首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Barley has a variety of potential food uses. However, the dark gray color of the final products negatively affects consumer acceptability. We determined the discoloration potential of barley from different classes and genotypes, and evaluated the relationship of barley composition, total polyphenol content, and polyphenol oxidase (PPO) activity with discoloration potential of barley. Barley grains were abraded, milled into flour, and analyzed for composition, total polyphenol content, and PPO activity. Total polyphenol content of abraded barley, expressed as gallic acid %, was lowest in hulled proanthocyanidin‐free barley (0.02–0.04%), followed by hulled proanthocyanidin‐containing barley (0.11–0.18%), and hull‐less barley (0.19–0.26%). PPO activity of abraded kernels ranged from 62.1 units/g in hulled proanthocyanidin‐containing Baronesse to 116.5 units/g in hulled proanthocyanidin‐free CA803803. Dough sheet brightness (L* value) was the best indicator of discoloration potential of barley. Large variation in L* value of dough sheets was observed among different classes and among genotypes within classes. Brightness of dough sheets measured at 24 hr were significantly higher in hulled (65.3–78.1) than in hull‐less (59.0–63.9) barley, and within hulled barley, higher in proanthocyanidin‐free (72.2–78.1) than in proanthocyanidin‐containing (65.3–69.6) barley. Total polyphenol content significantly correlated with the discoloration potential of barley. Protein content and ash content also had a significant negative correlation with discoloration of dough sheets. The results indicated that polyphenol compounds may play a major role in discoloration potential of barley‐based products.  相似文献   

2.
Dark discoloration negatively influences the aesthetic properties of barley‐based food products. The effects of abrasion and heat treatment of grains, exclusion of oxygen, and the use of antibrowning agents on the retardation of darkening in barley flour gel or dough were determined in four types of barley, including hulled proanthocyanidin‐containing and hulled proanthocyanidin‐free, hulless regular, and hulless waxy barley. Abrasion by >30% in hulled barley and by >15% in hulless barley significantly increased the brightness (L*) of barley flour dough by 0.1–7.1. Steam heating of abraded grains also significantly increased the L* of barley flour gels by 1.8–3.4. Ascorbic acid at 1,500 ppm was most effective for retarding discoloration of barley flour dough, followed by 50 ppm of 4‐hexylresorcinol, which is an enzyme competitive inhibitor. The discoloration of barley flour dough was also effectively reduced by storing the dough sheets at 4°C under nitrogen gas to exclude oxygen or under anaerobic conditions at 20°C. Discoloration of barley‐based food products may be effectively controlled by selecting genotypes with low discoloration development such as proanthocyanidin‐free genotypes, by lowering total polyphenol content or polyphenol oxidase (PPO) activity through abrasion, by heat treatment, by exclusion of oxygen, and by the use of enzyme inhibitors.  相似文献   

3.
Barley grains contain significant amounts of phenolic compounds that may play a major role in the discoloration of food products. Phenolic acid and proanthocyanidin (PA) composition of 11 barley genotypes were determined, using high-performance liquid chromatography and liquid chromatography-mass spectrometry, and their significance on food discoloration was evaluated. Abraded grains contained 146-410 microg/g of phenolic acids (caffeic, p-coumaric, and ferulic) in hulled barley and 182-282 microg/g in hulless barley. Hulled PA-containing and PA-free genotypes had comparable phenolic acid contents. Catechin and six major barley PAs, including dimeric prodelphinidin B3 and procyandin B3, and four trimers were quantified. PAs were quantified as catechin equivalents (CE). The catechin content was higher in hulless (48-71 microg/g) than in hulled (32-37 microg/g) genotypes. The total PA content of abraded barley grains ranged from 169 to 395microg CE/g in PA-containing hulled and hulless genotypes. Major PAs were prodelphinidin B3 (39-109 microg CE/g) and procyanidin B3 (40-99 microg CE/g). The contents of trimeric PAs including procyanidin C2 ranged from 53 to 151 g CE/g. Discoloration of barley flour dough correlated with the catechin content of abraded grains (r = -0.932, P < 0.001), but not with the content of individual phenolic acids and PAs. Discoloration of barley flour dough was, however, intensified when total PA extracts and catechin or dimeric PA fractions were added into PA-free barley flour. The brightness of dough also decreased when the total PA extract or trimeric PA fraction was added into heat-treated PA-free barley flour. Despite its low concentration, catechin appears to exert the largest influence on the discoloration of barley flour dough among phenolic compounds.  相似文献   

4.
Barley, nonwaxy hull (cvs. Crystal and Meltan) and waxy hull-less (cvs. Merlin and Waxbar), was abraded at 10, 20, and 40% of kernel weight on a laboratory scale and commercially abraded at two levels: fine and coarse. In 40% abraded kernels of Crystal, protein, ash, and free lipids contents decreased by 1.6, 1.4, and 1.4%, respectively, and starch and β-glucans contents increased by 16 and 1.2%, respectively, compared to nonabraded kernels. Merlin showed smaller changes in the levels of these components, except for proteins. Changes in starch and protein in laboratory abraded barley were used to estimate the level of barley abrasion on a commercial scale. Scanning electron microscope pictures revealed that in nonwaxy barley at 10% abrasion the hull and part of the seed coat were absent, whereas waxy barley lost all of the seed coat and most of the aleurone layer. Maximum water imbibition of 40% abraded waxy barley was reached after 5 hr of soaking, whereas nonwaxy barley needed 8 hr to level off. Nonwaxy barley kernels at 20% abrasion and cooked for 10 min required 52 N to compress to 50% thickness, whereas waxy barley needed only 28 N. Changes in chemical composition and microstructure due to abrasion had a strong effect on the thermal properties of kernels during cooking. The extent to which barley starch was gelatinized during cooking was evaluated by differential scanning calorimetry. Crystal and Merlin showed significant decreases in enthalpy value for 40% compared to 10% abraded barley. These results indicate that when a large portion of the outer layer of barley is removed, water and heat penetrate more quickly into kernels during cooking, causing more starch to be gelatinized. The results obtained in this study indicate that changes in composition and microstructure due to abrasion affect the rate of water imbibition, hardness of cooked kernels, and enthalpy value of starch. Composition and properties of laboratory abraded barley could be used to predict the level of abrasion and properties of barley abraded on a commercial scale within the same cultivar.  相似文献   

5.
Kernel hardness is an important trait influencing postharvest handling, processing, and food product quality in cereal grains. Though well‐characterized in wheat, the basis of kernel hardness is still not completely understood in barley. Kernels of 959 barley breeding lines were evaluated for hardness using the Single Kernel Characterization System (SKCS). Barley lines exhibited a broad range of hardness index (HI) values at 30.1–91.9. Distribution of kernel diameter and weight were 1.7–2.9 mm and 24.9–53.7 mg, respectively. The proportion of hull was 10.2–20.7%. From the 959 breeding lines, 10 hulled spring barley lines differing in HI values (30.1–91.2) were selected to study the associations of HI with proportion of hull, kernel weight, diameter, vitreousness, protein, β‐glucan, and amylose content. Vitreousness, evaluated visually using a light box, showed a clear distinction between hard and soft kernels. Hard kernels appeared translucent, while soft kernels appeared opaque when illuminated from below on the light box. Kernel brightness (L*), determined as an indicator of kernel vitreousness, showed a significant negative correlation (r = –0.83, P < 0.01) with HI. Protein, β‐glucan, amylose content, proportion of hull, kernel weight, and diameter did not show any significant association with HI.  相似文献   

6.
Abrasion techniques were used to remove the hull and pericarp layers of barley kernels to obtain a smaller kernel enriched in endosperm. The objective of this study was to evaluate the fractions produced by two alternative abrading systems on four barley cultivars for potential use in fuel ethanol processes that feature an upstream (of the fermentation) dry fractionation system. Four barley cultivars, two hulled (Thoroughbred and Nomini) and two hulless (Doyce and Merlin), were scarified and whitened at 22 scarification times and three milling degrees (settings 2, 4, and 6), respectively. Three different abrasive surfaces (36, 40, and 50 grit) were used in the scarifier to determine the material removal ratio for each barley cultivar. Material balances and color analyses were conducted for all of the fractions produced. Three fractions were produced with the whitener at each milling degree: broken kernels, fine fractions >323 μm, and fine fractions <323 μm. Setting #2 seems to be the milling level that releases most of the hull in the hulled barley with the whitener. After 50 sec of scarification, rougher surfaces produced more fine material (<1,410 μm diameter) and consequently less coarse material (>1,410 μm diameter). A lower grit (36 grit) abrasive surface induced faster hull removal in hulled barley. Color parameters L* and b* were good indicators of the fine and coarse fractions produced by abrasive methods because they indicate the kernel layer removed and were modeled as a function of the fraction of the material produced. The information obtained in this study has application in designing processes capable of removing and recovering hull and pericarp layers of barley kernels and thereby producing smaller kernels or kernel pieces containing mainly endosperm tissue.  相似文献   

7.
Different barley varieties, consisting of hulled and hull-less types, of normal, waxy, and high amylose starch, as well as two-rowed and six-rowed types, were analyzed for their main proanthocyanidins and bound phenolic acids. Variations in proanthocyanidin and phenolic acid contents were studied in different barley types as well as inter-relationships between the phytochemicals and polysaccharides. The main flavanols found in the analyzed barley varieties were two dimeric as well as four trimeric forms in addition to catechin. The total amount of flavanols ranged from 325 to 527 microg/g of fresh weight of barley flour. No evident associations were found between variations in proanthocyanidin levels and different barley types. The total amount of phenolic acids ranged from 604 to 1346 microg/g of fresh weight of barley flour, with ferulic acid as the dominating acid. The amount of phenolic acids varied according to occurrence or lack of hull, with significantly higher levels in the hulled varieties.  相似文献   

8.
This study used 1H nuclear magnetic resonance (NMR) spin‐spin relaxation time (T2) and differential scanning calorimetric (DSC) measurements of unfreezable water content (UFW), to assess water behavior in freshly prepared (25°C), refrigerator‐stored (4°C, one day), or freezer‐stored (–35°C, one day) doughs containing 5, 10, or 30% whole grain, air‐classified β‐glucan‐diminished, and air‐classified β‐glucan‐enriched (BGB‐E) barley flours. Three populations of water were detected by NMR, depending on moisture content of dough, namely, tightly (T21, 2–5 msec), less tightly (T22, 20–50 msec), and weakly (T23, 100–200 msec) bound water. T22 peak was always detectable, and T22 peak time linearly correlated to moisture content of dough in a range of 0.7–2.0 g/g db (r = 0.99, P < 0.05). Freezer storage showed less effect on water mobility in dough compared with refrigerator storage, whereas cooking and cool storage of cooked dough significantly decreased the water mobility (P < 0.05). Adding barley flour steadily decreased the water mobility in dough, and the reduction was more significant with adding BGB‐E (P < 0.05). Immobile water content was calculated by extrapolating T22 peak time versus total moisture content in dough and significantly correlated to the UFW content measured by DSC (r = 0.72, P < 0.05).  相似文献   

9.
A high throughput centrifugal mixer capable of using smaller amounts of flour (50 g) was evaluated for the production of oriental alkaline noodles. The unit requires a small footprint on a laboratory bench and offers variable speed mixing (300–3,500 rpm) for 5–60 sec. Three different mixing bowls, plain, pin, and paddle, were evaluated for the small‐scale production of alkaline noodles using straight‐grade flour derived from Canada Western Red Spring (CWRS) and Canada Prairie White Spring (CPSW) wheat. Under optimized mixing conditions (3,000 rpm for 30 sec), the pin and paddle bowls produced noodle dough with crumb size distribution and adhesion characteristics consistent with commercial requirements. The plain bowl produced dough with larger undesirable dough chunks and showed excessive heat buildup. Noodle sheets produced from this dough were not comparable in color characteristics to conventionally produced noodle sheets. Noodles prepared using the paddle mixer also displayed some significantly different color and texture characteristics than conventionally prepared noodles. However, raw noodle sheets or cooked noodles of either wheat class, prepared using the pin bowl mixer, displayed color values (L*, a*, and b*) at 2 and 24 hr and cooked noodle texture characteristics (bite, chewiness, resistance to compression, and recovery) comparable to a conventional laboratory‐scale Hobart type mixer. In addition to the very short mixing time and small equipment footprint for the centrifuge mixer, rapid throughput is enhanced by the ability to rapidly clean or interchange bowls and to potentially vary sample size to as little as 5 g. These attributes should be particularly useful in earlier generation breeder programs where large numbers of samples require rapid screening.  相似文献   

10.
A process was developed to produce a germ‐enriched fraction from hull‐less barley using a Fitzpatrick comminuting mill (FitzMilling) followed by sieving. Hulled and hull‐less barleys contain 1.5–2.5% oil and, like wheat kernels, which contain wheat germ oil, much of the oil in barley kernels is in the germ fraction. A process that combined FitzMilling and sieving produced a germ‐enriched fraction with an oil content of ≈15% and a yield of ≈1.1%. For comparison, this is higher than the levels of oil in most samples of commercial wheat germ. Experimental conditions were also described to produce a germ‐enriched fraction with a higher yield (2.16%), but it would have lower oil content (10.24%). Germination and compositional analysis studies suggested that FitzMilling hull‐less barley for 2 min or longer reduced germination rates to 1% or less, which was interpreted to mean that almost the entire viable germ was removed. In contrast, FitzMilling conventional hulled barley for 4 min had no effect on germination, and milling for 6 and 8 min resulted in germination rates of 36 and 12%, respectively. The oil extracted from germ‐enriched fractions was rich in free phytosterols (≈1%), phytosterol esters (3–7%), and free fatty acids (2–10%). These germ‐enriched fractions and the extracted oil they contain may have value as nutraceuticals or premium edible oils.  相似文献   

11.
Kernel hardness is not a well‐characterized food quality trait in barley. Unlike wheat, not much is known about the effect of barley kernel hardness on food processing. Ten barley genotypes differing in single kernel characterization system hardness index (SKCS‐HI) (30.1–91.2) of dehulled kernels were used to determine the association of barley HI with other physical grain traits and food processing parameters. Thousand kernel weight (TKW) values of 10 genotypes were 29.7–38.1 g. Values for bulk density of grains were 721.1–758.9 kg/m3. Crease width and depth values were 0.9–1.3 mm and 0.4–0.7 mm, respectively. Barley HI showed no significant association with TKW, bulk density, or kernel crease dimensions. Kernel loss due to pearling after 325 sec of abrasion was 28.8–38.4% and showed significant negative correlation with HI (r = –0.87, P < 0.01). Proportion of barley flour particles >106 μm had values of 34.5–42.0%, and starch damage values were 1.8–4.5% among those 10 barley genotypes. HI showed significant positive correlations with both proportion of barley flour particles >106 μm (r = 0.93, P < 0.01) and starch damage (r = 0.93, P < 0.01). Water imbibition of barley kernels and cooked kernel hardness did not show significant correlation with HI.  相似文献   

12.
Polyphenol oxidases (PPOs) from several plant species, including wheat, have been implicated in undesirable brown discolorations of food products. It has been demonstrated that these enzymes are often present in a latent form or are membrane‐associated, necessitating detergent or other treatments to obtain fully active preparations. Here, the influence of different detergents on wheat meal and flour PPOs was investigated. Extraction in presence of 50 mM SDS led to a 5‐ to 15‐fold increase in PPO activity, making quantitative assays in flour from low‐PPO lines more robust. Among a series of additional nonionic, anionic, and cationic detergents tested, only n ‐lauroylsarcosine increased extractable PPO activity to a degree comparable to that of SDS. Additional experiments suggested that a large fraction of wheat meal PPOs may be membrane‐associated and that SDS is able to activate PPOs extracted from high‐activity but not from low‐activity wheat lines. PPO activities assayed after SDS extraction of meal and flour were highly correlated with each other and with activity determined in whole (intact) kernels in absence of SDS. Correlation coefficients between PPO activities measured with all these methods and noodle brightness were about equal, indicating that activities assayed after SDS extraction are useful for germplasm screening and quality prediction.  相似文献   

13.
Wheat cultivars, representing three winter and three spring wheats were grown in western Canada with six levels of nitrogen fertilizer and flours were prepared from them with an extraction rate of 65%. Using a chromameter, flour color and the color of uncooked white noodle sheets made from these flours with different resting times were assessed. The cooked noodle sheet color was also assessed. While protein content initially declined with added nitrogen and increased with further nitrogen addition, brightness (L*) of flour decreased and redness (a*) and yellowness (b*) increased. Positive correlation coefficients of flour brightness with particle size index (PSI) were also observed. Flour redness (a*) and yellowness (b*) were also affected by flour moisture content, whereas L* values were not significantly correlated with moisture contents. For the uncooked white noodle sheet, as protein content increased brightness decreased but there was an increase in a* and b* values. Thus, the L* value for noodle sheets was negatively correlated with the a* and b* values. The percentages of monomeric protein and soluble glutenin in flour were equal to or better than protein content in relation to most noodle sheet color characters. Uncooked noodle sheet brightness decreased, while redness and yellowness increased with rest time. In general, uncooked white noodle sheets prepared from different wheat flours can be ranked in terms of brightness and yellowness within each level of nitrogen fertilization.  相似文献   

14.
Color is a key quality trait of wheat products, and polyphenol oxidase (PPO) is implicated as playing a significant role in darkening and discoloration. In this study, total and soluble PPO activities were characterized in whole kernel assays and bran extracts. In whole kernel assays similar to AACC Approved Method 22–85, four wheat cultivars were ranked the same for both total and soluble (leached) PPO activity with L‐DOPA (diphenol) as the substrate. Total kernel PPO activity was much greater than soluble PPO activity in three hexaploid wheat cultivars, indicating that insoluble PPO was the major contributor to kernel PPO measurements. Tyrosine (monophenol) was an excellent PPO substrate in kernel assays as expected but had no activity as a substrate for soluble PPO. However, soluble PPO activity with tyrosine was activated by the addition of the diphenols chlorogenic acid and caffeic acid. When PPO was assayed in homogenized bran, 89–95% of total PPO activity remained insoluble, associated with the bran particles. The kernel assay detected <2% of PPO measured in an equivalent amount of homogenized bran. However, total PPO activity was 2‐fold higher in Klasic than in ID377s, both when measured in the kernel assay and in homogenized bran, indicating that the kernel assay was an accurate predictor of relative total extracted PPO activity in these two cultivars. Adding detergents (0.1% SDS plus 0.2% NP‐40) to the bran extraction buffer increased both soluble and insoluble PPO activity. Results indicate that relative PPO activities among wheat cultivars are similar in whole kernel and kernel leachate assays, and that the predominant insoluble fraction of PPO, which is relatively uncharacterized, may be largely responsible for wheat product discoloration.  相似文献   

15.
《Cereal Chemistry》2017,94(5):811-819
This study systematically examined hydrothermal effects of antioxidant substances, such as total phenolic (TPC), flavonoid (TFC), and proanthocyanidin (TPAC) contents, cyanidin‐3‐O‐glucoside (C3G), peonidin‐3‐O‐glucoside (P3G), α‐, γ‐, and δ‐tocopherols, and α‐, γ‐, and δ‐tocotrienols, as well as antioxidant activities, color parameters, and soluble sugar compositions in red and black rice. It showed that color differences (ΔE ) of black rice were higher than those of red rice caused by boiling. The processed red and black rice exhibited significantly (P < 0.05) lower TPC, TFC, TPAC, C3G, P3G, and antioxidant activities compared with the raw rice except bound TPC and bound antioxidant activity. Interestingly, soluble free p‐coumaric and ferulic acids had higher contents in cooked red rice, and soluble free protocatechuic, vanillic, and sinapic acids had higher contents in cooked black rice. Boiling caused significant decreases of soluble conjugated phenolic acids and significant increases of insoluble bound phenolic acids in both red and black rice. Increases of total free tocol, glucose, and fructose contents were observed in most red and black rice. To increase the contents of some soluble free and insoluble bound phenolic acids, free vitamin E, and monosaccharides in red and black rice, boiled rice might be a good choice.  相似文献   

16.
Multilocation testing remains the main tool for understanding varietal responses to the environment. Here, Latvian and Norwegian hull-less and hulled barley varieties were tested in field experiments in Latvia and Norway in order to assess the varieties adaptability across environments (sites). Two Latvian (cv Irbe and cv Kornelija) and one Norwegian hull-less barley variety (cv Pihl) were tested along with one Latvian (cv Rubiola) and one Norwegian hulled barley variety (cv Tyra) under conventional and organic management systems. The grain yield, together with physical and chemical grain parameters were compared, and variety yield and protein stability determined. Overall, grain yield of hull-less barley varieties was significantly lower than for hulled barley varieties regardless of climatic conditions and management system. However, in the organic farming systems this difference between barley types was less pronounced. The hull-less barley varieties cv Pihl and cv Irbe, along with both hulled varieties, had good yield stability across environments and were well adapted to both cropping systems. Hull-less barley varieties tended to contain more protein and β -glucans than hulled barley varieties. Despite being bred for local conditions in Norway and Latvia, our study shows that all the varieties used may be successfully transferred across countries.  相似文献   

17.
Doubled haploid wheat lines developed from a cross between a hard white winter wheat variety of normal starch endosperm and a waxy wheat variety were used to determine the effects of allelic variation in Wx‐1, Glu‐D1, Glu‐B3, and Pinb‐D1 loci on physiochemical properties of flour, noodle dough properties, and textural quality of cooked noodles. Milling yield, damaged starch content, protein content, and SDS sedimentation volume of flour were influenced the most by allelic composition of Pinb‐D1 loci, less by Wx‐1 loci, and least by Glu‐B3. Wheat lines carrying Pinb‐D1b or Glu‐B3h alleles exhibited higher milling yield and damaged starch content of flour than those with Pinb‐D1a and Glu‐B3d alleles. Wheat lines carrying the Pinb‐D1b allele were higher in protein content and SDS sedimentation volume than those carrying Pinb‐D1a. Mixograph water absorption was largely influenced by allelic composition of Wx‐1 loci, whereas mixograph mixing time and mixing tolerance were predominantly determined by allelic composition of Glu‐D1 loci. Amylose content and pasting properties of starch were mainly determined by allelic composition of Wx‐1 loci with little influence by allelic compositions of Glu‐D1, Glu‐B3, and Pinb‐D1 loci. Allelic composition of Wx‐1 loci contributed 53.4% of the variation in optimum water absorption of noodle dough and 26.7% of the variation in thickness of the noodle dough sheet. The variation of 7.8% in optimum water absorption of noodle dough was contributed by the allelic composition of Pinb‐D1 loci. Allelic composition of Wx‐1 loci was responsible for 73.2, 74.4, and 59.6% in the variation of hardness, springiness, and cohesiveness of cooked noodles, respectively. Cohesiveness of cooked noodles was also influenced by the allelic compositions of Glu‐B3 and Pinb‐D1 loci to a smaller extent.  相似文献   

18.
The network‐forming attributes of gluten have been investigated for decades, but no study has comprehensively addressed the differences in gluten network evolution between strong and weak wheat types (hard and soft wheat). This study monitored changes in SDS protein extractability, SDS‐accessible thiols, protein surface hydrophobicity, molecular weight distribution, and secondary structural features of proteins during mixing to bring out the molecular determinants of protein network formation in hard and soft wheat dough. Soft wheat flour and dough exhibited greater protein extractability and more accessible thiols than hard wheat flour and dough. The addition of the thiol‐blocking agent N‐ethylmaleimide (NEM) resulted in similar results for protein extractability and accessible thiols in hard and soft wheat samples. Soft wheat dough had greater protein surface hydrophobicity than hard wheat and exhibited a larger decrease in surface hydrophobicity in the presence of NEM. Formation of high‐molecular‐weight (HMW) protein in soft wheat dough was primarily because of formation of disulfides among low‐molecular‐weight (LMW) proteins, as indicated by the absence of changes in protein distribution when NEM was present, whereas in hard wheat dough the LMW fraction formed disulfide interaction with the HMW fraction. Fourier transform infrared spectroscopy indicated formation of β‐sheets in dough from either wheat type at peak mixing torque. Formation of β‐sheets in soft wheat dough appears to be driven by hydrophobic interactions, whereas disulfide linkages stabilize secondary structure elements in hard wheat dough.  相似文献   

19.
The objective was to study the influence of jet‐cooked Prowashonupana barley flour on total phenolic contents, antioxidant activities, water‐holding capacities, and viscoelastic properties. Barley flour was jet‐cooked without or with pH adjustment at 7, 9, or 11. Generally, the free phenolic content and antioxidant activity decreased after jet‐cooking, while the bound phenolic content and antioxidant significantly increased regardless of pH. Detectable levels of gallic acid, caffeic acid, ferulic acid, and p‐coumaroyl‐pentose in the jet‐cooked barley flour hydrolysates along with vitexin were found among 21 phenolics by LC‐ESI‐Q‐TOF‐MS analysis. Jet‐cooking at an elevated pH resulted in increased pasting viscosities. The oil content was decreased after jet‐cooking and continued to decrease with increased pH values. Jet cooking dramatically increased water holding capacity from 179% for unprocessed flour to 643% for jet‐cooked flour without pH adjustment, and water‐holding capacity was greatly increased to 914% by jet‐cooking at pH 11. The combination of jet‐cooking and pH adjustment had tremendous influence on water‐holding and pasting properties. This increase in functionality should contribute to food applications such as bakery and frozen products because of the release of the bound phenolic content, antioxidant activities, and improved water‐holding and pasting abilities.  相似文献   

20.
A better understanding of the impact of fertilizer nitrogen (N) on biomass and N accumulation, and their partitioning into different plant components is needed to optimize crop yield and quality. A field experiment with spring wheat (Triticum aestivum), hulless (Avena nuda), and hulled (Avena sativa) oats was conducted for 3 years in Ottawa, ON, Canada, to determine the crop responses to N addition (0, 75, and 150 kg N ha–1). Biomass, N, and phosphorus (P) accumulation and partitioning into different plant components were examined during the growth season. Lodging score was determined for all crops when it occurred and again at harvest. During the growth season, both hulless and hulled oats and the wheat cultivar showed almost similar patterns of N and P accumulation with maximum contents at late grain filling or at harvest. Plant N concentration was up to 60 g kg–1 during the seedling stage, decreased gradually with advancing growth stages, and was lowest at harvest. Nitrogen treatments significantly increased plant N and P contents. At heading stage, N treatments enhanced dry matter (24%–45%), N (35%–135%), and P (27%–45%) contents in plant components (i.e., culm, leaf, and head), but also enhanced crop lodging, especially in oats. Both hulled and hulless oats had higher total plant N (5%–35%), N : P ratio, and dry‐matter content in leaf (6%–43%) and head (0%–129%) along with higher P (up to 27%) in culm than the wheat cultivar. The wheat cultivar accumulated greater dry matter and higher N content in kernels than both hulled and hulless oats at harvest. Both hulled and hulless oat cultivars exhibited similar lodging susceptibility to N addition (75 or 150 kg N ha–1), produced lower dry weight and lower kernel N, and hence lower grain yield than the wheat cultivar. The larger vegetative dry‐matter accumulation at heading coupled with higher P content in culms under high‐N‐supply conditions may be related to severe lodging in oat cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号