首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the solar system, the planets' compositions vary with orbital distance, with rocky planets in close orbits and lower-density gas giants in wider orbits. The detection of close-in giant planets around other stars was the first clue that this pattern is not universal and that planets' orbits can change substantially after their formation. Here, we report another violation of the orbit-composition pattern: two planets orbiting the same star with orbital distances differing by only 10% and densities differing by a factor of 8. One planet is likely a rocky "super-Earth," whereas the other is more akin to Neptune. These planets are 20 times more closely spaced and have a larger density contrast than any adjacent pair of planets in the solar system.  相似文献   

2.
Stars in their late stage of evolution, such as horizontal branch stars, are still largely unexplored for planets. We detected a planetary companion around HIP 13044, a very metal-poor star on the red horizontal branch, on the basis of radial velocity observations with a high-resolution spectrograph at the 2.2-meter Max-Planck Gesellschaft-European Southern Observatory telescope. The star's periodic radial velocity variation of P = 16.2 days caused by the planet can be distinguished from the periods of the stellar activity indicators. The minimum mass of the planet is 1.25 times the mass of Jupiter and its orbital semimajor axis is 0.116 astronomical units. Because HIP 13044 belongs to a group of stars that have been accreted from a disrupted satellite galaxy of the Milky Way, the planet most likely has an extragalactic origin.  相似文献   

3.
Boss AP 《Science (New York, N.Y.)》1995,267(5196):360-362
The sensitivities of astrometric and radial velocity searches for extrasolar planets are strongly dependent on planetary masses and orbits. Because most nearby stars are less massive than the sun, the first detection is likely to be of a Jupiter-mass planet orbiting a low-mass star, with a possible theoretical expectation being that Jupiter-like planets will be found much closer [inside the Earth-sun separation of 1 astronomical unit (AU)] to these low-luminosity stars than Jupiter is to the sun (5.2 AU). However, radiative hydrodynamic models of protoplanetary disks around low-mass stars (of 0.1 to 1 solar mass) show that Jupiter-like planets should form at distances (approximately 4 to 5 AU) that are only weakly dependent on the stellar mass.  相似文献   

4.
We present the discovery by optical and near-infrared imaging of an extremely red, low-luminosity population of isolated objects in the young, nearby stellar cluster around the multiple, massive star final sigma Orionis. The proximity (352 parsecs), youth (1 million to 5 million years), and low internal extinction make this cluster an ideal site to explore the substellar domain from the hydrogen mass limit down to a few Jupiter masses. Optical and near-infrared low-resolution spectroscopy of three of these objects confirms the very cool spectral energy distribution (atmospheric effective temperatures of 1700 to 2200 kelvin) expected for cluster members with masses in the range 5 to 15 times that of Jupiter. Like the planets of the solar system, these objects are unable to sustain stable nuclear burning in their interiors, but in contrast they are not bound to stars. This new kind of isolated giant planet, which apparently forms on time scales of less than a few million years, offers a challenge to our understanding of the formation processes of planetary mass objects.  相似文献   

5.
The evolution of gravitationally unstable protoplanetary gaseous disks has been studied with the use of three-dimensional smoothed particle hydrodynamics simulations with unprecedented resolution. We have considered disks with initial masses and temperature profiles consistent with those inferred for the protosolar nebula and for other protoplanetary disks. We show that long-lasting, self-gravitating protoplanets arise after a few disk orbital periods if cooling is efficient enough to maintain the temperature close to 50 K. The resulting bodies have masses and orbital eccentricities similar to those of detected extrasolar planets.  相似文献   

6.
Searches for extrasolar planets have uncovered an astonishing diversity of planetary systems, yet the frequency of solar system analogs remains unknown. The gravitational microlensing planet search method is potentially sensitive to multiple-planet systems containing analogs of all the solar system planets except Mercury. We report the detection of a multiple-planet system with microlensing. We identify two planets with masses of approximately 0.71 and approximately 0.27 times the mass of Jupiter and orbital separations of approximately 2.3 and approximately 4.6 astronomical units orbiting a primary star of mass approximately 0.50 solar mass at a distance of approximately 1.5 kiloparsecs. This system resembles a scaled version of our solar system in that the mass ratio, separation ratio, and equilibrium temperatures of the planets are similar to those of Jupiter and Saturn. These planets could not have been detected with other techniques; their discovery from only six confirmed microlensing planet detections suggests that solar system analogs may be common.  相似文献   

7.
Future surveys for transiting extrasolar planets are expected to detect hundreds of jovian-mass planets and tens of terrestrial-mass planets. For many of these newly discovered planets, the intervals between successive transits will be measured with an accuracy of 0.1 to 100 minutes. We show that these timing measurements will allow for the detection of additional planets in the system (not necessarily transiting) by their gravitational interaction with the transiting planet. The transit-time variations depend on the mass of the additional planet, and in some cases terrestrial-mass planets will produce a measurable effect. In systems where two planets are seen to transit, the density of both planets can be determined without radial-velocity observations.  相似文献   

8.
Close-in giant planets (e.g., "hot Jupiters") are thought to form far from their host stars and migrate inward, through the terrestrial planet zone, via torques with a massive gaseous disk. Here we simulate terrestrial planet growth during and after giant planet migration. Several-Earth-mass planets also form interior to the migrating jovian planet, analogous to recently discovered "hot Earths." Very-water-rich, Earth-mass planets form from surviving material outside the giant planet's orbit, often in the habitable zone and with low orbital eccentricities. More than a third of the known systems of giant planets may harbor Earth-like planets.  相似文献   

9.
Combination of two types of radar data shows the orbital plane and equator of Venus to be included by less than 2 degrees, and the sidereal rotation period to be 243.09 +/- 0.18 days (retrograde)-remarkably close to the 243.16-day period for which the spin would be in resonance with the relative orbital motions of Earth and Venus. In this resonance, Venus would make, on average, four axial rotations as seen by an Earth observer between successive close approaches of the two planets. Estimates of the instantaneous spin period, accurate within about 0.01 day, would provide important information on the difference of Venus's equatorial moments of inertia, on their orientation, and on the magnitude of the tidal torque exerted on Venus by the sun.  相似文献   

10.
Hubble Space Telescope imaging observations of two nearby brown dwarfs, DENIS-P J1228.2-1547 and Kelu 1, made with the near-infrared camera and multiobject spectrometer (NICMOS), show that the DENIS object is resolved into two components of nearly equal brightness with a projected separation of 0.275 arc second (5 astronomical units for a distance of 18 parsecs). This binary system will be able to provide the first dynamical measurement of the masses of two brown dwarfs in only a few years. Upper limits to the mass of any unseen companion in Kelu 1 yield a planet of 7 Jupiter masses aged 0. 5 x 10(9) years, which would have been detected at a separation larger than about 4 astronomical units. This example demonstrates that giant planets could be detected by direct imaging if they exist in Jupiter-like orbits around nearby young brown dwarfs.  相似文献   

11.
The existence of a dominant massive planet, Jupiter, in our solar system, although perhaps essential for long-term dynamical stability and the development of life, may not be typical of planetary systems that form around other stars. In a system containing two Jupiter-like planets, the possibility exists that a dynamical instability will develop. Computer simulations suggest that in many cases this instability leads to the ejection of one planet while the other is left in a smaller, eccentric orbit. In extreme cases, the eccentric orbit has a small enough periastron distance that it may circularize at an orbital period as short as a few days through tidal dissipation. This may explain the recently detected Jupiter-mass planets in very tight circular orbits and wider eccentric orbits around nearby stars.  相似文献   

12.
The spins of the terrestrial planets likely arose as the planets formed by the accretion of planetesimals. Depending on the masses of the impactors, the planet's final spin can either be imparted by many small bodies (ordered accretion), in which case the spin is determined by the mean angular momentum of the impactors, or by a few large bodies (stochastic accretion), in which case the spin is a random variable whose distribution is determined by the root-mean-square angular momentum of the impactors. In the case of ordered accretion, the planet's obliquity is expected to be near 0 degrees or 180 degrees , whereas, if accretion is stochastic, there should be a wide range of obliquities. Analytic arguments and extensive orbital integrations are used to calculate the expected distributions of spin rate and obliquity as a function of the planetesimal mass and velocity distributions. The results imply that the spins of the terrestrial planets are determined by stochastic accretion.  相似文献   

13.
Present theories of terrestrial planet formation predict the rapid ;;runaway formation' of planetary embryos. The sizes of the embryos increase with heliocentric distance. These embryos then merge to form planets. In earlier Monte Carlo simulations of the merger of these embryos it was assumed that embryos did not form in the asteroid belt, but this assumption may not be valid. Simulations in which runaways were allowed to form in the asteroid belt show that, although the initial distributions of mass, energy, and angular momentum are different from those observed today, during the growth of the planets these distributions spontaneously evolve toward those observed, simply as a result of known solar system processes. Even when a large planet analogous to ;;Jupiter' does not form, an Earth-sized planet is almost always found near Earth's heliocentric distance. These results suggest that occurrence of Earth-like planets may be a common feature of planetary systems.  相似文献   

14.
Stochastic late accretion to Earth, the Moon, and Mars   总被引:1,自引:0,他引:1  
Core formation should have stripped the terrestrial, lunar, and martian mantles of highly siderophile elements (HSEs). Instead, each world has disparate, yet elevated HSE abundances. Late accretion may offer a solution, provided that ≥0.5% Earth masses of broadly chondritic planetesimals reach Earth's mantle and that ~10 and ~1200 times less mass goes to Mars and the Moon, respectively. We show that leftover planetesimal populations dominated by massive projectiles can explain these additions, with our inferred size distribution matching those derived from the inner asteroid belt, ancient martian impact basins, and planetary accretion models. The largest late terrestrial impactors, at 2500 to 3000 kilometers in diameter, potentially modified Earth's obliquity by ~10°, whereas those for the Moon, at ~250 to 300 kilometers, may have delivered water to its mantle.  相似文献   

15.
The distribution of chemical elements in primitive meteorites (chondrites), as building blocks of terrestrial planets, provides insight into the formation and early differentiation of Earth. The processes that resulted in the depletion of some elements [such as chromium (Cr)] in the bulk silicate Earth relative to chondrites, however, remain debated between leading candidate causes: volatility versus core partitioning. We show through high-precision measurements of Cr stable isotopes in a range of meteorites, which deviate by up to ~0.4 per mil from those of the bulk silicate Earth, that Cr depletion resulted from its partitioning into Earth's core, with a preferential enrichment in light isotopes. Ab initio calculations suggest that the isotopic signature was established at mid-mantle magma ocean depth as Earth accreted planetary embryos and progressively became more oxidized.  相似文献   

16.
Mars, like Earth, may have received its volatiles in the final stages of accretion, as a veneer of volatile-rich material similar to C3V carbonaceous chondrites. The high (40)Ar/(36)Ar ratio and low (36)Ar abundance on Mars, compared to data for other differentiated planets, suggest that Mars is depleted in volatiles relative to Earth-by a factor of 1.7 for K and 14 other moderately volatile elements and by a factor of 35 for (36)Ar and 15 other highly volatile elements. Using these two scaling factors, we have predicted martian abundances of 31 elements from terrestrial abundances. Comparison with the observed (36)Ar abundance suggests that outgassing on Mars has been about four times less complete than on Earth. Various predictions of the model can be checked against observation. The initial abundance of N, prior to escape, was about ten times the present value of 0.62 ppb, in good agreement with an independent estimate based on the observed enhancement in the martian (15)N/(14)N ratio (78,79). The initial water content corresponds to a 9-m layer, close to the value of >/=13 m inferred from the lack of an (18)O/(16)O fractionation (75). The predicted crustal Cl/S ratio of 0.23 agrees exactly with the value measured for martian dust (67); we estimate the thickness of this dust layer to be about 70 m. The predicted surface abundance of carbon, 290 g/cm(2), is 70 times greater than the atmospheric CO(2) value, but the CaCO(3) content inferred for martian dust (67) could account for at least one-quarter of the predicted value. The past atmospheric pressure, prior to formation of carbonates, could have been as high as 140 mbar, and possibly even 500 mbar. Finally, the predicted (129)Xe/(132)Xe ratio of 2.96 agrees fairly well with the observed value of 2.5(+2)(-1) (85). From the limited data available thus far, a curious dichotomy seems to be emerging among differentiated planets in the inner solar system. Two large planets (Earth and Venus) are fairly rich in volatiles, whereas three small planets (Mars, the moon, and the eucrite parent body-presumably the asteroid 4 Vesta) are poorer in volatiles by at least an order of magnitude. None of the obvious mechanisms seems capable of explaining this trend, and so we can only speculate that the same mechanism that stunted the growth of the smaller bodies prevented them from collecting their share of volatiles. But why then did the parent bodies of the chondrites and shergottites fare so much better? One of the driving forces behind the exploration of the solar system has always been the realization that these studies can provide essential clues to the intricate network of puzzles associated with the origin of life and its prevalence in the universe. In our own immediate neighborhood, Mars has always seemed to be the planet most likely to harbor extraterrestrial life, so the environment we have found in the vicinity of the two Viking landers is rather disappointing in this context. But the perspective we have gained through the present investigation suggests that this is not a necessary condition for planets at the distance of Mars from a solar-type central star. In other words, if it turns out that Mars is completely devoid of life, this does not mean that the zones around stars in which habitable planets can exist are much narrower than has been thought (114). Suppose Mars had been a larger planet-the size of Earth or Venus-and therefore had accumulated a thicker veneer and had also developed global tectonic activity on the scale exhibited by Earth. A much larger volatile reservoir would now be available, there would be repeated opportunities for tapping that reservoir, and the increased gravitational field would limit escape from the upper atmosphere. Such a planet could have produced and maintained a much thicker atmosphere, which should have permitted at least an intermittently clement climate to exist. How different would such a planet be from the present Mars? Could a stable, warm climate be maintained? It seems conceivable that an increase in the size of Mars might have compensated for its greater distance from the sun and that the life zone around our star would have been enlarged accordingly.  相似文献   

17.
Irregular length of day (LOD) fluctuations on time scales of less than a few years are largely produced by atmospheric torques on the underlying planet. Significant coherence is found between the respective time series of LOD and atmospheric angular momentum (AAM) determinations at periods down to 8 days, with lack of coherence at shorter periods caused by the declining signal-to-measurement noise ratios of both data types. Refinements to the currently accepted model of tidal Earth rotation variations are required, incorporating in particular the nonequilibrium effect of the oceans. The remaining discrepancies between LOD and AAM in the 100- to 10-day period range may be due to either a common error in the AAM data sets from different meteorological centers, or another component of the angular momentum budget.  相似文献   

18.
In addition to its search for extrasolar planets, the NASA Kepler mission provides exquisite data on stellar oscillations. We report the detections of oscillations in 500 solar-type stars in the Kepler field of view, an ensemble that is large enough to allow statistical studies of intrinsic stellar properties (such as mass, radius, and age) and to test theories of stellar evolution. We find that the distribution of observed masses of these stars shows intriguing differences to predictions from models of synthetic stellar populations in the Galaxy.  相似文献   

19.
It has been assumed that Nb and Ta are not fractionated during differentiation processes on terrestrial planets and that both elements are lithophile. High-precision measurements of Nb/Ta and Zr/Hf reveal that Nb is moderately siderophile at high pressures. Nb/Ta values in the bulk silicate Earth (14.0 +/- 0.3) and the Moon (17.0 +/- 0.8) are below the chondritic ratio of 19.9 +/- 0.6, in contrast to Mars and asteroids. The lunar Nb/Ta constrains the mass fraction of impactor material in the Moon to less than 65%. Moreover, the Moon-forming impact can be linked in time with the final core-mantle equilibration on Earth 4.533 billion years ago.  相似文献   

20.
The Kepler spacecraft has been monitoring the light from 150,000 stars in its primary quest to detect transiting exoplanets. Here, we report on the detection of an eclipsing stellar hierarchical triple, identified in the Kepler photometry. KOI-126 [A, (B, C)], is composed of a low-mass binary [masses M(B) = 0.2413 ± 0.0030 solar mass (M(⊙)), M(C) = 0.2127 ± 0.0026 M(⊙); radii R(B) = 0.2543 ± 0.0014 solar radius (R(⊙)), R(C) = 0.2318 ± 0.0013 R(⊙); orbital period P(1) = 1.76713 ± 0.00019 days] on an eccentric orbit about a third star (mass M(A) = 1.347 ± 0.032 M(⊙); radius R(A) = 2.0254 ± 0.0098 R(⊙); period of orbit around the low-mass binary P(2) = 33.9214 ± 0.0013 days; eccentricity of that orbit e(2) = 0.3043 ± 0.0024). The low-mass pair probe the poorly sampled fully convective stellar domain offering a crucial benchmark for theoretical stellar models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号