首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies were conducted with two newly developed gluten‐free bread recipes. One was based on corn starch (relative amount 54), brown rice (25), soya (12.5), and buckwheat flour (8.5), while the other contained brown rice flour (50), skim milk powder (37.5), whole egg (30), potato (25), and corn starch (12.5), and soya flour (12.5). The hydrocolloids used were xanthan gum (1.25) and xanthan (0.9) plus konjac gum (1.5), respectively. Wheat bread and gluten‐free bread made from commercial flour mix were included for comparison. Baking tests showed that wheat and the bread made from the commercial flour mix yielded significantly higher loaf volumes (P < 0.01). All the gluten‐free breads were brittle after two days of storage, detectable by the occurrence of fracture, and the decrease in springiness (P < 0.01), cohesiveness (P < 0.01), and resilience (P < 0.01) derived from texture profile analysis. However, these changes were generally less pronounced for the dairy‐based gluten‐free bread, indicating a better keeping quality. Confocal laser‐scanning microscopy showed that the dairy‐based gluten‐free bread crumb contained network‐like structures resembling the gluten network in wheat bread crumb. It was concluded that the formation of a continuous protein phase is critical for an improved keeping quality of gluten‐free bread.  相似文献   

2.
Breadmaking properties were determined for formulations that included durum, soft, and spring wheat flour, using a pound-loaf sponge-dough baking procedure. Up to 60% durum or soft wheat flour plus 10% spring wheat flour could be incorporated at the sponge stage for optimum dough-handling properties. At remix, the dough stage required 30% spring wheat flour. Bread made with 100% spring wheat flour was used as a standard for comparison. Bread made with 60% durum flour exhibited internal crumb color that was slightly yellow. When storing pound bread loaves for 72 hr, crumb moisture content remained unchanged. Crumb firmness and enthalpy increased the most in bread made with 60% soft wheat flour. Crumb firmness increased the least in bread made with 100% spring wheat flour. Enthalpy changed the least in bread made with 60% durum flour. Crumb moisture content was significantly correlated with crumb firmness (r = -0.82) and enthalpy (r = -0.65). However, crumb moisture content was specific for each type of flour and a function of flour water absorption; therefore, these correlations should be interpreted with caution. Crumb firmness and enthalpy were significantly correlated (r = 0.65). Ball-milling flour resulted in an increase in water absorption of ≈2% and in crumb moisture content of ≈0.5% but had no effect on either crumb firmness or enthalpy.  相似文献   

3.
Gluten‐free breadmaking quality of 10 sorghum flours was compared using (relative basis) decorticated sorghum flour (70), corn starch (30), water (105), salt (1.75), sugar (1), and dried yeast (2). Batter consistency was standardized by varying water levels to achieve the same force during extrusion. Crumb properties were evaluated by digital image analysis and texture profile analysis (TPA). Significant differences (P < 0.001) in crumb grain were found among the hybrids with mean cell area ranging from 1.3 to 3.3 mm2 and total number of cells ranging from 13.5 to 27.8/cm2. TPA hardness values of the crumb also varied significantly (P < 0.001). Based on significant correlations (P < 0.01), starch damage, influenced by kernel hardness, was identified as a key element for these differences. Breads differed little in volume, height, bake loss, and water activity. Investigation of added ingredients on bread quality was conducted using response surface methodology (RSM) with two sorghum hybrids of opposite quality. Addition of xanthan gum (0.3–1.2% flour weight basis [fwb]) and skim milk powder (1.2–4.8% fwb) and varying water levels (100–115% fwb) were tested using a central composite design. Increasing water levels increased loaf specific volume, while increasing xanthan gum levels decreased the volume. As skim milk powder levels increased, loaf height decreased. Quality differences between the hybrids were maintained throughout the RSM.  相似文献   

4.
The present investigation aims at understanding the role of chemically modified starch on the firmness of fresh or stale bread. Bread was prepared from wheat flour or substituted wheat flour that contained 18% chemically modified tapioca starch and 2% vital gluten. Hydroxypropylated tapioca starch (HTS), acetylated tapioca starch (ATS), phosphorylated cross‐linked tapioca starch (PTS), and native tapioca starch (NTS) were tested. Bread prepared from the substituted flour with PTS showed a firmer texture on the day of baking compared with bread prepared from NTS, HTS, and ATS. PTS retained its granular structure in the gluten network after baking and seemed to play the role of filler particles in the gluten matrix, thereby increasing firmness of fresh bread crumb. Bread prepared from the substituted flour with HTS or ATS firmed at a lower rate and showed a lower endothermic melting enthalpy of amylopectin after three days of storage compared with NTS or PTS. These findings suggest that the staling of bread containing chemically modified tapioca starch involves recrystallization of amylopectin.  相似文献   

5.
Twelve hard winter wheat flours with protein contents of 11.8–13.6% (14% mb) were selected to investigate starch properties associated with the crumb grain score of experimentally baked pup‐loaf bread. The 12 flours were classified in four groups depending on the crumb grain scores, which ranged from 1 (questionable‐unsatisfactory) to 4 (satisfactory). Flours in groups 1, 2, 3, and 4 produced breads with pup‐loaf volumes of 910–1,035, 1,000–1,005, 950–1,025, and 955–1,010 cm3, respectively. Starches were isolated by a dough handwashing method and purified by washing to give 75–79% combined yield (dry flour basis) of prime (62–71%) and tailing (7–16%) starches. The prime starch was fractionated further into large A‐granules and small B‐granules by repeated sedimentation in aqueous slurry. All starches were assayed for weight percentage of B‐granules, swelling power (92.5°C), amylose content, and granular size distribution by quantitative digital image analysis. A positive linear correlation was found between the crumb grain scores and the A‐granule sizes (r = 0.65, P < 0.05), and a polynomial relationship (R2 = 0.45, P < 0.05) occurred between the score and the weight percentage of B‐granule starch. The best crumb grain score was obtained when a flour had a weight percentage of B‐granules of 19.8–22.5%, shown by varietal effects.  相似文献   

6.
Whole sorghum flour was fermented (a five‐day natural lactic acid fermentation) and dried under forced draught at 60°C, and evaluated for its effect on sorghum and wheat composite bread quality. In comparison with unfermented sorghum flour, fermentation decreased the flour pH from 6.2 to 3.4, decreased total starch and water‐soluble proteins, and increased enzyme‐susceptible starch, total protein, and the in vitro protein digestibility (IVPD). Fermentation and drying did not decrease the pasting temperature of sorghum flour, but slightly increased its peak and final viscosity. In comparison with composite bread dough containing unfermented sorghum flour, fermented and dried sorghum flour decreased the pH of the dough from 5.8 to 4.9, increased bread volume by ≈4%, improved crumb structure, and slightly decreased crumb firmness. IVPD of the composite bread was also improved. Mixing wet fermented sorghum flour directly with wheat flour (sourdough‐type process) further increased loaf volume and weight and reduced crumb firmness, and simplified the breadmaking process. It appears that the low pH of fermented sorghum flour inactivated amylases and increased the viscosity of sorghum flour, thus improving the gas‐holding capacity of sorghum and wheat composite dough. Fermentation of sorghum flour, particularly in a sourdough breadmaking process, appears to have considerable potential for increasing sorghum utilization in bread.  相似文献   

7.
This research aims to investigate the relationship between the solvent retention capacity (SRC) test and quality assessment of hard red spring (HRS) wheat flour samples obtained from 10 HRS cultivars grown at six locations in North Dakota. The SRC values were significantly (P < 0.05) correlated with flour chemical components (protein, gluten, starch, and damaged starch contents, except arabinoxylan); with farinograph parameters (stability [FST], water absorption, peak time [FPT], and quality number); and with breadmaking parameters (baking water absorption [BWA], bread loaf volume [BLV], and symmetry). Differences in locations and cultivars contributed significantly to variation in quality parameters and SRC values. Suitability of SRC parameters for discriminatory analysis of HRS wheat flour is greatly influenced by molecular weight distribution (MWD) of SDS‐unextractable proteins. SRC parameters, except for sucrose SRC, showed significant (P < 0.01) and positive correlations with high‐molecular‐weight (HMW) polymeric proteins in SDS‐unextractable fractions, whereas only lactic acid SRC exhibited significant (P < 0.01) correlations with low‐molecular‐weight polymeric proteins. HMW polymeric proteins also exhibited positive associations with FPT, FST, BWA, and BLV. The discrepant variation in association of SRC parameters with respect to MWD of SDS‐unextractable proteins could improve segregation of HRS wheat flour samples for quality.  相似文献   

8.
Protein and protein fractions were measured in 49 hard winter wheat flours to investigate their relationship to breadmaking properties, particularly loaf volume, which varied from 760 to 1,055 cm3 and crumb grain score of 1.0–5.0 from 100 g of flour straight‐dough bread. Protein composition varied with flour protein content because total soluble protein (SP) and gliadin levels increased proportionally to increased protein content, but albumins and globulins (AG), soluble polymeric proteins (SPP), and insoluble polymeric protein (IPP) levels did not. Flour protein content was positively correlated with loaf volume and bake water absorption (r = 0.80, P < 0.0001 and r = 0.45, P < 0.01, respectively). The percent SP based on flour showed the highest correlation with loaf volume (r = 0.85) and low but significant correlation with crumb grain score (r = 0.35, P < 0.05). Percent gliadins based on flour and on protein content were positively correlated to loaf volume (r = 0.73, P < 0.0001 and r = 0.46, P < 0.001, respectively). The percent IPP based on flour was the only protein fraction that was highly correlated (r = 0.62, P < 0.0001) with bake water absorption followed by AG in flour (r = 0.30, P < 0.05). Bake mix time was correlated positively with percent IPP based on protein (r = 0.86) but negatively with percent SPP based on protein (r = ‐0.56, P < 0.0001).  相似文献   

9.
Hard winter wheat (Triticum aestivum L.) flours (n = 72) were analyzed for free lipids (FL) and their relationships with quality parameters. The two main glycolipid (GL) classes showed contrary simple linear correlations (r) with quality parameters. Specifically, kernel hardness parameters, flour yields, and water absorptions had significant negative correlations with monogalactosyldiglycerides (MGDG) but positive correlations with digalactosyldiglycerides (DGDG). MGDG showed negative correlations with gluten content but positive correlations with gluten index. The percentages of DGDG in FL had significant positive correlations among cultivars (n = 12) with mixograph and bake mix times (r = 0.71, P < 0.01 and r = 0.67, P < 0.05, respectively), mixing tolerance (r = 0.67, P < 0.05), and bread crumb grain score (r = 0.71, P < 0.01). These results suggest that increasing DGDG in FL could contribute to enhancing wheat quality attributes including milling, dough mixing, and breadmaking quality characteristics. FL content and composition (ratio of MGDG or DGDG to GL) supplement flour protein content to develop prediction equations of mixograph mix time (R2 = 0.89), bake mix time (R2 = 0.76), and loaf volume (R2 = 0.72).  相似文献   

10.
Starch is a crucial component determining the processing quality of wheat‐based products such as Chinese steamed bread (CSB) and raw white noodles (RWN). Flour from wheat cultivar Zhongmai 175 was used for fractionation into starch, gluten, and water solubles by hand washing. The starch fraction was successfully separated into large (>10 μm diameter) and small starch granules (<10 μm diameter) by repeated sedimentation. Flour fractions were reconstituted to original levels in the flour by using constant gluten and water solubles and varying the weight ratio of large and small starch granules. As the proportion of small granules increased in the reconstituted flours, farinograph water absorption increased, and amylose content, pasting peak viscosity, trough, and final viscosity decreased. Starch granule size distribution significantly affected processing quality of CSB and RWN. Superior crumb structure score (12.0) was observed in CSB made from reconstituted flour with 35% small starch granules. CSB made from reconstituted flours with 30 and 35% small starch granules exhibited the highest total scores, with values of 85.4 and 83.3, respectively. Significant improvements in color, viscoelasticity, and smoothness of RWN were obtained with an increase in small starch granule content, and reconstituted flours with 30–40% small starch granules produced RWN with moderate firmness.  相似文献   

11.
We used modified wheat starches in gluten-starch flour models to study the role of starch in bread making. Incorporation of hydroxypropylated starch in the recipe reduced loaf volume and initial crumb firmness and increased crumb gas cell size. Firming rate and firmness after storage increased for loaves containing the least hydroxypropylated starch. Inclusion of cross-linked starch had little effect on loaf volume or crumb structure but increased crumb firmness. The firming rate was mostly similar to that of control samples. Presumably, the moment and extent of starch gelatinization and the concomitant water migration influence the structure formation during baking. Initial bread firmness seems determined by the rigidity of the gelatinized granules and leached amylose. Amylopectin retrogradation and strengthening of a long-range network by intensifying the inter- and intramolecular starch-starch and possibly also starch-gluten interactions (presumably because of water incorporation in retrograded amylopectin crystallites) play an important role in firming.  相似文献   

12.
One of the main problems associated with gluten‐free bread is obtaining a good structure. Transglutaminase (TGase), an enzyme that catalyzes acyl‐transfer reactions through which proteins can be cross‐linked could be a way to improve the structure of gluten‐free breads. The objective of this study was to evaluate the impact of TGase at different levels (0, 0.1, 1, and 10 U of TGase/g of protein) on the quality of gluten‐free bread. The recipe consisted of white rice flour (relative amount: 35), potato starch (30), corn flour (22.5), xanthan gum (1), and various protein sources (skim milk powder [SMP] [12.5], soya flour, and egg powder). The influence of the various proteins in combination with the different addition levels of TGase on bread quality (% bake loss, specific volume, color, texture, image characteristics, and total moisture) was determined. Confocal laser‐scanning microscopy (CLSM) was used to evaluate the influence of TGase on the microstructure of the bread. Baking tests showed that TGase had an effect on the specific volume of the bread. For instance, the SMP bread with 10 U of enzyme contained the most compact structure, which was reflected in the crumb texture profile analysis results (highest values) (P < 0.05), digital image analysis (highest level of cells/cm2) (P < 0.05), and CLSM micrographs (network formation). Finally, it can be concluded that it is possible to form a protein network in gluten‐free bread with the addition of TGase. However the efficiency of the enzyme is dependent on both the protein source and the level of enzyme concentration.  相似文献   

13.
Wheat genotypes of wild type, partial waxy, and waxy starch were used to determine the influence of starch amylose content on French bread making quality of wheat flour. Starch amylose content and protein content of flours were 25.0–25.4% and 14.3–16.9% for wild type; 21.2 and 14.9% for single null partial waxy; 15.4–17.1% and 13.2–17.6% for double null partial waxy; and 1.8 and 19.3% for waxy starch, respectively. Wheat flours of double null partial waxy starch produced smaller or comparable loaf volume of bread than wheat flours of wild type and single null partial waxy starch. Waxy wheat flour, despite its high protein content, generally produced smaller volume of bread with highly porous, glutinous, and weak crumb than wheat flours of wild type and partial waxy starch. French bread baked from a flour of double null partial waxy starch using the sponge-and-dough method maintained greater crumb moisture content for 24 hr and softer crumb texture for 48 hr of storage compared with bread baked from a flour of wild type starch. In French bread baked using the straight-dough method, double null partial waxy wheat flours with protein content >14.3% exhibited comparable or greater moisture content of bread crumb during 48 hr of storage than wheat flours of wild type starch. While the crumb firmness of bread stored for 48 hr was >11.4 N in wheat flours of wild type starch, it was <10.6 N in single or double null partial waxy flours. Wheat flours of reduced starch amylose content could be desirable for production of French bread with better retained crumb moisture and softness during storage.  相似文献   

14.
To alleviate the adverse effects (grittiness and high crumb firmness) caused by the inclusion of sorghum flour in composite breads, sorghum grain was malted with the aim of decreasing the gelatinization temperature and increasing the water‐holding capacity of sorghum flour. Four different heat treatments were investigated: drying the malt at high temperatures (50–150°C), stewing, steaming, and boiling before drying the malt at 80°C. Malting decreased the pasting temperature of sorghum to values approaching those of wheat flour, but the paste viscosity was very low. Increasing the malt drying temperature inactivated the amylases but gave malts of darker color and bitter taste. Stewing, steaming, and boiling the malt before drying almost completely inactivated the amylases and increased the enzyme‐susceptible starch content and the paste viscosity of malt flours. Bread made with boiled malt flour (30%) had an improved crumb structure, crumb softness, water‐holding capacity, and resistance to staling, as well as a fine malt flavor compared with the bread made with grain sorghum flour (30%). Consumers preferred the malted sorghum bread over the bread made with plain sorghum flour.  相似文献   

15.
The influence of bran particle size on bread‐baking quality of whole grain wheat flour (WWF) and starch retrogradation was studied. Higher water absorption of dough prepared from WWF with added gluten to attain 18% protein was observed for WWFs of fine bran than those of coarse bran, whereas no significant difference in dough mixing time was detected for WWFs of varying bran particle size. The effects of bran particle size on loaf volume of WWF bread and crumb firmness during storage were more evident in hard white wheat than in hard red wheat. A greater degree of starch retrogradation in bread crumb stored for seven days at 4°C was observed in WWFs of fine bran than those of coarse bran. The gels prepared from starch–fine bran blends were harder than those prepared from starch–unground bran blends when stored for one and seven days at 4°C. Furthermore, a greater degree of starch retrogradation was observed in gelatinized starch containing fine bran than that containing unground bran after storage for seven days at 4°C. It is probable that finely ground bran takes away more water from gelatinized starch than coarsely ground bran, increasing the extent of starch retrogradation in bread and gels during storage.  相似文献   

16.
The objective of this study was to test whether sourdough could improve quality and delay staling of gluten-free (GF) bread. Three strains of lactic acid bacteria used were Lactobacillus plantarum 2115KW, L. plantarum FST 1.11, and L. sanfranciscensis TMW 1.52, and these were subsequently compared with nonacidified control and chemically acidified sourdoughs, batters, and GF breads. Bread characteristics such as pH, total titratable acidity, and crumb hardness (five-day storage) were evaluated. Extrusion (texture analyzer) measurements showed that the sourdoughs became significantly softer during 24 hr of fermentation (P < 0.001). Both LP 2115KW and LP FST 1.11 strains grew better and produced more acid than LS 1.52. Confocal laser-scanning microscopy also revealed a breakdown in the structure of the sourdoughs over time. Crumb hardness increased significantly for all breads (P < 0.05). After five days of storage, two strains yielded significantly softer bread than the nonacidified control (P < 0.05). This was in distinct contrast to the chemically acidified control that at day 5 was significantly firmer than all other breads (P < 0.05). It was concluded that sourdough improves the delay in staling of GF bread, although the positive effects were smaller than those found in wheat bread.  相似文献   

17.
目前蒸饼的制作大多采用传统的半烫面工艺,工序较为复杂,为解决这一问题,该研究采用不同热处理方式(蒸汽处理、微波处理、干热处理)对小麦粉进行热处理,研究了不同处理方式对小麦粉的糊化特性、热机械学特性、微观结构等的影响,并将处理后的小麦粉添加到未处理的小麦粉中制成蒸饼,考察了所制得的蒸饼的水分分布、质构特性及感官品质。结果表明:3种热处理的适当处理时间都可以提高小麦粉的黏度和回生值;经干热处理和微波处理后的小麦粉的破损淀粉含量高于经蒸汽处理的小麦粉。3种热处理小麦粉的添加均可以提高面团的吸水率,蒸汽处理小麦粉的添加使面团耐揉性降低、蒸煮稳定性提高,微波和干热处理小麦粉的添加使面团的耐揉性和内部结构稳定性提高。适当处理时间的热处理小麦粉的添加可以提高蒸饼的结合水含量、硬度、弹性和咀嚼性等。其中,经蒸汽处理40 min、微波处理2 min和干热处理30 min后的小麦粉的添加制得的蒸饼有相对适中的强韧性、较高的结合水含量和感官评分。该研究结果表明添加热处理后的小麦粉代替传统的烫面工艺制作高品质蒸饼具有可行性,同时能够为蒸饼的工业化生产提供相应的基础数据和一定的理论指导。  相似文献   

18.
Fortifying bread with β‐glucan has been shown to reduce bread quality and the associated health benefits of barley β‐glucan. Fortification of bread using β‐glucan concentrates that are less soluble during bread preparation steps has not been investigated. The effects of β‐glucan concentration and gluten addition on the physicochemical properties of bread and β‐glucan solubility and viscosity were investigated using a less soluble β‐glucan concentrate, as were the effects of baking temperature and prior β‐glucan solubilization. Fortification of bread with β‐glucan decreased loaf volume and height (P ≤ 0.05) and increased firmness (P ≤ 0.05). Gluten addition to bread at the highest β‐glucan level increased height and volume (P ≤ 0.05) to values exceeding those for the control and decreased firmness (P ≤ 0.05). β‐Glucan addition increased (P ≤ 0.05) extract viscosity, as did gluten addition to the bread with the highest β‐glucan level. Baking at low temperature decreased (P ≤ 0.05) β‐glucan viscosity and solubility, as did solubilizing it prior to dough formulation. Utilization of β‐glucan that is less soluble during bread preparation may hold the key to effectively fortifying bread with β‐glucan without compromising its health benefits, although more research is required.  相似文献   

19.
Pup‐loaf bread was made with 10, 30, and 50% substitution of flour with wheat starch phosphate, a cross‐linked resistant starch (XL‐RS4), while maintaining flour protein level at 11.0% (14% mb) by adding vital wheat gluten. Bread with 30% replacement of flour with laboratory‐prepared XL‐RS4 gave a specific volume of 5.9 cm3/g compared with 6.3 g/cm3 for negative control bread (no added wheat starch), and its crumb was 53% more firm than the control bread after 1 day at 25°C, but 13% more firm after 7 days. Total dietary fiber (TDF) in one‐day‐old bread made with commercial XL‐RS4 at 30% flour substitution increased 3–4% (db) in the control to 19.2% (db) in the test bread, while the sum of slowly digestible starch (SDS) plus resistant starch (RS), determined by a modified Englyst method, increased from 24.3 to 41.8% (db). The reference amount (50 g, as‐is) of that test bread would provide 5.5 g of dietary fiber with 10% fewer calories than control bread. Sugar‐snap cookies were made at 30 and 50% flour replacement with laboratory‐prepared XL‐RS4, potato starch, high‐amylose (70%) corn starch, and commercial heat‐moisture‐treated high‐amylose (70%) corn starch. The shape of cookies was affected by the added starches except for XL‐RS4. The reference amount (30 g, as‐is) of cookies made with commercial XL‐RS4 at 30% flour replacement contained 4.3 g (db) TDF and 3.4 g (db) RS, whereas the negative control contained 0.4 g TDF and 0.6 g RS. The retention of TDF in the baked foods containing added XL‐RS4 was calculated to be >80% for bread and 100% for cookies, while the retention of RS was 35–54% for bread and 106–113% for cookies.  相似文献   

20.
Previous attempts have been made to obtain gluten‐free bread of acceptable quality for bread specific volume and crumb texture. Rice bread is a good alternative to celiac patients, but it has a very rapid staling during storage. Rice starch is more prone to retrograde during storage than wheat starch, and the special hydrophobic nature of the rice proteins requires specific enzymes to be used in the rice bread process. To retard rice bread staling, two different starch hydrolyzing enzymes (α‐amylase of intermediate thermostability and cyclodextrin glycoxyl transferase [CGTase]) have been tested and their effect on fresh bread quality and staling during storage has been evaluated. The addition of α‐amylase improved bread specific volume and crumb firmness but very sticky textures were obtained. The addition of CGTase produced even higher specific volume and similar crumb firmness with better texture. Both enzymes decreased the ability of amylopectin to retrograde during storage. The firming kinetic was lowered by the α‐amylase but not the limiting firmness, while the rice crumb from CGTase firmed quickly with a very short range of firmness increase. Results revealed that the starch hydrolysis brought about by the α‐amylase was not sufficient to retard staling. CGTase was considered a better antistaling agent because of its starch hydrolyzing and cyclizing activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号