首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the variation pattern of wood properties was studied for naturalCunninghamia lanceolata. The mathematical models of property parameters were obtained on tracheid length, microfibril angle, late wood percentage, growth ring width and growth ring density in the radial direction. The interrelation were analyzed between tracheid length and microfibril angle. The result can provide scientific theory basis for wood utilization and early prediction of wood properties.  相似文献   

2.
杨树微纤丝角的变异及其与木材性质的相关关系   总被引:6,自引:0,他引:6  
微纤丝角为细胞次生壁S2层微纤丝排列方向与细胞主轴所形成的夹角,与木材的物理性质、力学性质和化学性质都有着直接的关系。应用x射线衍射法测定了7个杨树无性系(14株样木)胸径处各年轮的微纤丝角,并对应分析和测定了各年轮的木材基本密度、纤维长度、纤维宽度和纤维素含量。研究结果表明,杨树微纤丝角在年轮间存在显著差异,其径向变异规律为从髓心向外以微纤丝角逐渐降低,年轮间的平均微纤丝角在7.8旱?8褐洌荒静幕久芏取⑾宋ざ取⑾宋矶群拖宋睾吭谀曷旨湟泊嬖谙灾钜臁O喙胤治霰砻鳎⑾怂拷怯肽静幕久芏取⑾宋ざ取⑾宋矶群拖宋睾看嬖谙灾母合喙毓叵??0.01),相关系数分别为-0.450、-0.586、-0.516和-0.660。回归分析结果表明,多项式方程可较好地描述杨树微纤丝角与所测定的木材性质的关系,相关系数均在-0.45以上(n=125)。本文的研究结果认为,在今后针对杨树材性改良的育种计划中,微纤丝角是一个重要的选育和改良指标。图3表3参34。  相似文献   

3.
木材微纤丝角两种测试方法的对比研究   总被引:1,自引:0,他引:1  
木材微纤丝角是木材各项性质中最重要的指标之一,它的大小对木材的解剖、物理、力学性能和化学性能有着很大的影响。笔者使用两种方法测定分析了杉木的微纤丝角,为研究者选择合适的实验方法提供依据。分别利用X射线衍射法和偏振光显微镜法得到杉木的木材微纤丝角及其变异规律,并对这两种方法进行分析比较,结果表明:(1)X射线衍射法测定速度快,代表性强,适用于大量试样的变异研究,但对实验仪器要求高。(2)偏振光显微镜法测定速度较慢,但实验仪器成本相对较低,适合实验室试样的少数测定。  相似文献   

4.
The relationships between bending properties, compressive strength, tracheid length, microfibril angle, and ring characteristics of 20-year-old Taiwania (Taiwania cryptomerioides Hay.) trees were examined. The trees came from different thinning and pruning treatments, but the practices showed no significant effect on the investigated properties. The results showed that based on comparison with the literature, plantation-grown immature Taiwania have noticeably lower average strength properties than mature trees of the same species. Wood density and bending and compressive strengths were not related to either tracheid length or microfibril angle in young Taiwania. There were positive relationships between bending strength and compressive strength. The wood density, ring width, earlywood width, earlywood density, and latewood percentage were the most important predictors of strength by simple linear regressions. The wood density and ring width/earlywood width may be considered as indicators for assessing the bending strength, while wood density and latewood percentage were the best predictors of compressive strength by multiple linear regressions.  相似文献   

5.
Growth strains were measured in situ in nine trees of three species from a French Guiana tropical rainforest in a clearly active verticality restoration process. The aim was to detect tension wood within the samples. Wood specimens were cut in the vicinity of the growth strain measurements in order to determine the microfibril angle and some mechanical and physical properties. As suspected, tensile growth strain was much higher in tension wood zones, as shown by the slightly higher longitudinal modulus of elasticity. Conversely, tension wood showed reduced compression strength. Longitudinal shrinkage was much higher in tension wood than in opposite wood. Clear relationships between the microfibril angle and longitudinal properties were noted in comparison (i) with those observed in gymnosperm compression wood and (ii) with expected relationships from the organization of wood fibres cell wall structure.  相似文献   

6.
日本落叶松无性系微纤丝角遗传变异的研究   总被引:6,自引:3,他引:6       下载免费PDF全文
对10个10年生日本落叶松无性系的早材和晚材微纤丝角进行了测定,结果表明:早、晚材微纤丝角无性系间差异极显著,同一年轮内早材微纤丝角大于晚材.日本落叶松微纤丝角的径向变异规律为:在髓心处最大,以后逐渐减小.早、晚材微纤丝角与树木年轮间的变异模式(径向变异)以对数和乘幂式方程拟合效果较好,R2(R为相关系数)均在0.8以上.早、晚材微纤丝角同树高、形率、树皮厚度、主枝粗、枝干比、主枝夹角、主枝长的相关关系不显著,早、晚材微纤丝角同胸径、冠幅的相关关系达到显著水平;早材与晚材的微纤丝角也相关显著.早材和晚材的微纤丝角受中到强度遗传控制,广义遗传力分别为0.767 4、0.804 3.按照20%的选择率,早材和晚材的微纤丝角的遗传增益分别为21.82%和29.75%.  相似文献   

7.
介绍了一种新的测量木材微纤丝角的无损检测技术--近红外光谱分析,并详细阐述了测量时木材样品的选择及制备,测量工作包括X射线衍射和近红外光谱采集、多变量数据分析与模型建立的方法及步骤.证明了近红外光谱分析技术可以用于快速准确地预测木材的微纤丝角.  相似文献   

8.
Summary Inclined branches of Pseudowintera colorata exhibit pronounced growth promotion to the lower (abaxial) side similar to that found in gymnosperms. The only other significant difference between the anatomy of the upper and lower regions is that the tracheids on the lower side have a larger microfibril angle. Other microscopic features normally associated with compression wood or tension wood are completely absent. The longitudinal shrinkage of samples from the upper and lower regions is shown to be related to the mean microfibril angle in a highly non-linear way, and a relatively small change in microfibril angle is associated with a large change in longitudinal shrinkage. This result is in agreement with the hypothesis that compression wood force generation arises during the lignification phase of secondary wall deposition and is critically dependent on mean microfibril angle.The author is indebted to Mr R. R. Exley of this laboratory who prepared the samples and made all the measurements in this project  相似文献   

9.
We investigated clonal and site variations in wood fiber length, microfibril angle, and specific gravity of seven natural hybrid clones of Acacia (Acacia mangium × Acacia auriculiformis) grown in northern and southern Vietnam. Fiber length did not differ between clones or between sites. The microfibril angle of the S2 layer did not significantly differ between clones but significantly differed between sites. Clone and site significantly affected specific gravity. The significant effects of genetic × environmental interactions on wood properties indicated the difference in the response of clones to different growing conditions. The trends of changes in fiber length, microfibril angle, and specific gravity from the vicinity of the pith to near the bark were similar for all clones at each site; however, variations in fiber length, microfibril angle, and specific gravity were more visible in northern Vietnam than in southern Vietnam, with a significant effect of genetic factors. This difference may be attributable to winter, which is experienced in northern Vietnam but not in southern Vietnam. For clone selection for plantation in the northern region, combining growth rate with wood properties was recommended. On the other hand, for plantation in the southern region, clone selection depends mainly on the growth rate, taking into consideration the specific gravity.  相似文献   

10.
Eight clones from a 16-year-old field trial of clonal cuttings of lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) were analyzed for growth, growth pattern, and stem damage in the field. In addition, wood and fiber traits (acoustic velocity [AcVel] and spiral grain) were analyzed and wood density, microfibril angle, modulus of elasticity, and radial fiber diameter (FibDR) determined from SilviScan analyzes. Two clones with considerably more bent, broken, and leaning stems differed from the other clones in terms of microfibril angle and modulus of elasticity (MOE) in the outermost annual rings. FibDR and, to some extent, MOE in the outermost annual rings were negatively correlated with the frequency of bent, leaning, or broken stems, while microfibril angle (MFA) was positively correlated. AcVel was negatively correlated with both MFA and the frequency of bent, broken, and leaning stems. We conclude that AcVel could be used as an effective tool to predict severe stem damage and determine stem strength in the field instead of using costly lab-based SilviScan measurements of microfibril angle. If developed further, this approach could be used for large-scale screening of progeny tests when selecting for stem strength.  相似文献   

11.
Genetic parameters were estimated for wood and growth traits in two 19-yr-old clonal trials and a 40-yr-old full-sib progeny trial of Norway spruce [Picea abies (L.) Karst.]. In the clonal trials high (>0.4) broad-sense heritabilities were found for wood density traits, lignin content, number of internal cracks, growth traits, spiral grain and number of resin canals. Moderate (0.2–0.4) heritabilities were found for tracheid lumen diameter and cell wall thickness, microfibril angle and tracheid length, while low heritabilities (<0.2) were found for pulp yield, fibre strength, wood stiffness and wood colour. Lignin content and pulp yield showed low genetic variation, whereas the genotypic coefficient of variation for most other traits ranged between 5 and 15%. Most traits showed low levels of genotype by environment interaction. Among the wood properties, latewood proportion, earlywood density and ring density showed significant, adverse correlations with volume in both clonal trials.  相似文献   

12.
Summary The mechanics of growth stress generation in a tissue of developing wood cells is studied by means of a continuum-mechanical model which assumes that the stresses which accumulate in the cells are induced by growth strains in the newly formed cell wall increments as they are laid down. The feasibility of the model is examined by using cell parameters both anatomical and physical to predict the variation of growth stresses with microfibril angle. In particular the measured change from tensile to compressive stresses with increasing microfibril angle for conifers is compared with the results predicted by the model.  相似文献   

13.
Wood and fibre properties such as wood density, microfibril angle, and modulus of elasticity are industrially relevant factors in determining the mechanical properties of wood. Radial ring-level predictive models of these properties were developed using balsam fir data from a long-term trial in New Brunswick (Canada), where precommercial thinning was applied 8 years after the site was harvested. The mixed effects models developed accounted for most of the variability in wood density (68 %), microfibril angle (94 %), and modulus of elasticity (77 %) with low RMSE. This study shows that balsam fir wood and fibre properties are strongly related to distance from the pith, particularly in the first 20 mm, and much less to annual ring width. Disk height and selected weather variables related to air temperature during the growing season significantly improved the models, whereas the effect of precommercial thinning was not significant. These equations can be incorporated into computer models, such as Optitek, that simulate mill recovery and wood properties to obtain accurate information on wood products. The unexplained variation in these models is likely related in part to between-tree genetic variation, which is unknown in this study.  相似文献   

14.
Summary The property of fibre symmetry as exhibited by wood cellulose can be used to derive an explicit relationship between the orientation of a cellulose microfibril and the orientation of the X-ray beam diffracted by any of its crystallographic planes. The solution applies to a microfibril of any orientation and so is well suited to evaluating the microfibril angle distribution in wood containing cells of any cross-sectional shape. The (002) and (040) reflections of cellulose have complementary properties that could be exploited to enable current problems associated with the use of each individually for evaluating the mean microfibril angle of the S2 layer to be overcome. It is expected that it will be possible to measure the microfibril angle distribution throughout the whole cell wall and also measure the average cell cross-section of a wood sample, by analysing (002) and (040) diffraction profiles in conjunction with each other.This work is supported by the NZ Foundation for Research, Science and Technology under contract # UOC 401  相似文献   

15.
Summary A mechanism for growth stress generation is studied which involves a contractive strain in the microfibril direction and swelling strain in the transverse direction in the developing wall of wood cells. A cylindrically anisotropic elastic model is used to calculate the accumulation of residual stresses in the S2 wall as it is formed. An explicit relation between the shrinkage/swelling strains in the growth increment of the cell wall and the resulting axial and circumferential stresses induced in the cell is derived. For gymnosperm cells the transition from tensile stress in normal wood cells to compressive stress in compression wood cells is found with increasing microfibril angle.  相似文献   

16.
Abstract

Genetic variation in wood density, microfibril angle (MFA), wood stiffness (MOE), height, diameter and volume was investigated in a 26-year-old Norway spruce [(Picea abies (L.) Karst.] clonal trial in southern Sweden. Wood quality measurements were performed on 10 mm increment cores using SilviScan. For MFA, mean values of annual rings showed the highest value (30°) at ring 2 counting from the pith, followed by a steep decrease and a gradual stabilization around ring 12 at approximately 14°. MOE showed a monotonic increase from 5 GPa to 14 GPa when moving from pith to bark. High broad-sense heritability values were found for wood density (0.48), MFA (0.41) and MOE (0.50). All growth traits displayed heritability values of similar magnitudes as reported in earlier studies. The generally high age–age correlations between different sections of the wood cores suggested that early selection for wood quality traits would be successful. Owing to unfavorable genetic correlations between volume and MOE, the correlated response indicated that selection for volume only at age 10 would result in a 0.27% decrease in weighted MOE at age 26 for every 1% increase in volume.  相似文献   

17.
  • ? Juvenile wood quality in Pinus radiata is affected by factors such as low density, stiffness, and high microfibril angle, spiral grain, and shrinkage. Adverse genetic correlations between growth and wood quality traits remain as one of the main constraints in radiata pine advanced generation selection breeding program.
  • ? Juvenile wood property data for this study were available from two progeny tests aged 7 and 6 y. We estimated the genetic correlations between stiffness, density, microfibril angle, spiral grain, shrinkage in the juvenile core and DBH growth in radiata pine, and) to evaluated various selection scenarios to deal with multiple objective traits.
  • ? Negative genetic correlations were found for modulus of elasticity (MoE) and density with microfibril angle, spiral grain, shrinkage, and DBH. We observed low to moderate unfavourable genetic correlations between all wood quality traits and DBH growth.
  • ? These low to moderate genetic correlations suggest that there may be some genotypes which have high DBH growth performance while also having high wood stiffness and density, and that the adverse correlation between DBH and MoE may not entirely prohibit the improvement of both traits. Results indicate that, in the short term, the optimal strategy is index selection using economic weights for breeding objective traits (MAI and stiffness) in radiata pine.
  • ? In the long-term, simultaneously purging of the adverse genetic correlation and optimizing index selection may be the best selection strategy in multiple-trait selection breeding programs with adverse genetic correlations.
  •   相似文献   

    18.
    Three drought-tolerant eucalypt genotypes have been investigated for a broad spectrum of properties to provide a basis for comparison on their suitability for various end-uses. The genotypes included were a Eucalyptus grandis × E. camaldulensis hybrid, E. gomphocephala and E. cladocalyx, selected based on previous studies that indicated good potential to tolerate arid conditions, reasonably good volume growth and straightness of stems. In this study, information was added on differences between species and parts of stems in growth (volume and biomass) and properties of wood (density and stiffness), fibres (dimensions and microfibril angle) and vessels (size and numbers). We found high wood densities and stiffness values for E. cladocalyx and E. gomphcephala, making them suitable for construction wood. Logs from the mid-part of the stem had the best timber properties, as the butt logs showed the highest microfibril angle and lowest wood stiffness due to longitudinal juvenility. Such juvenility was also to some degree observed for wood density and fibre length. The information gained will be especially helpful for selecting species and processing options for small farm and community plantations for producing higher-value products that may be sold to generate much-needed income as well as for local uses, such as fuelwood and charcoal.  相似文献   

    19.
    The microfibril angle of fiber walls is an ultra-microscopic feature affecting the performance of wood products. It is there-fore essential to get more definitive information to improve selection and utilization. X-ray diffraction is a rapid method for measur-ing microfibril angles. In this paper, the variability of microfibril angle in plantation-grown Masson pine was investigated by peak-fitting method. This method was compared with the traditional hand-drawn method, 40% peak height method and half peak h...  相似文献   

    20.
    木材细胞壁与木材力学性能及水分特性之间关系研究进展   总被引:1,自引:0,他引:1  
    阐述了木材细胞壁微纤丝角、结晶度、纹孔和化学组分等对木材力学性能的影响规律,针对木材的水分特性重点归纳了纹孔和抽提物对木材渗透性的影响机制,并对未来细胞壁微观研究发展趋势进行了总结,旨在为木材细胞壁相关研究提供借鉴。  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号