首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Dissipation of seven pyrethroid insecticides under field conditions was evaluated on green beans, zucchinis, and peppers grown in experimental greenhouses (Almería, Spain). Pyrethroid residues were determined by high performance liquid chromatography using continuous on-line post-elution photoirradiation with fluorescence detection after dichloromethane extraction and cleanup on florisil phase cartridges. Mathematically defined decline curves were established by determining optimal relationships between pyrethroid residues and time. Different models were used to find these curves. The 1st-order model achieved the best adjustment to the experimental data in 42.9% of cases. The RF (root function) 1st-order model was the best in 33.3% of times. Each of the 1.5th- and 2nd-order models provided the best adjustment in a 9.5% of the cases. Finally, the RF 1.5th-order model was the most appropriate in only 4.8% of cases. Half-life times for these three vegetables were estimated from the optimal models. The preharvest intervals for the residues in these three vegetables was obtained, taking into account the maximum residue levels established by the existing legislation. They were all lower than the ones specified by the makers of commercial formulates, which ensures a safe enough consumption.  相似文献   

2.
Residues of the fungicides vinclozolin and procymidone, used to control the Botrytis cinerea disease, were studied in greenhouse grown lettuce, tomato and cucumber. Residue concentrations differed between the species of treated vegetables, and depended mostly on time of picking (harvest), size of fruits and mode of chemical application. The differences in concentration between one and two applications became smaller with time after application. The greatest differences occurred in lettuce. The residue contents in cucumber fruits assigned both for industrial and home processing (pickling) were higher than the legal limit (3 mg/kg). As a result of washing cucumbers, 22–24% of the residue was eliminated, and by peeling them 79–85% of the vinclozolin and procymidone residues were eliminated. Therefore it is reasonable that one or two applications of these fungicides should be used, with a time lapse of 14 days, but only with cucumbers intended for salad consumption. Vinclozolin residues, when used as vaporisation tablets, were in all cases 35–65% lower compared with the wettable powder (WP) formulation; however, the rate of of residue decrease was much slower. When applied in the form of vaporable tablets, the vinclozolin residue concentration was lower in all the sampled fruits in comparison with the WP formulation. The concentration of fungicide residues detected in winter tomato fruits was higher than that of the spring crop. Irrespective of vegetable the detected levels of fungicide residues were lower in ripe and bigger fruits than in green and smaller ones.  相似文献   

3.
A simple, rapid and sensitive multiresidue method has been developed for the determination in vegetables of organophosphorus pesticides commonly used in crop protection. Pesticide residues are extracted from samples with a small amount of ethyl acetate and anhydrous sodium sulfate. No additional concentration and cleanup steps are necessary. Analyses are performed by large volume GC injection using the through oven transfer adsorption desorption (TOTAD) interface. The calculated limits of detection for each pesticide injecting 50 microL of extract and using an NPD are lower than 0.35 microg/kg which is much lower than the maximum residues levels (MRLs) established by European legislation. Repeatability studies yielded a relative standard deviation lower than 10% in all cases. The method was applied to the analysis of eggplant, lettuce, pepper, cucumber, and tomato.  相似文献   

4.
植物声频控制技术在设施蔬菜生产中的应用   总被引:21,自引:3,他引:18  
植物声频控制技术是对植物施加一特定频率的声波处理,该声波要与植物自发声的频率相匹配,发生谐振,从而增强植物的光合作用和细胞分裂同步化,促进植物的生长发育,提早开花结实。该文概述了植物声频控制技术在设施蔬菜甜椒(Capsicum frutescens L.)、黄瓜(Cucumis sativus L.)和番茄(Lycopersion Mill)上的应用研究。试验结果表明,植物声频控制技术明显地提高了设施蔬菜的产量(甜椒、黄瓜、番茄分别增产63.05%、67.0%和13.2%),并增强了它们抗病虫害能力,与对照区相比,番茄处理区的红蜘蛛、蚜虫、灰霉病、晚疫病和病毒病分别下降了6、8、9、11和8个百分点。  相似文献   

5.
A total of 244 samples of cereals (wheat flour, rice, and maize), pulses (arhar, moong, gram, lentil, and black gram), spices (turmeric, chili, coriander, and black pepper), vegetables (potato, onion, spinach, cabbage, brinjal, and tomato), fruits (mango, guava, apple, and grape), milk, butter, Deshi ghee, and edible oils (vegetable, mustard, groundnut, and sesame) collected from different cities of Northern Province (Utter Pradesh) were analyzed by gas liquid chromatography for the presence of organochlorine pesticide residues. Residues of hexachlorocyclohexane (HCH) and 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane (DDT) were detected in about 85% of the total samples of cereals, spices, milk, butter, Deshi ghee, and edible oils analyzed in the present study. However, the residue levels were either very small (less than 0.06 ppm) or not detected at all in pulses, vegetables, and fruits as compared with very high concentrations in wheat flour (4.42 and 0.12 ppm), butter (1.19 and 4.85 ppm), mustard oil (1.26 and 2.42 ppm), Deshi ghee (1.10 and 3.84 ppm), vegetable oil (1.02 and 0.59 ppm), groundnut oil (0.51 and 1.49 ppm), and chili (0.48 and 1.92 ppm). The levels of HCH and DDT residues detected in rice, maize, turmeric, corlander, black pepper, and all the vegetables and fruits were also lower than those found in wheat flour, oil, and fat samples analyzed in the present study. These findings suggest that a restricted and controlled use of such persistent pesticides may be useful for decreasing their contamination levels in different food items.  相似文献   

6.
Different proportions of tomato waste compost (TWC) were combined with peat moss and vermiculite as growth substrates used to evaluate the quality of seedlings of economic vegetables, including tomato, hot pepper, cucumber and summer squash. The seeding substrates used were: (T0), vermiculite: peat moss: TWC (4: 1: 0, by weight), 0% TWC; (T1), vermiculite: peat: TWC (4: 0.75: 0.25), 5% TWC; (T2), vermiculite: peat: TWC (4: 0.5: 0.5), 10% TWC; (T3), vermiculite: peat: TWC (4: 0.25: 0.75), 15% TWC; and (T4), vermiculite: peat: TWC (4: 0: 1), 20% TWC. The best seedling response was recorded in substrate mixtures supplemented with 5% and 10% TWC, which hastened seed germination and improved seedling morphology. Since vegetable seedlings produced with TWC-amended substrate were of higher quality, compared to those produced exclusively on peat substrate, we suggest that TWC may be used to replace partially peat-based substrate used for vegetable transplants production in nurseries.  相似文献   

7.
ABSTRACT

Boron (B) toxicity is an important disorder that can limit plant growth on soils of arid and semi arid environments throughout the world. Although of considerable agronomic importance, our understanding of B toxicity is rather fragmented and limited. The effects of increasing levels of B (0, 0.5, 5, 50 mg kg? 1) on plant growth, proline accumulation, membrane permeability, nitrate reductase activity (NRA), and mineral nutrient interactions of tomato and pepper plants were investigated in greenhouse conditions. Increasing levels of B increased the B contents of plants. Boron toxicity symptoms occurred at 5 and 50 mg kg? 1 levels. Fresh and dry weights of the plants clearly decreased with the application of the 50 mg kg? 1 level of B. Membrane permeability and proline accumulation were significantly increased by the 50 mg kg? 1 level of B. Nitrate reductase activity of tomato plants was increased with increasing levels of B. With the exception of potassium (K) and calcium (Ca) in pepper and magnesium (Mg) in tomato, B treatments significantly affected nutrient concentrations of tomato and pepper. Except for sulfur (S) and Ca in tomato, the highest rate of B applied increased the N, phosphorus (P), and K concentrations of tomato and N, P, Mg, and S concentrations of pepper.  相似文献   

8.
Content and composition of dietary fiber as nonstarch polysaccharides (NSP) was determined in vegetables belonging to different types of edible organs, using GC and HPLC. Samples analyzed were subterranean organs (radish and leek), leaves (celery, swiss chard, and lettuce), stalks (celery, swiss chard, and asparagus), inflorescence (broccoli), and fruits (tomato, green pepper, and marrow). The results indicate that though the monomeric profile is similar in all these samples quantitative differences were found for neutral sugars and uronic acids among samples of the same type of vegetal organ. The NSP values determined using CG method were in good agreement with HPLC method (R(2) = 0.9005). However, arabinose, mannose, and galactose plus rhamnose are more influenced by the analytical method used than the rest of the monomers in nearly all the samples analyzed. Final values of NSP depend on the method used in celery stalks, broccoli, and green pepper.  相似文献   

9.
Phosphorus (P) accumulation is a common phenomenon in greenhouse soil for vegetables. Excessive P accumulation in soil usually decreases the yield and quality of vegetables as well as potentially polluting water environments. Ninety-eight tomato and 48 cucumber greenhouses were investigated in the eight main vegetable production areas of Hebei Province, China. Soil Olsen-P, the electrical conductivity (EC), the pH value, the organic matter of the soil, and the cropping years of these greenhouses were investigated and analyzed in order to better understand the status of soil P accumulation and positively find effective ways to solve the excessive phosphate accumulation problem. The investigation showed that the ratio was above 70% for all of the greenhouses where the soil Olsen-P exceeded 90 mg·kg?1 (upper bound of soil Olsen-P optimum value in greenhouse) in the 0–20 cm surface soil in the investigated greenhouses. There was a significant positive correlation between the soil Olsen-P content and the soil EC, between the soil Olsen-P and the cropping years, and the Olsen-P had a significant negative correlation with the soil pH value. It is concluded that supplying phosphate fertilizer excessively induced the soil EC to ascend and the pH value to descend, which increases the possibility of the soil secondary salinization and soil degeneration. The significant positive correlation between the soil organic content and the soil Olsen-P contents suggests that supplying organic fertilizer might mobilize soil residual phosphate. This also provides a good way to solve the problem of soil P accumulation. In order to further explore the threshold content of soil Olsen-P demanded by tomato and cucumber under the high soil Olsen-P condition, two tomato greenhouses (T1, T2) in Dingzhou and two cucumber greenhouses (C1, C2) in Wuqiang were researched. All of the greenhouses had ranges of soil Olsen-P content that were between 150 and 300 mg·kg?1, which far exceeded the 90 mg·kg?1 ideal. The P fertilizer application rates showed positive correlations with the soil Olsen-P contents and EC values in cucumber and tomato greenhouses in the current season. Analyzing T1 and T2 results showed that tomato was sensitive to the high soil Olsen-P contents ranging from 230.64 to 729.42 mg kg?1 at the seedling stage (15 days after transplanting; DAT) and from 199.41 to 531.42 mg kg?1 at the fruiting stage (90 DAT), because the yields correlated negatively with soil Olsen-P contents at each growth stage. It is suggested that the maximum soil Olsen-P threshold content for tomato should be lower than 230 mg·kg?1 at the seedling stage and lower than 199 mg·kg?1 at the fruiting stage. But cucumber yield did not change significantly as soil Olsen-P content rose from 248.75 to 927.62 mg kg?1, 212.40 to 554.07 mg kg?1, 184.48 to 455.90 mg kg?1, and 128.42 to 400.96 mg kg?1 at the seedling stage (15 DAT), early fruiting stage (50 DAT), middle fruiting stage (140 DAT), and late fruiting stage (235 DAT), respectively, suggesting that the maximal soil Olsen-P threshold content was lower than 249, 212, 185, and 128 mg·kg?1 at each growth stage, respectively. The relationship between fruit qualities and soil Olsen-P contents at each growth stage was not evident. Activities of soil alkaline phosphatase (ALP) decreased as soil Olsen-P supply was raised in T1, T2, and C1 at the seedling stage. It is concluded that in an excess soil Olsen-P condition tomato yield decreases strongly as soil ALP activity decreases, whereas ALP activity has little direct effect on cucumber yield.  相似文献   

10.
Antioxidant and antiproliferative activities of common vegetables   总被引:12,自引:0,他引:12  
Epidemiological studies have shown that consumption of fruits and vegetables is associated with reduced risk of chronic diseases. Increased consumption of fruits and vegetables containing high levels of phytochemicals has been recommended to prevent chronic diseases related to oxidative stress in the human body. In this study, 10 common vegetables were selected on the basis of consumption per capita data in the United States. A more complete profile of phenolic distributions, including both free and bound phenolics in these vegetables, is reported here using new and modified methods. Broccoli possessed the highest total phenolic content, followed by spinach, yellow onion, red pepper, carrot, cabbage, potato, lettuce, celery, and cucumber. Red pepper had the highest total antioxidant activity, followed by broccoli, carrot, spinach, cabbage, yellow onion, celery, potato, lettuce, and cucumber. The phenolics antioxidant index (PAI) was proposed to evaluate the quality/quantity of phenolic contents in these vegetables and was calculated from the corrected total antioxidant activities by eliminating vitamin C contributions. Antiproliferative activities were also studied in vitro using HepG(2) human liver cancer cells. Spinach showed the highest inhibitory effect, followed by cabbage, red pepper, onion, and broccoli. On the basis of these results, the bioactivity index (BI) for dietary cancer prevention is proposed to provide a simple reference for consumers to choose vegetables in accordance with their beneficial activities. The BI could be a new alternative biomarker for future epidemiological studies in dietary cancer prevention and health promotion.  相似文献   

11.
为明确乙酰甲胺磷在叶菜类蔬菜上使用后的环境安全性,采用气相色谱法比较研究了露地与设施栽培条件下乙酰甲胺磷及其高毒代谢物甲胺磷在白菜中的残留动态规律和最终残留。结果表明,按推荐使用剂量、2倍推荐使用剂量施药1次,乙酰甲胺磷在白菜中降解半衰期为2.060~3.203 d,大棚条件下降解速度慢于露地条件下降解速度;乙酰甲胺磷在降解过程中可代谢产生甲胺磷,作物中甲胺磷的残留量是乙酰甲胺磷代谢生成和甲胺磷本身降解两个过程共同作用的结果,施药几天后,出现一个甲胺磷残留的高峰;乙酰甲胺磷施用在白菜上可能会有较高的甲胺磷残留风险,尤其是大棚栽培方式、施药浓度高的情况下使用乙酰甲胺磷具有更高的甲胺磷残留风险。因此,在白菜等叶菜类蔬菜上应谨慎使用乙酰甲胺磷,露地栽培条件下的安全间隔期应延长为21 d,设施栽培条件下不宜使用。  相似文献   

12.
Comparative research has been carried out to determine the quantities and accumulation of lead (Pb), zinc (Zn), and cadmium (Cd) in the vegetative and reproductive organs of crops of the Solanaceae family (tomato, pepper, and aubergine) as well as to identify the possibilities of growing them on soils contaminated by heavy metals. The analyses were carried out by inductively coupled plasma–atomic emission spectrometry after dry ashing. Heavy metals have an impact on the development and productivity of the crops of the Solanaceae family. The high anthropogenic contamination impedes the normal development and fruit‐bearing ability of the pepper and aubergine plants, and in the case of tomatoes, it led to an increased assimilation of heavy metals without reducing the yield and the quality of the production of tomatoes. Crops from the Solanaceae family, tomato, pepper, and aubergine plants, could be cultivated on soils having low and medium levels of contamination of heavy metals, because they do not show a tendency to accumulating Pb, Zn, and Cd in their fruits, which could still be used for consumption.  相似文献   

13.
In many parts of the world, boron (B) levels are insufficient for potential production. Boron deficiency is also widespread in the Anatolia region of Turkey. Boron deficiency could impact production and quality of tomatoes (Lycopersicon esculentum L.), pepper (Capsicum annum L.), and cucumber (Cucumis sativus L.). A two-year greenhouse experiment was conducted to study yield and quality response of three vegetables to B addition (0, 1, 2, 3, and 4 kg B ha?1). The optimum economic B rates (OEBR) were 2.3, 2.6, 2.4 kg B ha?1, resulting in soil B concentrations of 0.33, 0.34 and 0.42 mg kg?1. Independent of plant species, B application decreased tissue nitrogen (N), calcium (Ca), and magnesium (Mg) but increased tissue phosphorus (P), potassium (K), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) concentrations. We conclude that a B addition of 2.5 kg ha?1 is sufficient to elevate soil B levels to nondeficient levels. Similar studies with different soils and initial soil-test B levels are needed to conclude if these critical soil test values and OEBR can be applied across the region.  相似文献   

14.
丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)和根围促生细菌(plant growthpromoting rhizobacteria,PGPR)能降解有毒有机物,但分解土壤中残留甲胺磷农药尚未见报道。本试验旨在测定AMF和PGPR矿化甲胺磷的效应。试验设甲胺磷0、50、100和150μg g-1下,对番茄(Lycospersicon esculentum,品种金冠)接种AMF Glomus mosseae(Gm)、Glomus etunicatum(Ge)、PGPR Bacillus subtilis(Bs)、Bacillus sp.B697(Bsp)、Pseudomonas fluorescens(Pf)、Gm+Bs、Gm+Bsp、Gm+Pf、Ge+Bs、Ge+Bsp、Ge+Pf和不接种对照,共48个处理。结果表明,接种Gm显著增加了根区土壤和根内PGPR定殖数量,而Pf处理显著提高了AMF侵染率,表明Gm与Pf能够相互促进。甲胺磷100μg g-1水平下,Gm+Pf处理的番茄株高显著高于其他处理,地上部干重显著高于其他处理(Ge+Pf除外),根系干重显著高于对照、PGPR各处理和Ge处理;而根内甲胺磷浓度则显著低于其他处理,茎叶中的则显著低于其他处理(Gm+Bs、Gm+Bsp和Ge+Pf除外)。AMF、PGPR或AMF+PGPR处理均显著降低番茄体内甲胺磷浓度。甲胺磷50~100μg g-1水平下,Gm+Pf显著降低根区土壤中甲胺磷残留量,矿化率达52%~60.6%。AMF和PGPR显著提高了根区土壤中甲胺脱氢酶活性,其中以Gm+Pf组合处理的酶活性最高。表明AMF和PGPR均能促进土壤中残留甲胺磷的降解,Gm+Pf是本试验条件下的最佳组合。  相似文献   

15.
基于临界氮浓度模型的日光温室甜椒氮营养诊断   总被引:4,自引:4,他引:4  
临界氮浓度稀释曲线是诊断作物氮营养状况的有效手段。该研究基于2 a温室小区试验,以参考作物蒸发蒸腾量(reference crop evapotranspiration,ET0)为基准,设置4个灌溉水平(105%ET0、90%ET0、75%ET0、60%ET0)和4个氮素水平(300、225、150、75 kg/hm2),构建和验证基于地上部生物量的甜椒在不同水分条件下的临界氮浓度稀释曲线经验模型。结果表明,植株氮素吸收量、地上部生物量、经济产量和水分利用效率(water use efficiency,WUE)随灌水量增加呈先增加后减小的趋势;灌溉水平75%ET0和90%ET0下,最优施氮量差异较小,且可获得较高经济产量和WUE,但经济产量和WUE不能同时达到最佳。75%ET0灌溉水平可获得高于90%ET0灌溉水平约11%的水分利用效率,且经济产量仅降低约3%,鉴于研究区水资源较短缺,灌水量75%ET0施氮量190 kg/hm2左右为最佳策略。该研究可为西北地区温室甜椒实时精准灌水施氮提供理论依据和技术支持。研究可为西北地区温室甜椒实时精准灌水施氮提供理论依据和技术支持。  相似文献   

16.
采用水培试验研究了福建省16种常见蔬菜幼苗对不同浓度锌(0.05、0.5、1、2、4、8、16mg·L-1和32mg·L-1)的敏感性。结果表明,黄瓜和空心菜的锌毒害表观症状最为明显,在添加Zn后第2d表现出严重的毒害症状,快白菜、早熟五号、莴笋、油麦菜、芥菜、胡萝卜症状表现最不明显,添加Zn最高浓度处理32mg·L-111d左右才出现轻微黄化现象。各蔬菜的地上部鲜重和根鲜重随营养液中锌浓度基本呈现先增加后降低的趋势,且与锌浓度呈现显著相关(快白菜的根鲜重除外)。黄瓜和早熟五号地上部鲜重的降低最显著,而茼蒿、胡萝卜、芥菜、快白菜地上部鲜重的降低最不显著。在症状表现和地上部鲜重降低显著的蔬菜种类中,选择地上部鲜重降低最显著(EC20值最小)的蔬菜作为对锌毒害最敏感的蔬菜品种,据此确定黄瓜为对锌毒害最敏感品种。  相似文献   

17.
In this work we investigated the impact of food disinfection on the beneficial biothiol contents in a suite of vegetables consumed daily, including spinach, green bean, asparagus, cucumber, and red pepper. Four disinfection technologies commonly studied and/or used in food processing and preservation, including hydrogen peroxide, free chlorine, and gaseous- and aqueous-phase ozone, were examined with common dosages and contact times. Results indicate that the common disinfection technologies may result in significant loss of beneficial biothiols in vegetables which are essentially important to human health. For example, as much as 70% of biothiols were lost when spinach was treated with hydrogen peroxide (5.0 wt %) for 30 min. Approximately 48-54% of biothiols were destroyed by free chlorine and gaseous- and aqueous-phase ozone under typical contacting conditions. In red pepper, about 60-71% of reduced glutathione was oxidized by the disinfectants. The potential decrease in biothiols during disinfection was dependent upon the biothiol type, the disinfectant, and the vegetable. The effectiveness of total bacterial inactivation by the four disinfection technologies was concurrently evaluated. Results show that free chlorine is most effective, achieving disinfection efficiencies of greater than 4 log for all study vegetables. This study may provide important information for the food industry to design optimum contacting methods for vegetables to simultaneously achieve sufficient bacterial disinfection while minimizing loss of beneficial biothiols.  相似文献   

18.
Experiments were conducted to study the effect of temperature and nutrition on seed germination and plant growth of different plant species. The nutrition studies of vegetables showed a normal response to fertilization rates on deficient soils at temperatures above their critical minimum. At soil temperatures below this little or no response was obtained to increased P concentration. Plant growth as affected by soil temperature was studied on beans, corn, cucumber, eggplant, pea, pepper, radish, spinach, and watermelon. Growth of peas, radish and spinach was significantly reduced by soil temperatures 10°C or lower. Corn growth was restricted when soil temperatures were maintained in the range of 12.3–14.5°C or lower, while growth of bean, cucumber, eggplant, pepper and watermelon was limited when soil temperatures were maintained in the 16.7–18.9°C temperature range or lower.  相似文献   

19.
The effect of three levels of salinity (2.0,4.0, and 8.0 mS/cm) on growth and ion composition of tomato and cucumber seedlings was examined with and without addition of 7.4 meq/L calcium chloriode (CaCl2). The corresponding sodium/calcium (Na/Ca) ratio of the irrigation solution were 4.0 and 1.8 at salinity level 4.0 mS/cm, and 12 and 4.8 at salinity level 8.0 mS/cm. Seedlings growth of tomato and cucumber was generally reduced with increasing salinity level. Cucumber was more salt‐sensitive than tomato. Shoot and root dry weight of cucumber was increased by decreasing Na/Ca ratio at 4.0 mS/cm salinity. Sodium and chloride (Cl) accumulation was increased and Ca was decreased in salinized plants. Reducing Na/Ca ratio under saline condition reduce the accumulation of Na in tomato roots. The effect of salinity on the uptake of nitrogen (N), phosphorus (P), potassium (K), Na, Ca, chloride (Cl), iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu) in the root and shoot was also determined.  相似文献   

20.
A rapid and simple extraction method for the simultaneous analysis of five neonicotinoid insecticides has been developed. Twelve different fruit and vegetable matrixes were extracted with methanol and cleaned up using a graphitized carbon solid phase extraction cartridge loading with a 20% methanol solution. The concentrated eluate after methanol elution was then analyzed for pesticide residues by liquid chromatography/mass spectrometry in the APCI positive mode. The five pesticides including nitenpyram, thiamethoxam, imidacloprid, acetamiprid, and thiacloprid were recovered at 70-95% at spike levels of 0.1 and 1 mg/kg in bell pepper, cucumber, eggplant, grape, grapefruit, Japanese radish, peach, pear, potato, rice, and tomato. Relative standard deviations were less than 10% for all of the recovery tests. The proposed method is fast, easy to perform, and could be utilized for regular monitoring of pesticide residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号