3) fallowing with mucuna on moderately degraded soils; (4) ley farming involving growing improved pastures for 1 year, grazing for the second year, and growing maize-cowpea for the third year on severely degraded land; (5) ley farming on moderately degraded soils. Soil chemical properties were measured once every year from 1982 through 1986 during the dry season, and included pH, soil organic carbon (SOC), total soil nitrogen (TSN), Bray-P, exchangeable cations, and effective cation exchange capacity (CEC). Regardless of the cropping system treatments, soil chemical quality decreased with cultivation time. The rate of decrease at 0–5 cm depth was 0·23 units year−1 for pH, 0·05 per cent year−1 for SOC, 0·012 per cent year−1 for TSN, 0·49 cmol kg−1 year−1 for Ca2+, 0·03 cmol kg−1 year−1 for Mg2+, 0·018 cmol kg−1 year−1 for K+, and 0·48 cmol kg−1 year−1 for CEC. Although there was also a general decrease in soil chemical quality at 5–10 cm depth, the trends were not clearly defined. In contrast to the decrease in soil properties given above, there was an increase in concentration at 0–5 cm depth of total acidity with cultivation time at the rate of 0·62 cmol kg−1 year−1, and of Mn3+ concentration at the rate of 0·081 cmol kg−1 year−1. Continuous cropping also increased the concentration of Bray-P at 0–5 cm depth due to application of phosphatic fertilizer. Trends in soil chemical properties were not clearly defined with regards to cropping system treatments. In general, however, soil chemical properties were relatively favorable in ley farming and mucuna fallowing treatments imposed on moderately degraded soils. Results are discussed in terms of recommended rates of fertilizer use, in view of soil test values, expected yields, and critical limits of soil properties.  相似文献   

5.
The Grain to Green Program in China which began in 1999 led to the conversion of 0.64 million ha of cropland to grassland on steep sloping landscapes. However, the pattern of natural vegetation succession following cropland has not been well represented in previous regional syntheses of land use change effects on soil organic carbon (SOC). A chronosequence study focusing on the vegetation succession and soil carbon stocks was conducted in the center of the Loess Plateau. The chronosequence included fields of 0, 2, 5, 8, 9, 10, 12, 15 and 25 years of self‐restoration after cropland abandonment, as well as a natural grassland reference. Plant coverage, species richness and plant biomass increased significantly with time of cropland abandonment. Over time, the species composition more nearly resembled a natural grasslands community. Cropland abandonment replenished SOC stocks by 3.6 kg C m−2 during the 25‐year self‐restoration, but the SOC accumulation was restricted to the upper soil profiles (0–60 cm). SOC accumulation rate was 88 g C m−2 y−1 in 0–30 cm and 55 g C m−2 y−1 in 30–60 cm soil depth, respectively. These carbon stocks were still significantly lower than those found in the natural grassland soil. Our results suggest that the recovery of plant communities and SOC stocks appears to be slow in this semiarid environment without revegetation effort along with appropriate field management, although the post‐agricultural soils have a high potential for carbon sequestration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Soil management systems can have great effect on soil chemical, physical and biological properties. Conversion of forest to grassland and cropland can alter C and N dynamics. The objective of this study was to evaluate the changes in aggregate‐associated and labile soil organic C and N fractions after conversion of a natural forest to grassland and cropland in northern Turkey. This experiment was conducted on plots subject to three different adjacent land uses (forest, grassland and cropland). Soil samples were taken from 0–5, 5–15 and 15–30 cm depths from each land use. Some soil physical (soil texture, bulk density), chemical (soil pH, soil organic matter, lime content, total organic C and N, inorganic N, free and protected organic C) and biological (microbial biomass C and N, mineralizable C and N) properties were measured. The highest and lowest bulk densities were observed in grassland (1.41 g cm−3) and cropland (1.14 g cm−3), respectively. Microbial biomass C and total organic C in forest were almost twice greater than grassland and four‐times greater than cropland. Cultivation of forest reduced total organic N, mineralizable N and microbial biomass N by half. The great portion of organic C was stored in macroaggregates (>250 µm) in all the three land uses. Free organic C comprised smaller portion of soil organic C in all the three land uses. Thus, this study indicated that long‐term conversion of forest to grassland and cropland significantly decreased microbial biomass C, mineralizable C and physically protected organic C and the decreases were the greatest in cropland. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Minesoils are characterized by low soil organic matter and poor soil physicochemical environment. Mine soil reclamation process has potential to restore soil fertility and sequester carbon (C) over time. Soil organic C (SOC) pool and associated soil properties were determined for reclaimed minesoils under grass and forest landuses of varied establishment year. Three grassland sites of 30, 9, and 1 years after reclamation (G30, G9, and G1) and two forest sites, 11 years after reclamation (RF) and undisturbed stand of 40 years (UF), were selected within four counties (Morgan, Muskingum, Noble, and Coshocton) of southeastern Ohio. Soil bulk density (BD) of reclaimed forest (RF) soil was significantly higher than undisturbed forest (UF) soils within 10–40 cm soil depth profile. Reclamation process increased soil pH from slightly acidic to alkaline and decreased the soil EC in both landuses. Among grassland soils, significant changes in SOC and total soil N contents were observed within 0–10 cm soil depth. SOC contents of G30 (29.7 Mg ha−1) and G9 (29.5 Mg ha−1) were significantly higher than G1 soils (9.11 Mg ha−1). Soil N content was increased from G1 (0.95 Mg ha−1) to G9 (2.00 Mg ha−1) site and then the highest value was found under G30 (3.25 Mg ha−1) site within 0–10 cm soil depth. UF soils had significantly higher SOC and total N content than RF soils at 0–10 and 10–20 cm soil depths. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Agricultural activities emit greenhouse gases (GHGs) and contribute to global warming. Intensive plough tillage (PT), use of agricultural chemicals and the burning of crop residues are major farm activities emitting GHGs. Intensive PT also degrades soil properties by reducing soil organic carbon (SOC) pool. In this scenario, adoption of no‐till (NT) systems offers a pragmatic option to improve soil properties and reduce GHG emission. We evaluated the impacts of tillage systems (NT and PT) and wheat residue mulch on soil properties and GHG emission. This experiment was started in 1989 on a Crosby silt loam soil at Waterman Farm, The Ohio State University, Columbus, Ohio, USA. Mulching reduced soil bulk density and improved total soil porosity. More total carbon (16.16 g kg−1), SOC (8.36 mg L−1) and soil microbial biomass carbon (152 µg g−1) were recorded in soil under NT than PT. Mulch application also decreased soil temperature (0–5 cm) and penetration resistance (0–60 cm). Adoption of long‐term NT reduced the GHG emission. Average fluxes of GHGs under NT were 1.84 g CO2‐C m−2 day−1 for carbon dioxide, 0.07 mg CH4‐C m−2 day−1 for methane and 0.73 mg N2O‐N m−2 day−1 for nitrous oxide compared with 2.05 g CO2‐C m−2 day−1, 0.74 mg CH4‐C m−2 day−1 and 1.41 mg N2O‐N m−2 day−1, respectively, for PT. Emission of nitrous oxide was substantially increased by mulch application. In conclusion, long‐term NT reduced the GHG emission by improving the soil properties. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
为揭示半干旱区沙质草地生态系统中表层土壤C、N组分对长期氮添加和地上凋落物处理的响应特征,以科尔沁沙地西南部国家野外科学观测研究站建立的长期(9年)氮添加和凋落物处理样地为平台,测定并分析该样地表层土壤环境因子、铵态氮、硝态氮、总有机碳、不同碳氮组分。结果表明:(1)持续9年的氮添加和地上凋落物处理对表层土壤环境因子和不同碳氮组分无交互作用;(2)氮添加处理显著降低土壤pH(p<0.01),增加土壤中硝态氮的含量(p<0.05),其增长幅度为37.57%,并显著增加溶解性有机氮(DON)和易变活性氮(LON)的含量(p<0.01,p<0.05);(3)地上凋落物去除显著降低土壤总有机碳(TOC)、易变缓性碳(IOC)、微生物生物量碳(MBC)和微生物生物量氮(MBN)含量(p<0.05);(4)经过9年氮添加和地上凋落物处理,半干旱区沙质草地表层土壤中不同碳氮组分与土壤环境因子间相关性并不密切。即长期氮添加和地上凋落物处理会改变表层土壤不同碳、氮组分的含量,但并未显著改变各碳、氮组分的比值。研究结果为揭示长期氮添加和地上凋落物处理对半干旱区沙质草地土壤C、N贮存和预测未来土壤生物地球化学元素动态研究提供参考资料。  相似文献   

10.
车卓  石菁  徐德亮 《水土保持通报》2016,36(4):193-196,203
[目的]揭示河西走廊中段荒漠草地地上生物量的空间分布特征及其与环境因子的关系,为区域草地生态系统碳库及其变化评估提供基础资料。[方法]利用从52个样点获得的样方调查数据,进行统计分析。[结果](1)河西走廊中段荒漠草地单位面积地上生物量的范围为11.17~523.76g/m2,平均值为149.67g/m2,大致表现为西北高,东南低的分布特征;(2)调查中共出现15种优势植物群落地,地上部生物量黑果枸杞群落最小,为49.88±7.42g/m2,叉枝鸦葱群落最大,为201.69±98.48g/m2;(3)地上生物量与经度呈显著的负相关关系,与海拔呈显著的正相关关系;(4)土壤环境因子能够解释地上生物量39.8%的空间变异,其中土壤类型、土壤容重和土壤有机质的影响较显著,而土壤含水量的影响相对较弱。[结论]河西走廊荒漠草地地上生物量趋势为由西北至东南逐渐降低;海拔和土壤环境因子是影响分布格局的关键因子。  相似文献   

11.
An experiment was conducted for two years in northwest India to explore the feasibility of using coal fly ash for reclamation of waterlogged sodic soils and its resultant effects on plant growth in padi–wheat rotation. The initial pH, electrical conductivity, exchangeable sodium percentage and sodium adsorption ratio of the experimental soil were 9.07, 3.87 dS m−1, 26.0 and 4.77 (me l)−1/2, respectively. The fly ash obtained from electrostatic precipitators of thermal power plant had a pH of 5.89 and electrical conductivity of 0.88 dS m−1. The treatments comprised of fly ash levels of 0.0, 1.5, 3.0, 4.5, 6.0 and 7.5 per cent, used alone as well as in combination with 100, 80, 60, 40, 20 and 10 per cent gypsum requirement of the soil, respectively. There was a slight reduction in soil pH while electrical conductivity of the soil decreased significantly with fly ash as measured after padi and wheat crops. The sodium adsorption ratio of the soil decreased with increasing fly ash levels, while gypsum treatments considerably added to its favourable effects. Fly ash application increased the available elemental status of N, K, Ca, Mg, S, Fe, Mn, B, Mo, Al, Pb, Ni, Co, but decreased Na, P and Zn in the soil. An application of fly ash to the soil also increased the concentrations of above elements except Na, P and Zn in the seeds and straw of padi and wheat crops. The available as well as elemental concentrations in the plants was maximum in the 0 per cent fly ash + 100 per cent gypsum requirement treatment except Na and heavy elements like Ni, Co, Cr. The treatment effects were greater in the fly ash + gypsum requirement combinations as compared to fly ash alone. Saturated hydraulic conductivity and soil water retention generally improved with the addition of fly ash while bulk density decreased. Application of fly ash up to 4.5 per cent level increased the straw and grain yield of padi and wheat crops significantly in both years. The results indicated that for reclaiming sodic soils of the southwest Punjab, gypsum could possibly be substituted up to 40 per cent of the gypsum requirement with 3.0 per cent acidic fly ash. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
In the Horqin Sand Land, more than half of the original pasture area has been converted to farmland over the last century. A field experiment was conducted from 2000 to 2001 on five croplands in the Horqin Sand Land of Inner Mongolia to examine differences in soil properties, crop productivity and irrigation effects across different soils in the region to assess their relative suitability for cultivation, in the face of continued pressure for conversion of these generally fragile, sandy soils to agriculture.Two irrigated croplands studied were originally sandy meadow (ISM) and sandy grassland (ISG), and three dry croplands were from sandy meadow (DSM), sandy grassland (DSG) and fixed sand dunes (DFD). Results showed that most measured properties of soils, and crop productivity, differed among the five croplands. The silt + clay fraction, bulk density, organic matter content, total N and P, available N and P, average soil moisture and temperature, plant height and aboveground biomass were as follows in the DSM|DSG|DFD soils: 51.1%|47.5%|24.3%; 1.44 g/cm3|1.49 g/cm3|1.58 g/cm3; 6.3 g/kg|4.6 g/kg|3.4 g/kg; 0.55 g/kg|0.33 g/kg|0.21 g/kg; 0.21 g/kg|0.17 g/kg|0.13 g/kg; 27.0 mg/kg|13.7 mg/kg|7.7 mg/kg; 2.9 mg/kg|2.9 mg/kg|3.0 mg/kg; 9.4%|7.0%|6.2%; 21.4 °C|21.7 °C|22.0 °C; 225 cm|220 cm|181 cm; and 2116 g/m2|1864 g/m2|1338 g/m2. Corresponding values for ISM|ISG soils were: 54.3%|47.9%; 1.42 g/cm3|1.49 g/cm3; 8.5 g/kg|6.4 g/kg; 0.58 g/kg|0.42 g/kg; 0.20 g/kg|0.19 g/kg; 29.0 mg/kg|23.3 mg/kg; 4.7 mg/kg|7.9 mg/kg; 13.0%|10.1%; 21.0 °C|21.1 °C; 266 cm|245 cm; and 2958 g/m2|2702 g/m2.In general, the ecological origin of a cropland was a stronger determinant of its current characteristics than was irrigation history, although irrigation was correlated with significantly increased organic matter content, some soil nutrient levels, and aboveground biomass productivity. Results indicate that fixed sand dunes should not be converted to cropland because of their very sandy and poorer soil, lower biomass productivity and greater wind-erosion risk. Although both the sandy meadow and sandy grassland may be reclaimed for farming, the cropland derived from the sandy meadow had higher resistance to wind erosion and higher crop productivity, so is somewhat more suitable than sandy grassland.  相似文献   

13.
肖列  刘国彬  薛萐  张超 《水土保持通报》2016,36(4):204-209,215
[目的]研究不同土地利用方式下的土壤水分状况及其与植被群落特征的关系,为黄土丘陵区的植被恢复和重建提供理论依据。[方法]采用野外调查的方法和数理统计分析方法开展研究。[结果]纸坊沟流域主要植被类型的地上干生物量为310.0~10 036.2g/m2,平均地上干生物量由大到小依次为:林地灌木地农田人工草地天然草地。地上鲜生物量与株高存在极显著的正相关关系(R2=0.967 4,p0.01)。不同土地利用方式0—100cm土层土壤含水量较高,且土壤水分变异较大;100cm以下土壤含水量相对稳定,坝地玉米和梯田玉米的极易效水量分别为221.73和221.99mm;柠条和刺槐的土壤含水量最低,土壤水分类型为难效水,分别为311.44和333.09mm;其他6种土地利用方式的土壤水分为中效易效水。[结论]黄土丘陵区人工林灌植被的种植导致深层土壤水分的大量消耗,不利于该区植被恢复和建设的可持续发展。  相似文献   

14.
Changes in the carbon (C) stock of grassland soil in response to land use change will increase atmospheric CO2, and consequently affect the climate. In this study we investigated the effects of land use change on soil organic C (SOC) and nitrogen (N) along a cultivation chronosequence in the Xilin River Basin, China. The chronosequence consisted of an undisturbed meadow steppe, a 28‐year‐old cropland and a 42‐year‐old cropland (abbreviated as Steppe, Crop‐28 Y and Crop‐42Y, respectively). Crop‐28Y and Crop‐42Y were originally created on the meadow steppe in 1972 and 1958, respectively. The soil samples, in ten replications from three depth increments (0–10, 10–20 and 20–30 cm), were collected, respectively, in the two cropland fields and the adjacent undisturbed steppe. Bulk density, SOC, total N and 2 m KCl‐extractable mineral N including ammonium and nitrate were measured. Our results showed that the greatest changes in the measurements occurred in the 0–10 cm soil depth. The SOC stock in the upper 30‐cm soil decreased by 9.83 Mg C ha−1 in Crop‐28Y and 21.87 Mg C ha−1 in Crop‐42Y, which indicated that approximately 10 and 25% of the original SOC of the steppe had been emitted over 28 and 42 years, respectively. Similarly, the total N lost was 0.66 Mg N ha−1 and 1.18 Mg N ha−1, corresponding to approximately 9% and 16%, respectively, of the original N at the same depth and cropping duration as those noted for SOC. The mineral N concentration in the soil of both the two croplands was greater than that in the steppe soil, and the ammonium‐N was less affected by cultivation than the nitrate‐N. The extent of these changes depended on soil depth and cropland age. These effects of cultivation were much greater in the top 10 cm of soil than in deeper soil, and also greater in Crop‐42Y than in Crop‐28Y. The findings are significant for assessing the C and N sequestration potential of the land use changes associated with grassland conversion, and suggest that improved management practices are needed to sequester SOC and total N in the cropped soil in a semi‐arid grassland.  相似文献   

15.
Restoration of degraded grasslands through improved management is among the possible sustainable solutions to compensate for anthropogenic soil carbon (C) emissions. While several studies have shown a positive effect of rehabilitation on soil C, the impact on soil CO2 emissions is still uncertain. Therefore, this study aimed at quantifying the impact of grassland rehabilitation on soil CO2 emissions in a degraded grassland, South Africa. Commonly used rehabilitation practices were considered, that is rotational grazing (RG), livestock exclosure with fertilizer application (EF) and annual burning (AB), all being compared with traditional free grazing (FG). A total of 2880 in situ measurements of CO2 emissions were performed over 2.5 years under field conditions simultaneously with aboveground biomass, soil temperature, water content and soil organic C (SOC) to understand the changes in C fluxes. The RG performed the best under degraded grasslands by decreasing net CO2 emissions (per g of C) by 17% compared to FG, while EF increased emissions by 76% and AB had similar emissions to FG. The lower net emission under RG is associated with an increase in SOC stocks by 50% and aboveground biomass by 93%, after three years of implementation. Soil CO2 emissions were correlated positively to aboveground biomass and topsoil temperature (r = 0.91 and 0.60, respectively), implying a high effect of grass cover on soil microclimate and microbial activity. These results suggested RG as a potential cost-effective nature-based soil management strategy to increase SOC stocks into degraded grassland. However, long-term trials replicated in different environments are still required.  相似文献   

16.
Degradation of soil physical quality, following deforestation and cultivation, is a major soil‐related constraint to an intensive use of soil for crop production in subhumid regions of subSaharan Africa. Use of crop residue mulch is an important strategy to minimize the risks of soil degradation. Therefore, a three‐year experiment was conducted to study the effects of five rates of mulch application (0, 2, 4, 6 and 8 Mg ha−1 season−1) on soil physical properties and growth and yield of maize (Zea mays). Mulch rate of rice straw significantly increased maize grain and stover yields during the first season, and the stover yield during the second season. In comparison with the control, the grain yield increased by 20 per cent at 2 Mg ha−1 of mulch rate and by 33 per cent at 8 Mg ha−1 of mulch rate. The rate of increase was 0·16 Mg ha−1 for grain yield and 0·38 Mg ha−1 for stover yield for every Mg of mulch applied. The increase in stover yield during the second season was 67 per cent for 8 Mg ha−1 mulch rate compared with the unmulched control. Effects of mulch rate on soil physical properties were confined mostly to the surface 0–5 cm depth. For this depth, mulching decreased bulk density from 1·17 Mg m−3 for control to 0·98 Mg m−3, and penetration resistance from 1·54 kg cm−2 to 1·07 kg cm−2 for 8 Mg ha−1 of mulch rate. Application of mulch up to 16 Mg ha−1 yr−1 for three consecutive years had no effect on soil physical properties below 5 cm depth. Experiments were probably not conducted for a long enough period. For mulch farming to be adopted by farmers of West Africa, it must be an integral part of the improved farming system. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
We present results from analyses of the sensitivity of global grassland ecosystems to modified climate and atmospheric CO2 levels. We assess 31 grassland sites from around the world under two different General Circulation Models (GCM) double CO2 climates. These grasslands are representative of mostly naturally occurring ecosystems, however, in many regions of the world, grasslands have been greatly modified by recent land use changes. In this paper we focus on the ecosystem dynamics of natural grasslands. The climate change results indicate that simulated soil C losses occur in all but one grassland ecoregion, ranging from 0 to 14% of current soil C levels for the surface 20 cm. The Eurasian grasslands lost the greatest amount of soil C (~1200 g C m?2) and the other temperate grasslands losses ranged from 0 to 1000 g C m?2, averaging approximately 350 g C m?2. The tropical grasslands and savannas lost the least amount of soil C per unit area ranging from no change to 300 g C m?2 losses, averaging approximately 70 g C m?2. Plant production varies according to modifications in rainfall under the altered climate and to altered nitrogen mineralization rates. The two GCM's differed in predictions of rainfall with a doubling of CO2, and these differences are reflected in plant production. Soil decomposition rates responded most predictably to changes in temperature. Direct CO2 enhancement effects on decomposition and plant production tended to reduce the net impact of climate alterations alone.  相似文献   

18.
Land application of animal wastes from intensive grassland farming has caused growing environmental problems during the last decade. This study aimed to elucidate the short‐term sequestration of slurry‐derived C and N in a temperate grassland soil (Southwest England) using natural abundance 13C and 15N stable isotope techniques. Slurry was collected from cows fed either on perennial ryegrass (C3) or maize (C4) silages. 50 m3 ha—1 of each of the obtained C3 or C4 slurries (δ13C = —30.7 and —21.3‰, δ15N = +12.2 and + 13.8 ‰, respectively) were applied to a C3 soil with δ13C and δ15N values of —30.0 ± 0.2‰ and + 4.9 ± 0.3‰, respectively. Triplicate soil samples were taken from 0—2, 2—7.5, and 7.5—15 cm soil depth 90 and 10 days before, at 2 and 12 h, as well as at 1, 2, 4, 7, and 14 days after slurry application and analyzed for total C, N, δ13C, and δ15N. No significant differences in soil C and N content were observed following slurry application using conventional C and N analysis techniques. However, natural abundance 13C and 15N isotope analysis allowed for a sensitive temporal quantification of the slurry‐derived C and N sequestration in the grassland soil. Our results showed that within 12 hours more than one‐third of the applied slurry C was found in the uppermost soil layer (0—2 cm), decreasing to 18% after 2 days, but subsequently increasing to 36% after 2 weeks. The tentative estimate of slurry‐derived N in the soil suggested a decrease from 50% 2 hours after slurry application to only 26% after 2 weeks, assuming that the increase in δ15N of the slurry plots compared to the control is proportional to the amount of slurry‐incorporated N. We conclude that the natural abundance tracer technique can provide a rapid new clue to the fate of slurry in agricultural C and N budgets, which is important for environmental impacts, farm waste management, and climate change studies.  相似文献   

19.
Understanding carbon (C) cycling and sequestration in vegetation and soils, and their responses to nitrogen (N) deposition, is important for quantifying ecosystem responses to global climate change. Here, we describe a 2-year study of the C balance in a temperate grassland in northern China. We measured net ecosystem CO2 exchange (NEE), net ecosystem production (NEP), and C sequestration rates in treatments with N addition ranging from 0 to 25 g N m?2 year?1. High N addition significantly increased ecosystem C sequestration, whose rates ranged from 122.06 g C m?2 year?1 (control) to 259.67 g C m?2 year?1 (25 g N). Cumulative NEE during the growing season decreased significantly at high and medium N addition, with values ranging from ?95.86 g C m?2 (25 g N) to 0.15 g C m?2 (5 g N). Only the highest N rate increased significantly cumulative soil microbial respiration compared with the control in the dry 2014 growing season. High N addition significantly increased net primary production (NPP) and NEP in both years, and NEP ranged from ?5.83 to 128.32 g C m?2. The C input from litter decomposition was significant and must be quantified to accurately estimate NPP. Measuring C sequestration and NEP together may allow tracking of the effects of N addition on grassland C budgets. Overall, adding 25 or 10 g N m?2 year?1 improved the CO2 sink of the grassland ecosystem, and increased grassland C sequestration.  相似文献   

20.
Ancient valley agriculture in the northern Negev highlands was based on the principle of directed collection of water and eroded material from the slopes and their consequent flow towards the valleys. The stones on these slopes were therefore removed and/or collected into piles known as ‘grape mounds’. The aim of this study was to understand the contribution of stone cover and slope‐facing to biological activity in soil. Soil samples from a depth of 0–5 mm from the soil surface were collected during the study period (December 1994–March 1996) from northern and southern hill slopes, from under limestones and between stones. Soil moisture, organic matter, chlorophyll‐a and soil respiration were determined. The results obtained in field and laboratory studies demonstrated differences between the northern and southern slopes. The stone cover on the northern slope made up 33 per cent and in the southern slope 23 per cent, stone size ranging from 15–50 cm2 and 15–35 cm2, respectively. Soil moisture content varied from 12 per cent in December 1994 on both slopes to one‐quarter of the initial value during the dry period. Organic matter content reached a maximal level of 14 per cent and 16 per cent on the northern and southern slopes, respectively. Values of chlorophyll‐a on both the northern and southern slopes were 0.38 μg g−1 dry soil during the wet season, decreasing to 0.05 μg g−1 dry soil during the dry period. Soil samples from under the stones on both slopes produced high levels of CO2, ranging between 50 and 100 μg CO2 g;−1 dry soil h−1, whereas in the control samples the levels ranged between 30 and 70 μg CO2 g−1 dry soil h−1. In conclusion, the stone cover apparently plays an important role in the maintenance of biological activity through its contribution to slope biotope stability. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号