首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Wheat breeding in Pakistan started in 1930s before partition in the United India and so far has released more than 68 cultivars, but no systematic analyses of the genetic diversity of Pakistan wheat have been made. Twenty Pakistan wheat cultivars released from 1933 to 2002 were examined for genetic diversity and relationships using random amplified polymorphic DNA (RAPD) markers. Forty-two RAPD primers were applied and 184 polymorphic bands were generated for each cultivar. Most of the cultivars were genetically interrelated, although six of them displayed some genetic distinctness. The RAPD variation observed among these cultivars was low. Only 40.7% of the total scorable bands were polymorphic, and 26.1% of the polymorphic bands were observed most frequently (f = 0.95) among the 20 cultivars. The proportions of polymorphic bands for each cultivar ranged from 0.67 in ‘Yecora’ to 0.84 in ‘C-250’ with an average of 0.76. About 1.4% of the RAPD variation might have been fixed over the 69 years of wheat breeding, but such fixation was not statistically significant. These results are significant for future improvement and conservation of Pakistan wheat.  相似文献   

2.
176 horseradish accessions from the Nordic countries Denmark, Finland, Norway and Sweden were analysed to estimate the level of genetic diversity and to propose conservation strategies for this cultivated plant. Most of the accessions were collected in old gardens of the Nordic countries but selections from European countries and Danish breeding lines were also included in the study. Since horseradish is mainly vegetative propagated the genetic diversity has been assumed to be small. However, using the AFLP method with three primer combinations we revealed a significant genetic diversity among Nordic horseradish. The analysis yielded 65 polymorphic bands and we found an overall diversity index of 0.5 (Shannon–Weaver). The highest diversity was found among the Finnish accessions followed by the Danish accessions. An overall AMOVA analysis indicated that 90 % of the variation could be explained by among accession variation. The AFLP data assigned the different accessions into groups that corresponded with their country of origin. A closer relationship was observed between the Swedish, Danish and some of the Norwegian accessions while the Finnish accessions separated more clearly from the other three countries. A possible explanation for the diversity is that horseradish probably has been introduced to the Nordic countries at many occasions during a long period of time.  相似文献   

3.
The genetic diversity of European species of Miscanthus was analyzed by AFLP technique. The genetic similarity based on six primer combinations yielded about 200 data points. The plant material included 11 clones of M. sinensis, 2 clones of M. sacchariflorus and 31 accessions of M. x giganteus. Furthermore 4 hybrids were created by crossing M. sinensis with M. sacchariflorus clones. Two clusters were found represented by M. sinensis and M. sacchariflorus clones. The M. x giganteus accessions clustered under M. sacchariflorus. A very low genetic diversity was found in the M. x giganteus pool. No polymorphism was detected between micro- and rhizome-propagated M. x giganteus accessions. Many of the M. sacchariflorus clones sampled in Botanical Gardens turned out to be M. x giganteus clones. In the hybridization of M. sinensis and M. sacchariflorus material, self-fertilization of the M. sinensis clones was determined by application of the AFLP technique. In the M. sinensis pool a typical diversification of hybrids was detected according to ornamental selection by horticulture breeders. The AFLP technique is an adequate and powerful tool to evaluate genetic diversification, to analyse the success of hybridizations and to find wrong classifications.  相似文献   

4.
Amplified fragment length polymorphism (AFLP) and random amplified polymorphic DNA (RAPD) analyses were performed on six populations (a total of 89 individuals) of Phytolacca dodecandra (endod) collected in Ethiopia. The populations were selected based on our previous investigation to represent two altitude groups: lowland/central-highland (1600–2500 m) and highland (2501–3000 m). A total of 197 AFLP and 68 RAPD markers were scored from 5 primer pairs and 12 random primers, respectively. The overall patterns obtained for AFLPs and RAPDs from diversity, cluster and principal component analyses were very comparable. However, the moderate correlation (r = 0.56) between AFLP and RAPD similarity matrices as well as the discrepancies in diversity estimates between the two techniques in some populations and in the lowland/central-highland plants could be due to differences in sensitivity of reaction conditions, bias in scoring of bands, number of markers used for analyses, and/or parts of the genome surveyed. For both AFLP and RAPD, the lowland/central-highland populations showed higher polymorphism and Shannon information measure (H) than the highlands. Cluster and principal component analyses performed for both marker types have also clearly demonstrated the differentiation of all the lowland/central highland plants from those of the highlands, in agreement with our previous conclusion. Markers scored from any of the five AFLP primer pairs were sufficient to clearly distinguish the two altitude groups; with RAPD, selection of about 8 informative markers produced by seven random primers was needed for the same purpose.  相似文献   

5.
Sweet potato (Ipomoea batatas L.) is the fifth most important crop in the developing countries after rice, wheat, maize and cassava. The amplified fragment length polymorphism (AFLP) method was used to study the genetic diversity and relationships of sweet potato accessions in the germplasm collection of Sokoine University of Agriculture, Morogoro and Sugarcane Research Institute, Kibaha, Tanzania. AFLP analysis of 97 sweet potato accessions using ten primer combinations gave a total of 202 clear polymorphic bands. Each one of the 97 sweet potato accessions could be distinguished based on these primer combinations. Estimates of genetic similarities were obtained by the Dice coefficient, and a final dendrogram was constructed with the un-weight pair-group method using arithmetic average. AFLP-based genetic similarity varied from 0.388 to 0.941, with a mean of 0.709. Cluster analysis using genetic similarity divided the accessions into two main groups suggesting that there are genetic relationships among the accessions. Principal Coordinate analysis confirmed the pattern of the cluster analysis. Analysis of molecular variance revealed greater variation within regions (96.19%) than among regions (3.81%). The results from the AFLP analysis revealed a relatively low genetic diversity among the germplasm accessions and the genetic distances between regions were low. A maximally diverse subset of 13 accessions capturing 97% of the molecular markers diversity was identified. We were able to detect duplicates accessions in the germplasm collection using the highly polymorphic markers obtained by AFLP, which were found to be an efficient tool to characterize the genetic diversity and relationships of sweet potato accessions in the germplasm collection in Tanzania.  相似文献   

6.
For adding the hulless barley resources of Shangri-la region to the global barley resource library, a basic work was done by us to assess their genetic diversity of this region. The genetic diversity of 60 hulless barley samples collected from three counties in Shangri-la region of Yunnan Province, were studied using SSR (simple sequence repeats) and AFLP (amplified fragment length polymorphism) markers. A total of 70 alleles were detected for 19 pairs of SSR primers, and 525 band containing 464 polymorphic bands were revealed for 5 pairs of AFLP primers. The value of polymorphism information content (PIC) ranged from 0.03 to 0.86 for SSR primers. The total numbers of alleles were 51, 55, 43 in three populations and the polymorphic bands were 188, 205 and 141. The genetic distances and genetic identity among the three populations showed their close relationship. The gene diversity among populations relative to the total population diversity (Gst) was 0.13 for SSR markers and 0.02 for AFLP markers and indicated that just 13 and 2% variations were among populations, respectively. The UPGMA cluster analysis revealed that all of the samples grouped randomly rather than clustered into distinct groups corresponding to their populations, row types and spring/fall types. We concluded that there was high genetic diversity in the population of Shangri-la region and the formation of diversity was related to complex environment and inhabitants’ traditional practices.  相似文献   

7.
Kenaf (Hibiscus cannabinus L.) is one of the world's most economically important fiber crops. In order to identify different varieties, and investigate its diversity and genetic relationships, twenty-three kenaf accessions and two accessions of its relative, roselle (H. sabdariffa var. altissima), were analyzed by morphological characterization and AFLP fingerprinting. It is very difficult to identify kenaf accessions based merely on morphological characters, due to their limited variation. For the AFLP study, a total of 505 polymorphic markers (out of 560) were produced by six selected AFLP primer combinations. The AFLP fingerprinting was effective in identifying all kenaf accessions included in the study. Kenaf and roselle are independent species with close relationships, and great genetic diversity was also detected among the kenaf accessions with different origins, based on the analysis of the AFLP markers. The AFLP analysis strongly supports the opinion that kenaf originated in Africa. It also demonstrated that the dissemination of kenaf was from Africa through Asia to Central and North America.  相似文献   

8.
The genetic variation and relationships among 31 accessions of Phaseolus vulgaris L., and two representatives of Vigna unguiculata L., were evaluated by AFLP analysis. A total of 263 DNA fragments across all materials were scored using nine primer combinations, averaging 32 per primer. More than 95% of the amplification products showed polymorphism, indicating high variation at the DNA level among these accessions. Pair-wise genetic similarity (Jaccard's coefficient) ranged from 0.553 to 0.840, with a mean of 0.765. Twenty-three accessions (70%) clustered into three groups. A majority of the commercial cultivars (91%) clustered within a single group, whereas the landraces were distributed along all the variation. An apparent correlation with phaseolin types was detected. Results of this study suggest that Brazilian landraces truly represent the overall genetic variability of Phaseolus vulgaris, confirming the multiple origins of these materials, and their potential as a source of variation for breeding programs.  相似文献   

9.
The genetic diversity in Tunisian perennial ryegrass (Lolium perenne) was examined by the help of inter-simple sequence repeats (ISSR). Starting from eighteen accessions, a large number of polymorphic ISSR markers were currently generated using appropriate primers (a total of 136, which average of 12.6 polymorphic bands/primer). These markers were considered to estimate the genetic distance among accessions and to draw phylogenetic trees. Our data provide evidence of a high degree of genetic diversity in Tunisian ryegrass. In addition, both cultivars and wild types present a high degree of divergence suggesting a complex domestication process in this crop. Moreover, spontaneous populations of Tunisian ryegrass have been identified as important ecotypes that are suitable in selection programs to improve grasslands.  相似文献   

10.
The genetic diversity of a subset of the Ethiopian genebank collection maintained at the IPK Gatersleben was investigated applying 22 wheat microsatellites (WMS). The material consisted of 135 accessions belonging to the species T. aestivum L. (69 accessions), T. aethiopicum Jacubz. (54 accessions) and T. durum Desf. (12 accessions), obtained from different collection missions. In total 286 alleles were detected, ranging from 4 to 26 per WMS. For the three species T. aestivum, T. aethiopicum and T. durum on average 9.9, 7.9 and 7.9 alleles per locus, respectively, were observed. The average PIC values per locus were highly comparable for the three species analysed. Considering the genomes it was shown that the largest numbers of alleles per locus occurred in the B genome (18.4 alleles per locus) compared to A (10.1 alleles per locus) and D (8.2 alleles per locus) genomes. Genetic dissimilarity values between accessions were used to produce a dendrogram. All accessions could be distinguished, clustering in two large groups. Whereas T. aestivum formed a separate cluster, no clear discrimination between the two tetraploid species T. durum and T. aethiopicum was observed.  相似文献   

11.
RAPD analysis of 112 accessions of Aegilops tauschii Coss. (genome DD), Ae. cylindrica Host (CCDD), Ae. crassa Boiss. (DDMM), Ae. biuncialis Vis. (UUMM) and Ae. triuncialis L. (UUCC) collected in the Central Asia and north Caucasia was conducted. Aegilops accessions were divided into two major groups, corresponding to the D genome species and the U genome species. These groups were also separated into sub-groups according to species, except for the Ae. tauschii-cylindrica complex of accessions from Central Asia. Aegilops tauschii from north Caucasia was divided into two varietal groups, tauschii and meyeri. The Central Asian accessions of Aegilops species were more diverse than the accessions from north Caucasia. Aegilops tauschii and Ae. cylindrica accessions from north Caucasia were genetically uniform. Associations between altitudal variation of Aegilops species and variability of RAPD markers were not found.  相似文献   

12.
Allozyme polymorphism at seven loci (TPI, G6PD-2,IDH-1, SKD-2, MDH-1, GOT-1, andGOT-2) was employed to detect the level of geneticdiversity in C.alismatifolia populations from both cultivatedand wild habitats in Thailand. High diversity was observed in allpopulations with relatively lower values in cultivated populations.Percentage of polymorphic loci (P)varied from 85.7–100% in cultivated populations comparedwith 100% in all natural populations. Allele number per locus(A L) was 3.14 in cultivatedpopulations, and from 2.86–4 in natural populations. Allelenumber per polymorphic locus(A P) of cultivated andnatural populations ranged from 3.14–3.5 and 2.86–4,respectively. Genetic diversity within populations(H S) varied from0.586–0.611 in cultivated and from 0.621–0.653 in naturalpopulations. The genetic identity(I SP) for the species was0.833. The cultivated populations yielded higher value of geneticidentity with highland populations(I C /H =0.776) than with the lowland ones(I C /L =0.754). The analysis of genetic similarities with theNeighbor-Joining algorithm results in the separation ofcultivated populations from all wild populations. One highlandpopulation from the tourist spot, H2, was placed in a separatecluster between the cultivated and other wild populations. It isconsidered as the possible origin of the cultivatedpopulations.  相似文献   

13.
This study was undertaken to establish the relationships among 44 chickpea (Cicer) accessions from a minicore collection including 30 cultivars, seven landraces from C. arietinum and seven accessions from C. reticulatum, C. echinospermum, and C. oxyodon species, all with economically important traits and tolerance to biotic and abiotic stresses, by using six amplified fragment length polymorphism (AFLP) primer combinations. The reaction products were resolved on MetaPhor agarose gel. A total of 64 clear and reproducible AFLP markers were recorded. Mean of polymorphism information content (PIC) values were calculated for each primer pair which ranged from 0.155 (EcoRI-ACC/MseI-CAG) to 0.270 (EcoRI-ACC/ MseI-CTG) with an average of 0.237. Analysis of molecular variance revealed that 90% of the total variance was due to differences within populations and 10% due to differences among populations. The results showed that the studied minicore collection is highly variable and could be used as the fundamental base in chickpea breeding programs.  相似文献   

14.
Hordeum chilense Roem. et Schult. shows interesting characteristics for breeding, such as disease or pest resistance and has high variability for endosperm storage proteins, valuable for the improvement of the breadmaking quality of both tritordeum and wheat. Knowledge of the genetic structure and the level of H. chilense genetic diversity within its distribution zone may be important to decide on breeding strategies as well as management procedures. The pattern of genetic variation within and among different regions of the distribution area of H. chilense, was analysed by endosperm storage proteins (gliadin and low-molecular- weight glutenin subunits). Several analyses were performed including AMOVA, direct correlation between phenotypic and geographic distance matrices and spatial genetics differentiation. Most genetic diversity was caused by differences among individuals within a population, although all the analyses performed suggest the existence of a low degree of differentiation within regions. Correlation values between phenotypic and geographic distances were low but significant. The spatial genetics analysis revealed that the average phenotypic distances of each of the spatial distance class were not lower (or higher) than that expected by chance. These results are explained by their neutral behaviour towards a selection of endosperm storage proteins and could be very useful in optimising future sample collecting strategies.  相似文献   

15.
16.
The present study, using RAPD analysis, was undertaken to characterize genetic variation in domesticated cowpea and its wild progenitor, as well as their relationships. The materials used consisted of 26 domesticated accessions, including accessions from each of the five cultivar-group, and 30 wild/weedy accessions, including accessions from West, East and southern Africa. A total of 28 primers generated 202 RAPD bands. One hundred and eight bands were polymorphic among the domesticated compared to 181 among wild/weedy cowpea accessions. Wild accessions were more diverse in East Africa, which is the likely area of origin of V. unguiculata var. spontanea. Var. spontanea is supposed to have spread westward and southward, with a loss of variability, loss counterbalanceed in southern Africa by introgressions with local perennial subspecies. Although the variabilty of domesticated cowpea was the highest ever recorded, cultivar-groups were poorly resolved, and several results obtained with isozyme data were not confirmed here. However primitive cultivars were more diverse than evolved cultivars, which still suggests two consecutive bottlenecks within domesticated cowpea evolution. As isozymes and AFLP markers, although with a larger number of markers, RAPD data confirmed the single domestication hypothesis, the gap between wild and domesticated cowpea, and the widespread introgression phenomena between wild and domesticated cowpea.  相似文献   

17.
A collection of sorghum, including more than 12,000 Chinese landraces, has been constructed and maintained in China. However, the genetic diversity of Chinese sorghum landraces has not been fully investigated, and the origin of Chinese sorghum is still in dispute. In this study, the complete chloroplast genome sequence of sorghum line Tx623B was searched for simple sequence repeats (SSRs). 31 SSR loci with at least 10 mononucleotide repeats or five dinucleotide repeats were identified, and primer pairs for 27 loci were designed. Chloroplast DNA variation in cultivated sorghum was investigated by using these primer pairs on 185 Chinese sorghum landraces and 70 cultivated sorghum accessions from other countries. Among the 27 loci, 14 were polymorphic. The number of alleles per polymorphic locus ranged from 2 to 5 with an average of 2.79. Allelic data at 14 polymorphic loci were combined to give 12 haplotypes. The average allelic diversity index across the 14 polymorphic loci and corresponding haplotype diversity were markedly lower for Chinese sorghum landraces than were those for accessions from other countries. However, Chinese sorghum landraces shared a predominant allele at each polymorphic locus and a predominant haplotype with foreign accessions. Our results indicate that Chinese landraces experienced a severe maternal bottleneck during the introduction process with a predominant haplotype being present in 171 of 185 accessions analyzed. Except for one rare exception, haplotypes found in Chinese landraces were either identical or closely related to those found in foreign accessions and could not be separated clearly from them by cluster analysis. Our results are consistent with the hypothesis of African origin of Chinese sorghum.  相似文献   

18.
Cacao (Theobroma cacao L.) is the main source for chocolate with an annual production of four million tons worldwide. This Neotropical tree crop was domesticated in Mesoamerica as far back as 3,000 years ago. Knowledge of genetic diversity and population structure in farmer varieties of cacao in the center of domestication is essential for sustainable production of fine-flavored cacao beans and contributes to in situ/on-farm conservation of farmer varieties. Based on 70 single nucleotide polymorphism markers, we analyzed 84 fine-flavored farmer varieties collected from traditional cacao farms in Honduras and Nicaragua. The study also included 31 clones from the international cacao collections to serve as references. The SNP based multilocus matching identified six synonymous groups, including 14 Criollo and two Amelonado varieties. A moderately high level of genetic diversity was observed in these farmer varieties, indicating the possibility to further explore intra-population variation and breed for fine-flavored cocoa. Multivariate analysis showed clustering of the 84 farmer accessions in five genetic groups: ancient Criollo, Amelonado, Trinitario (including Nicaragua Trinitario and Honduras Trinitario) and Upper Amazon Forastero (only one accession). The Honduras Trinitario differed from the Nicaragua Trinitario group. The clustering results largely supported the perceived classification of cacao by local farmers and researchers, which was mainly based on morphological traits. However, the well known traditional variety “Indio” in this region was identified as synonymous with Amelonado. Parentage analysis showed that the variety “Indio” (or Amelonado) contributed more to the Trinitario type farmer varieties, whereas ancient Criollo had less influence. The present study demonstrates the efficacy of using a small set of SNP makers for cacao germplasm characterization, and further depicts the diverse origins and parentage in farmer varieties from Mesoamerica. This information thus will be highly useful for conservation and utilization of cacao germplasm from this region.  相似文献   

19.
Yams (Dioscorea spp.) rank as the fourth most important root and tuber crop after potatoes, cassava and sweet potatoes. They are an economic crop in most of the tropics especially in West Africa, which produces over 95 % of the world output. Despite their cultural and economic importance there is taxonomic confusion regarding Guinea yams. The currently used classification scheme, which relies on vegetative and inflorescence characters, does not consistently delimit species boundaries between members of Guinea yams (D. cayenensis Lam.–D. rotundata Poir. complex), their wild relatives (D. abyssinica Kunth and D. praehensilis Benth.,) and D. sagittifolia Pax. Establishing the taxonomic identity of the germplasm and understanding the systematic relationships among crops is vital to the management of genetic resources and the utilization of accessions. In this study, amplified fragment length polymorphism (AFLP) genetic fingerprinting was used to evaluate and characterize 43 individual plants, belonging to different populations of wild and cultivated Guinea yams. The three primer combinations used in the AFLP analyses generated 158 scorable bands, with an overall polymorphism of 78 %. Ordination and cluster analyses of AFLP data failed to produce any clear species boundary between either the Guinea yam accessions or between them and their wild relatives. The average genetic similarity between the study individuals of Guinea yams and their wild relatives ranged from 60 to 100 %. The first, second and third principal coordinates axes cumulatively account for 77.45 % of the total variation. AFLP analyses also revealed a higher genetic divergence among cultivated Guinea yam accessions of the Sheko cultivars. Ordination and cluster analysis using UPGMA revealed no clear species boundaries between members of the complex. Thus, the taxonomy of these “species” needs to be revisited using other markers.  相似文献   

20.
Aromatic rice (Oryza sativa L.) cultivated in Japan is regionally differentiated by geographical distribution and characteristics. We aimed to characterize the lineage of Japanese aromatic rice using DNA markers. Based on analyses with nuclear SSR markers, we found that Japanese aromatic rice cultivars belong, with one exception, to japonica but showed some differences from authentic japonica and were divided into two clades that were distributed in western and eastern Japan, respectively. Further analyses with organelle markers showed that most of the cultivars in eastern Japan had cytoplasm characterized by tropical japonica, whereas most of those in western Japan had cytoplasm characterized by temperate japonica. We postulate that the ancestor of the cultivars in eastern Japan differs from those of the cultivars in western Japan, and that the two groups may have been separately introduced from Taiwan into Japan. The cytoplasm of aromatic rice cultivars in western Japan may have originated from tropical japonica and been substituted into the cytoplasm of temperate japonica through hybridization between tropical japonica as a male parent and temperate japonica as a female parent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号