首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Minesoils are characterized by low soil organic matter and poor soil physicochemical environment. Mine soil reclamation process has potential to restore soil fertility and sequester carbon (C) over time. Soil organic C (SOC) pool and associated soil properties were determined for reclaimed minesoils under grass and forest landuses of varied establishment year. Three grassland sites of 30, 9, and 1 years after reclamation (G30, G9, and G1) and two forest sites, 11 years after reclamation (RF) and undisturbed stand of 40 years (UF), were selected within four counties (Morgan, Muskingum, Noble, and Coshocton) of southeastern Ohio. Soil bulk density (BD) of reclaimed forest (RF) soil was significantly higher than undisturbed forest (UF) soils within 10–40 cm soil depth profile. Reclamation process increased soil pH from slightly acidic to alkaline and decreased the soil EC in both landuses. Among grassland soils, significant changes in SOC and total soil N contents were observed within 0–10 cm soil depth. SOC contents of G30 (29.7 Mg ha−1) and G9 (29.5 Mg ha−1) were significantly higher than G1 soils (9.11 Mg ha−1). Soil N content was increased from G1 (0.95 Mg ha−1) to G9 (2.00 Mg ha−1) site and then the highest value was found under G30 (3.25 Mg ha−1) site within 0–10 cm soil depth. UF soils had significantly higher SOC and total N content than RF soils at 0–10 and 10–20 cm soil depths. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Reclamation of drastically disturbed minesoils and subsequent planting of trees and/or grasses can result in a rapid build‐up of carbon (C) in the soil. However, the amount of C sequestered in reclaimed minesoils may vary with the amount of time since reclamation. In this study, we assessed total carbon (TC) and total nitrogen (TN) concentrations for reclaimed minesoils located in northeastern Ohio and characterized by distinct reclamation age chronosequences. Reclaimed minesoils studied were R78G, reclaimed in 1978 and immediately seeded to grass; R82GT, reclaimed in 1982 and immediately seeded to grass and trees were planted 5 years later; and R87G, reclaimed in 1987 and immediately seeded to grass. An unmined site, UMG, was also included as a reference. Our objectives were to evaluate the variability with respect to mean and the spatial variability of pH, bulk density (ρb), TC and TN concentrations, and stocks in each reclaimed minesoil. Thirty soil samples were collected at each of the 0–15, 15–30, and 30–50 cm depth. The coefficient of variation (CV) for ρb was least, <15 per cent at each site and depth. For TN concentration and stock, CV was moderate, 15–35 per cent, in each field except the UMG where it was high, >35 per cent at 0–15, and 15–30 cm depths. For TC concentration and stocks, CV was high, >35 per cent, across all minesoils and generally increased with depth. The C/N ratio followed the same tend as TC and TN stocks and ranged from 40 per cent to 123 per cent across minesoils. Geostatistical analysis also showed an increase in sample variance with increasing amount of time since reclamation for most soil properties under investigation. Sample variance for TC concentration and stocks also increased with depth in reclaimed minesoils. However, no definite relationship emerged between amount of time since reclamation and the spatial dependence of TC and TN concentrations and stocks. Overall this study showed that reclamation of drastically disturbed minesoils increased the soil C concentration and stocks and reclamation by initially seeding to grasses followed by planting trees was the best management option for speedy accretion of soil C and soil quality enhancement. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Soils are an effective sink for carbon storage and immobilization through biomass productivity and enhancement of soil organic carbon (SOC) pool. The SOC sink capacity depends on land use and management. Degraded lands lose large amounts of C through SOC decomposition, erosion, and leaching. Thus, restoration of disturbed and degraded mine lands can lead to increase in biomass productivity, improved soil quality and SOC enhancement and sequestration. Reclamation of mined lands is an aggrading process and offers significant potential to sequester C. A chronosequence study consisting of 0‐, 5‐, 10‐, 15‐, 20‐ and 25‐year‐old reclaimed mine soils in Ohio was initiated to assess the rate of C sequestration by pasture and forest establishment. Undisturbed pasture and forest were used as controls. The SOC pool of reclaimed pasture sites increased from 15·3 Mg ha−1 to 44·4 Mg ha−1 for 0–15 cm depth and from 10·8 Mg ha−1 to 18·3 Mg ha−1 for 15–30 cm depth over the period of 25 years. The SOC pool of reclaimed forest sites increased from 12·7 Mg ha−1 to 45·3 Mg ha−1 for 0–15 cm depth and from 9·1 Mg ha−1 to 13·6 Mg ha−1 for 15–30 cm depth over the same time period. The SOC pool of the pasture site stabilized earlier than that of the forest site which had not yet attained equilibrium. The SOC sequestered in 0–30 cm depth over 25 years was 36·7 Mg ha−1 for pasture and 37·1 Mg ha−1 for forest. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
Soils play a key role in the global carbon cycle, and can be a source or a sink of atmospheric carbon (C). Thus, the effect of land use and management on soil C dynamics needs to be quantified. This study was conducted to assess: (1) the role of aggregation in enhancing soil organic carbon (SOC) and total soil nitrogen (TSN) concentrations for different mulch rates, (2) the association of SOC and TSN with different particle size fractions, and (3) the temporal changes in the SOC concentration within aggregate and particle size fractions with duration of mulching. Two experiments were initiated, one each in 1989 and 1996, on a Crosby silt loam (Aeric Ochraqualf or Stagnic Luvisol) in central Ohio. Mulch treatments were 0, 8, and 16 Mg ha−1 yr−1 without crop cultivation. Soil samples from 0–5 cm and 5–10 cm depths were obtained in November 2000; 4 and 11 years after initiating the experiments. Mulch rate significantly increased SOC and TSN concentrations in the 0–5 cm soil layer only. The variation in the SOC concentration attributed to the mulch rate was 41 per cent after 4 years of mulching and 52 per cent after 11 years of mulching. There were also differences in SOC and TSN concentrations among large aggregate size fractions, up to 2 mm size after 4 years and up to 0ċ5 mm after 11 years of mulching. There were also differences in SOC and TSN concentrations among particle size fractions. Variation in the SOC concentration in relation to particle size was attributed to clay by 45–51 per cent, silt by 34–36 per cent, and to sand fraction by 15–19 per cent. Bulk of the TSN (62–67 per cent) was associated with clay fraction and the rest was equally distributed between silt and sand fractions. The enrichment of SOC and TSN concentrations in the clay fraction increased with depth. The C:N ratio was not affected by the mulch rate, but differed significantly among particle size fractions; being in the order of sand >silt >clay. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
Soil organic carbon (SOC) and selected soil properties were measured in fringe and ditch marshes and cropland of old and young reclaimed areas in a subtropical estuary in China in order to investigate the effects of land use and reclamation history on SOC. The results show that after the conversion of wetlands to cropland, a longer reclamation history (>20 yr) resulted in greater soil bulk density, salinity, clay and silt, and lower soil moisture, SOC and sand content, whereas a shorter reclamation history (<20 yr) induced smaller values for soil pH, moisture and sand. Ditch marshes had greater average SOC in the top 50 cm than fringe marshes and cropland. SOC decreased generally down soil profiles from 0 to 50 cm in depth, except for the obvious accumulation of SOC in deeper soils from old fringe and young ditch marshes. Ditch marshes had the greatest SOC densities in the top 50 cm in both regions compared to the other land uses. SOC densities in the top 50 cm were less in croplands than in fringe marshes in the young region, while there were no significant differences between them in the older one. Except for cropland, SOC densities in the top 50 cm of the fringe or ditch marshes in the old region were not significantly different from those in the young region. SOC in both regions was reduced by 13.53 × 104 t (12.98%) in the top 50 cm of the marshes after conversion to cropland, whereas the regional SOC storage increased by 29.25 t when ditch marshes were included. The results from regression analysis show that bulk density and soil moisture significantly influenced SOC. The total SOC stored in both ditch marshes and croplands was higher compared to fringe marshes. The regional SOC storage in the top 50 cm was not reduced after reclamation due to C accumulation in the ditch marshes. The regional effects of cultural practices should be taken into account in devising strategies for managing soils in coastal wetlands, particularly in the developing world.  相似文献   

6.
In previous studies, the rate of soil carbon (C) sequestration decreased with increasing age of post‐mining soils. It was also shown to depend on plant biomass and earthworm bioturbation. Here, a soil transplant experiment was used to determine whether this decrease is caused by soil C saturation or other factors (such as bioturbation and litter input). Soils collected on 15‐, 25‐ and 50‐year‐old successional sites, dominated by willow (Salix caprea L.) and birch (Betula pendula Roth), and on a 50‐year‐old site reclaimed by the planting of alder (Alnus glutinosa L.) were placed in plastic boxes that were accessible to soil macrofauna. The boxes were buried in the 50‐year‐old reclaimed site and supplemented with either alder litter or successional (willow and birch) litter. Soil C content and soil C fractions (hot water C, particulate organic C, particulate organic C bound in aggregates and C bound to mineral soil) were studied. After 1 year, the C content increased by 2–5%, but there was no effect of soil source or litter type. For all C fractions, the relationships between change in C content and initial C content were described by bell‐shaped curves. Easily available C fractions were saturated earlier than more recalcitrant fractions. Despite these saturation tendencies in individual soil organic matter pools, the soil was evidently far from saturation after 50 years of soil development. The decrease in C sequestration with soil age previously observed for this soil was probably caused by a decrease in litter input rather than by C saturation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Total soil organic‐carbon (SOC) stocks for grassland soils in Flanders (N Belgium) were determined for the Kyoto Protocol reference year 1990 and 2000 in order to investigate whether these soils have been CO2 sinks or sources during that period. The stocks were calculated by means of detailed SOC datasets, which were available at the community scale for the whole of Flanders. The total SOC stocks for Flemish grassland soils (1 m depth) were estimated at 38 Mt SOC in 1990 and 34 Mt SOC in 2000. The loss of SOC resulted from a decrease in the SOC content of grassland soils (71%) and could also partly (29%) be explained by a decline in grassland area. Significant decreases in %SOC for the 0–6 cm depth layer were found for the 1990s for the coarser‐textured soils with SOC losses ranging between –0.3% and –0.5% over the 10 y period. Specific management practices that disturb the SOC balance such as conversion to temporary grassland and a reduction of animal‐manure application are hypothesized to have contributed to the observed loss of SOC stocks. We furthermore conducted an analysis of uncertainty of the 1990 and 2000 grassland SOC–stocks calculation using Monte Carlo analysis. Probability‐distribution functions were determined for each of the inputs of the SOC‐stock calculation, enabling us to assess the uncertainty on the 1990 and 2000 SOC stocks. The frequency distributions of these simulated stocks both closely approached lognormal distributions, and their 95%‐confidence intervals ranged between 150% and 50% of the calculated mean SOC stock. The standard error on the measured decrease in SOC stocks in Flemish grassland soils during the 1990s was calculated to be 7–8 Tg SOC, which is equivalent to twice this decrease. This clearly shows that large‐scale changes in SOC stocks are uncertainty‐ridden, even when they are based on detailed datasets.  相似文献   

8.
Abstract. The purpose of the study was to determine the soil organic carbon (SOC) stock for Flanders, Belgium and to evaluate various methods for assessing SOC stock. The assessment methods first determined the SOC density (C mass per unit area) for pedons in a database of soil properties, and then spatially distributed the SOC density to soil and soil/land use categories on a map. The results showed that the pedon SOC density is influenced by drainage class, texture and land use/land cover. The SOC density estimation method significantly influences results and leads to differences of up to 6% in total estimated SOC stock for Flanders. Use of various spatial distributing methods creates differences of up to 2% in total estimated SOC stock. The largest difference in SOC stock estimate between any combination of assessment methods was 7% (125.6 Tg vs 134.9 Tg). These findings emphasize the importance of complete spatial soil databases of high quality that reduce uncertainty of estimates for use in research examining the role of soils in the C cycle. The results indicate that the need for these databases is greater than the need to standardize methods to determine the spatial distribution of SOC. A map of the distribution of SOC density shows that in Flanders a large proportion of SOC is stored in sandy soils in the north of the territory.  相似文献   

9.
Reclaimed coal mine lands have the potential to sequester atmospheric carbon (C); however, limited information exists for the western USA coalfields. This study was carried out on two chronosequences (BA‐C3 grasses and DJ‐shrubs) of reclaimed sites at two surface coal mines to determine the effects of vegetation, soil texture, and lignin content on soil total organic carbon (TOC) accumulations. In the BA chronosequence, TOC increased over 26 years at an average rate of 0·52 Mg C ha−1 yr−1 in the 0–30 cm depth and was significantly correlated with clay content. Comparison between < 1 and 16‐year‐old stockpile soils indicated TOC content did not differ significantly. In the DJ chronosequence, TOC content in the 0–30 cm depth declined from 31·3 Mg ha−1 in 5‐year‐old soils to 23·4 Mg ha−1 in 16‐year‐old soils. The C:N ratios suggested that some (up to 2·0 per cent) of the TOC was potentially derived from coal particles in these reclaimed soils. Soil total N (TN) contents followed a similar trend as TOC with TOC and TN concentrations strongly correlated. Lignin contents in TOC of all reclaimed soils and topsoil stockpiles (TSs) were higher than that of nearby undisturbed soils, indicating the recalcitrant nature of TOC in reclaimed soils and/or possibly the slow recovery of lignin degrading organism. Results indicated that TOC accumulations in DJ were largely controlled by its composition, particular lignin content. In BA sites TOC accumulation was strongly influenced by both clay and lignin contents. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
No‐till (NT) farming can restore the soil organic carbon (SOC) pool of agricultural soils, but the SOC pool size and retention rate can vary with soil type and duration of NT. Therefore, the objectives of this study were to determine the effects of NT and soil drainage characteristics on SOC accumulation across a series of NT fields on Alfisols in Ohio, USA. Sites under NT for 9 (NT9), 13 (NT13), 36 (NT36), 48 (NT48) and 49 (NT49) years were selected for the study. Soil was somewhat poorly drained at the NT48 site but moderately well drained at the other sites. The NT48 and NT49 on‐station sites were under continuous corn (Zea mays), while the other sites were farmers' fields in a corn–soybean (Glycine max) rotation. At each location, the SOC pool (0–30 cm) in the NT field was compared to that of an adjacent plough‐till (PT) and woodlot (WL). At the NT36, NT48 and NT49 sites, the retention rate of corn‐derived C was determined using stable C isotope (13C) techniques. In the 0‐ to 10‐cm soil layer, SOC concentration was significantly larger under NT than PT, but a tillage effect was rarely detected below that depth. Across sites, the SOC pool in that layer averaged 36.4, 20 and 40.8 Mg C/ha at the NT, PT and WL sites, respectively. For the 0‐ to 30‐cm layer, the SOC pool for NT (83.4 Mg C/ha) was still 57% greater than under PT. However, there was no consistent trend in the SOC pool with NT duration probably due to the legacy of past management practices and SOC content differences that may have existed among the study sites prior to their conversion to NT. The retention rate of corn‐derived C was 524, 263 and 203 kg C/ha/yr at the NT36, NT48 and NT49 sites. In contrast, the retention rate of corn‐C under PT averaged 25 and 153 kg C/ha/yr at the NT49 (moderately well‐drained) and NT48 (somewhat poorly drained) sites, respectively. The conversion from PT to NT resulted in greater retention of corn‐derived C. Thus, adoption of NT would be beneficial to SOC sequestration in agricultural soils of the region.  相似文献   

11.
施肥措施对复垦土壤团聚体碳氮含量和作物产量的影响   总被引:3,自引:1,他引:3  
研究复垦后不同施肥措施下有机碳(OC)和全氮(TN)在水稳性团聚体及粉黏粒组分中的分布特征,以期深入理解不同施肥措施下土壤有机碳的固持机制。以生土和连续6年不同施肥措施的复垦土壤为研究对象,采集0~20 cm耕层土壤样品,利用湿筛法进行土壤粒径分组,分析大粒径大团聚体(> 2 mm)、小粒径大团聚体(>0.25~2 mm)、微团聚体(0.053~0.25 mm)和粉黏粒组分(<0.053 mm)中OC和TN含量,判断各粒径团聚体及粉黏粒组分中有机碳储量的驱动因素,探究团聚体及粉黏粒组分中有机碳含量与作物产量之间的关系。试验设不施肥(CK)、施氮磷钾化肥(NPK)、单施有机肥(M)和有机无机肥配施(MNPK)4个处理。结果表明:1)整个试验周期(2008—2013年),同CK相比,NPK、M以及MNPK处理均显著提高了玉米籽粒产量,且以MNPK处理的效果最显著,分别提高了79.49%、116.07%和113.85%。2)大团聚体和微团聚体中OC和TN含量相近,总体高于粉黏粒组分。同生土相比,CK、NPK和M处理均显著提高了>0.25~2、0.053~0.25 mm...  相似文献   

12.
黑土有机质含量丰富,但随着农业活动加剧,以及黑土区低温特性的限制,土壤有机质大量流失。不同有机物料还田是提升土壤有机质的重要方式,然而目前仍缺少对不同有机物料还田具体恢复效果及过程的评价。该研究使用Meta分析的方法,对2000年1月—2022年9月经同行评议的文章进行整合分析,综合了41篇文献中2 012个观测值,设定低、中、高年限及碳投入量,评估秸秆还田和有机肥还田对黑土土壤有机碳固存的影响。结果表明,有机肥还田处理的土壤有机碳、土壤总氮、土壤总磷含量均高于秸秆还田。随着处理年限的增加,有机肥还田对于土壤有机碳含量的增加效果优于秸秆还田。此外,不同碳投入的条件下,有机物料还田对于土壤碳固存影响不同,其中在中碳投入的条件下,有机肥还田有机碳含量(65.62%)显著高于秸秆还田(20.07%)。21 a以上的长期中碳投入下有机肥还田更有利于黑土土壤有机碳固存的增加。该研究为黑土区有机物料还田的选择提供科学依据。  相似文献   

13.
稻草及其制备的生物质炭对土壤团聚体有机碳的影响   总被引:11,自引:0,他引:11  
向土壤中添加生物质炭已被认为是改善土壤质量,增加碳吸存的有效措施。通过模拟实验,利用同位素δ13C标记技术,研究稻草及其制备的生物质炭添加对土壤团聚体有机碳的影响。结果表明:稻草和生物质炭对土壤团聚体中新形成碳和原有机碳的影响截然不同。培养112 d,来自稻草或生物质炭的新碳主要进入到中团聚体(50 ~ 250 μm)中,比例为70.3% ~ 75.3%。与对照土壤相比,稻草添加显著促进了大团聚体(250 ~ 2 000 μm)原有机碳的分解(p <0.05),但对中团聚体和微团聚体(<50 μm)原有机碳的影响并不明显,而生物质炭添加(SB250和SB350)则对大团聚体和中团聚体原有机碳没有显著影响,但SB250处理(土壤中加入250℃热解制备的生物质炭)显著抑制了微团聚体原有机碳的分解(p <0.05),而SB350处理(土壤中加入350℃热解制备的生物质炭)的则无影响。对于同一粒级团聚体,稻草与生物质炭处理的区别,主要体现在新碳分配上,而对原有机碳的影响并不显著。  相似文献   

14.
试验依托东北农业大学盐碱土长期定位试验站(始建于1995年),研究不同施肥年限下草甸碱土水稳性团聚体含量及其碳、氮分配规律。结果表明,长期施用有机肥可以显著增加0.25 mm水稳性团聚体的含量52.3%~60.8%,0.5~0.25 mm粒级的水稳性团聚体随着种植和有机肥施用年限的提高显著增加。施肥5年后,草甸碱土土壤团聚体中有机碳和全氮含量开始呈现稳中有升的趋势。大团聚体对有机碳和全氮的贡献率分别为47.9%~89.3%和52.9%~82.1%。5 mm和5~2 mm粒级的团聚体中有机碳和全氮含量与该粒级团聚体数量均呈显著性正相关。连续5年高量有机肥的投入,已经对草甸碱土培肥改良起到了显著效果,此后维持正常的施入量即可。  相似文献   

15.
Information on the effects of halophyte communities on soil organic carbon(SOC)is useful for sequestrating C in arid regions.In this study,we identified four typical natural halophyte communities in the Manasi River Basin in Xinjiang Province,Northeast China,namely,Karelinia caspia(Pall.)Less.,Bassia dasyphylla(Fisch.et C.A.Mey.)Kuntze,Haloxylon ammodendron(C.A.Mey.)Bunge,and Tamarix ramosissima Lour.We compared soil aggregation and aggregated-associated SOC under these communities.The aggregate fraction of 0.053–0.25 mm accounted for 47%–75%of the total soil mass,significantly more than the>0.25 and<0.053 mm fractions,under all the halophyte communities.Significant differences in soil aggregate size distribution were observed among the plant communities,with the H.ammodendron and B.dasyphylla communities showing the highest proportions of>0.25 mm aggregates(13.3%–43.8%)and T.ramosissima community having more<0.053 mm aggregates(14.1%–27.2%).Aggregate-associated SOC concentrations were generally the highest in the>0.25 mm fraction,followed by the<0.053 mm fraction,and were the lowest in the 0.053–0.25 mm fraction;however,because of their large mass,0.25–0.053 mm aggregates contributed significantly more to the total SOC.Total SOC concentrations(0–60 cm depth)decreased in the order of H.ammodendron(5.7 g kg^-1)>T.ramosissima(4.9 g kg^-1)>K.caspia(4.2 g kg^-1)>B.dasyphylla(3.4 g kg^-1).The H.ammodendron community had the highest total SOC and aggregate-associated SOC,which was primarily because aggregate-associated SOC content at the 0–10 and 10–20 cm depths under this community were higher than those under other plant communities.The H.ammodendron community could be beneficial for increasing SOC in saline soils in the arid region.  相似文献   

16.
Soil carbon (C) sequestration is important to the mitigation of increasing atmospheric concentration of CO2. This study was conducted to assess soil aggregation and C concentration under different management practices. The effects of crop rotation, manure application and tillage were investigated for 0–5 and 5–10 cm depths on two silt loam soils (fine-loamy, mixed, active, mesic Aquic Fragiudalfs and fine-loamy, mixed, active, mesic Aeric Fragiadalf) in Geauga and Stark Counties, respectively, in northeastern Ohio, USA. Wet sieve analysis and gravity fractionation techniques were used to separate samples in aggregate and particle size groups, respectively. In the Stark County farms water stable aggregate (WSA) is higher in wooded (W) controls (WSA = 94.8%) than in cultivated soils with poultry manure (PM, 78.7%) and with chemical fertilizers (CF, 79.0%). Manure applications did not increase aggregation compared to unmanured soils. The C concentrations (%) within aggregates (Cagg) are higher in W than in cultivated soils (W = 5.82, PM = 2.11, CF = 1.96). Soil C (%) is enriched in the clay (W = 9.87, PM = 4.17, CF = 4.21) compared to silt (4.26, 1.04 and 0.98, respectively) and sand (0.93, 0.14 and 0.32, respectively) fractions. In the Geauga County farm, continuous corn (CC) with conventional tillage has lower WSA (83.1%) than soils with rotations (R) (93.9%), dairy manure (DM) application (93.2%) and no-till (NT) (91.1%). The C concentrations within macroaggregates (Cagg) were higher in W soils (4.84%) than in cultivated soils (ranging from 2.65 to 1.75%). The C (%) is enriched in clay (W = 8.56, CC = 4.18, R = 5.17, DM = 5.73, NT = 4.67) compared to silt (W = 2.35, CC = 0.90, R = 0.96, DM = 1.57, NT = 1.06) and sand (W = 0.44, CC = 0.33, R = 0.13, DM = 0.41, NT = 0.18). Cultivation decreased C concentration whereas reduced tillage, rotation and manure enhanced C concentration in soil.  相似文献   

17.
Soil organic carbon (SOC) modelling is a useful approach to assess the impact of nutrient management on carbon sequestration. RothC was parameterized and evaluated with two long‐term experiments comparing different fertilizer treatments in north (Zhengzhou) and northeast (Gongzhuling) China. Four nutrient application treatments were used: no fertilizer (Control), mineral nitrogen–phosphorus–potassium fertilizers (NPK), NPK mineral fertilizer plus manure (NPKM), and NPK mineral fertilizer plus straw return (NPKS). The comparison between simulated and observed data showed that the model can adequately simulate SOC contents in the Control, NPK and NPKM treatments but overestimated in the NPKS treatment at both sites. By changing the value of decomposable plant material:resistant plant material (DPM:RPM) ratio from the default value to 3.35 for the NPKS treatment at the Zhengzhou site, dynamics of simulated SOC agreed with measured values. A pseudo‐parameter, straw retention factor was introduced to adjust the amount of straw incorporated into soils. Using the inverse simulation method and the modified value of the ratio, the best‐fitted value was 0.24 for the NPKS treatment at the Gongzhuling site. This result indicated that retaining straw on the soil surface makes less contribution to carbon sequestration than if it is incorporated. With this modification for straw, the model produced reasonable predictions for the two sites. The model was run for another 30 years with the modified parameter values and current average climatic conditions for different fertilizer treatments at both sites. The results suggested that the NPK application plus the addition of manure or straw would be better management practices for carbon sequestration.  相似文献   

18.
Abstract

The content of soil organic carbon (SOC) and total nitrogen (Ntot) was studied in a long-term field experiment with a three-field crop rotation (potato – spring wheat – spring barley) set up on arable sandy loam Stagnic Albeluvisol at Eerika, Tartu, Estonia. The studied factors were: (A) organic fertilizers with three treatments: (i) without organic fertilizer, (ii) farmyard manure (60 t ha?1) used in every third year, and (iii) different organic (alternative) fertilizers (beet leaves + straw; pure beet leaves; slurry + straw; cereal straw) and (B) mineral nitrogen fertilizer with the rates: N-0; N-40; N-80; N-120 and N-160 kg ha?1. The study years were 1993, 1996 and 1999. The average content of SOC (1.03%) was significantly influenced by the use of organic fertilizers. Only Ntot (mean value 0.110%) was influenced also by fertilization with mineral nitrogen. The C/N ratio (mean value 9.5) reflected changes in the content of SOC and Ntot  相似文献   

19.
Abstract

Limited information is available for understanding factors controlled dynamics of soil organic carbon (SOC) and total nitrogen (TN) affected by long-term conventional cultivation in seasonally frozen soils. A 19-year observation in this study was conducted in north-eastern China to evaluate effects and relative importance of potential factors. SOC variation extent was greater relative to global average as per unit of annual mean air temperature and precipitation changed. Increased carbon sequestration was observed in meadow lessive, while slight to moderate declines occurred in meadow-boggy soil and meadow soil. However, no differences in TN were found across soil types. At sites with low slope, carbon and nitrogen sequestration increased, largely due to water movement. Increased biomass with introducing 1-year oilseed rape/fallow in crop rotations could promote SOC and TN accumulation in the long run. Planting proportion of crops could also regulate carbon and nitrogen levels at a farm scale; the optimal ratio was observed in the range of 0.8–1.4. High crop yield was associated with lower carbon and nitrogen levels, and nutrient thresholds of yielding increment were observed as 25.7 g kg?1 for carbon and 2.6 g kg?1 for nitrogen. The length of frost-free period or cultivation period could not help sequestrating carbon and nitrogen. Chemical fertilizer with crop residues provoked SOC and TN increments compared with no chemical fertilizer plus little organic manure. Different factors exerted different tendentious influences, leading to subtle differences in SOC and TN variation rates. Accordingly, optimal cultivation strategies could be developed to reduce nutrient losses and mitigate greenhouse gas emissions.  相似文献   

20.
A calcareous and clayey xeric Chromic Haploxerept of a long‐term experimental site in Sicily (Italy) was sampled (0–15 cm depth) under different land use management and cropping systems (CSs) to study their effect on soil aggregate stability and organic carbon (SOC). The experimental site had three tillage managements (no till [NT], dual‐layer [DL] and conventional tillage [CT]) and two CSs (durum wheat monocropping [W] and durum wheat/faba bean rotation [WB]). The annually sequestered SOC with W was 2·75‐times higher than with WB. SOC concentrations were also higher. Both NT and CT management systems were the most effective in SOC sequestration whereas with DL system no C was sequestered. The differences in SOC concentrations between NT and CT were surprisingly small. Cumulative C input of all cropping and tillage systems and the annually sequestered SOC indicated that a steady state occurred at a sequestration rate of 7·4 Mg C ha−1 y−1. Independent of the CSs, most of the SOC was stored in the silt and clay fraction. This fraction had a high N content which is typical for organic matter interacting with minerals. Macroaggregates (>250 µm) and large microaggregates (75–250 µm) were influenced by the treatments whereas the finest fractions were not. DL reduced the SOC in macroaggregates while NT and CT gave rise to higher SOC contents. In Mediterranean areas with Vertisols, agricultural strategies aimed at increasing the SOC contents should probably consider enhancing the proportion of coarser soil fractions so that, in the short‐term, organic C can be accumulated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号