首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of defoliation on the vegetative, early reproductive and inflorescence stages of tiller development, changes in the dry‐matter yield of leaf, stem and inflorescence and the associated changes in forage quality was determined on plants of annual ryegrass (Lolium rigidum Gaud.) and Italian ryegrass (L. multiflorum Lam.). The field study comprised seventy‐two plots of 1 m × 2 m, sown with one annual ryegrass and seven Italian ryegrass cultivars with a range of heading dates from early to late; defoliation commenced 6 weeks after germination. During the vegetative stage of growth, plots were defoliated when the tillers had three fully expanded leaves (three‐leaf stage). During the early reproductive stage of growth, to simulate a cut for silage, plots were defoliated 6–7 weeks after 0·10 of the tillers displayed nodal development. The subsequent regrowth was defoliated every 3 weeks. Assessments of changes in tiller density, yield and quality were made in the growth cycle that followed three contrasting cutting treatments during the winter–spring period (from 10 July). In treatment 1, this growth cycle (following closing‐up before a subsequent conservation cut) commenced on 7 August following two defoliations each taken when the tillers were at the three‐leaf stage. In treatment 2, the growth cycle commenced on 16 October following: for early‐maturing cultivars, two cuts at the three‐leaf stage, a cut for silage and an additional regrowth cut; for medium‐maturing cultivars three cuts at the three‐leaf stage and a cut for silage; and late‐maturing cultivars, five cuts at the three‐leaf stage. In treatment 3, defoliation up to 16 October was as for treatment 2, but the growth cycle studied started on 27 November following two additional regrowth cuts for early‐ and medium‐maturing cultivars and cut for silage for the late‐maturing cultivars. Tiller development for all cultivars was classified into three stages; vegetative, early reproductive and inflorescence. In treatment 1, in vitro dry‐matter digestibility (IVDMD) and crude protein (CP) content were negatively associated with maturation of tillers. IVDMD ranged from 0·85 to 0·60 and CP ranged from 200 to less than 100 g kg–1 dry matter (DM) during the vegetative and inflorescence stages respectively. This large reduction in forage quality was due to an increase in the proportion of stem, inflorescence and dead material, combined with a reduction in the IVDMD and CP content of the stem. A high level of forage quality was retained for longer with later‐maturing cultivars, and/or when vegetative tillers were initiated from the defoliation of early reproductive tillers (treatments 2 and 3). However, 15 weeks after the closing‐up date in treatment 1, defoliation significantly reduced the density of inflorescences with means (±pooled s.e_m.) of 1560, 1178 and 299 ± 108 tillers m–2, and DM yield of inflorescence with means of 3·0, 0·6 and 0·1 ± 0·15 t ha–1 for treatments 1, 2 and 3 respectively. This study supports the recommendation that annual and Italian ryegrass cultivars should be classified according to maturity date based on the onset of inflorescence emergence, and that the judicious defoliation of early reproductive tillers can be used to promote the initiation of new vegetative tillers which in turn will retain forage quality for longer.  相似文献   

2.
An experiment was conducted to determine the genetic variation among diploid perennial ryegrass (Lolium perenne L.) varieties for sward structural characteristics considered to be important for intake by cattle. Assessments were made between June and September in 2000 and 2001. Six varieties (Abergold, Respect, Agri, Herbie, Barezane and Barnhem) were subjected to a cutting experiment where swards were cut after 3 to 4 weeks of regrowth during the growing season. The variables, measured in three 2‐week periods, were herbage mass of dry matter (DM), sward surface height (SSH), bulk density, proportion of green leaf, tiller density, tiller weight, extended tiller height, length of sheath and length of leaf blade. Significant differences among varieties were found in both years for herbage mass of DM, SSH, bulk density, proportion of green leaf, tiller density, tiller weight and length of sheath. The results show that there is significant genetic variation among diploid perennial ryegrass varieties for sward characteristics important for intake during grazing.  相似文献   

3.
Perennial ryegrass tillers were collected from intensively used set-stocked and zero-grazed leys and from an old permanent pasture, grown on and compared at 30 cm spacing. All swards except the permanent pasture had been sown with cv. S23 and were of known age, ranging from 6 months to 11 years from sowing. Each genotype was scored for date of inflorescence emergence, and subsequently in vitro dry matter digestibility (DMD), D-value of green leaf and the ratio of leaf dry weight: stem dry weight were determined. Both DMD and D-value declined significantly in green leaf samples of populations from the older zero-grazed swards but no significant changes were detected in populations from set-stocked swards. In set-stocked populations there was a shift towards later flowering. In zero-grazed populations there was a consistent increase in the amount of leaf relative to stem with the age of the sward from which the plants were sampled. The survivor plants were more prostrate and leafier and it is suggested that under zero grazing, where cutting was to a uniform height, plants of this form were less severely defoliated and thus at a selective advantage.  相似文献   

4.
Maintenance of green leaf area during grain filling can increase grain yield of sorghum grown under terminal water limitation. This ‘stay-green’ trait has been related to the nitrogen (N) supply–demand balance during grain filling. This study quantifies the N demand of grain and N translocation rates from leaves and stem and explores effects of genotype and N stress on onset and rate of leaf senescence during the grain filling period. Three hybrids differing in potential height were grown at three levels of N supply under well-watered conditions. Vertical profiles of biomass, leaf area, and N% of leaves, stem and grain were measured at regular intervals. Weekly SPAD chlorophyll readings on main shoot leaves were correlated with observed specific leaf nitrogen (SLN) to derive seasonal patterns of leaf N content. For all hybrids, individual grain N demand was sink determined and was initially met through N translocation from the stem and rachis. Only if this was insufficient did leaf N translocation occur. Maximum N translocation rates from leaves and stem were dependent on their N status. However, the supply of N at canopy scale was also related to the amount of leaf area senescing at any one time. This supply–demand framework for N dynamics explained effects of N stress and genotype on the onset and rate of leaf senescence.  相似文献   

5.
The change in structure of continuously grazed versus infrequently cut swards of perennial ryegrass ( Lolium perenne L), cv. S23, was investigated during their first full harvest year. Measurements were made from early May until late September. The intensity of stocking by sheep in the grazed sward was adjusted in an attempt to maintain a high level of radiation interception and the cut sward was harvested at approximately monthly intervals.
The herbage mass, lamina area index and radiation interception of the cut sward varied in a cyclic pattern between harvests but in the grazed sward these parameters showed considerably less variation, although they all increased early in the season and then declined later. The proportion of dead material above ground increased throughout the season in both sward types but was more marked in the grazed sward.
There were major differences between the grazed and cut swards in the number of tillers per unit ground area; the difference became more marked throughout the season and by September the tiller densities in the grazed and cut swards were 3·204 m-2 and 6·203 m-2 respectively. Divergence in tiller density was associated with differences in specific stem weight and leaf area per tiller.
Rates of appearance and death of leaves on tillers in the grazed sward were determined. During May, leaf appearance exceeded leaf death but this was reversed in June. During the rest of the season as a new leaf appeared on a tiller so the oldest leaf died.  相似文献   

6.
Growth rate, proportion of leaf and stem and nutritive value of sown tropical perennial grasses have not previously been documented for the dryland, frost‐prone summer‐dominant rainfall region of eastern Australia. An experiment was conducted in northern inland New South Wales with Chloris gayana (Rhodes grass) cv. Katambora and Digitaria eriantha (digit grass) cv. Premier, and compared to Sorghum bicolor ssp. bicolor x S. bicolor ssp. drummondii (forage sorghum). The grasses were harvested every 2 or 6 weeks and fertilized at five rates of nitrogen (N; 0–300 kg N ha?1) over two growing seasons (September–May), 2006–2007 and 2007–2008. Growing season rainfall was below median for both years of the experiment and growth rate was highly variable, reflecting variable rainfall. Sorghum generally had the highest growth rate. Digit grass generally had higher growth rates than Rhodes grass, was more responsive to growing season rainfall, commenced growth earlier and had a longer growing season. Nitrogen application extended the growing season of both perennial grasses. Growth response to N application was minimal when rainfall was low and response following significant rainfall was higher for fertilized than unfertilized grasses. In general, the proportion of green leaf was greater than green stem, although the proportion of stem increased when defoliation interval increased. Nutritive value of the perennial grasses was higher in leaf than stem and declined during the growing season. Differences between the grasses were slight, but indicated that fertilized digit grass defoliated at 2‐week intervals had higher growth rate and nutritive value than Rhodes grass.  相似文献   

7.
Well‐established stands of three ecotypes of Arachis pintoi (CIAT 17434, 18744 and 18748) were harvested from replicated plots (three blocks, each containing three plots for each ecotype) during the two dominant seasons (dry and wet) of the low altitude, humid tropics of Costa Rica. Each plot was further divided into six subplots so that, within each season, samples corresponding to 4, 6, 8, 10, 12 or 14 weeks of regrowth could be collected. For each harvest, dry matter (DM) yield of the leaf, stem and whole plant, and the leaf:stem ratio, were recorded. Samples of the whole plant were analysed for crude protein (CP), rumen‐degradable (RDP) and rumen‐undegradable protein (RUP) concentrations. DM yield of the leaf, stem and whole plant increased with advancing period of regrowth but the effects of period of regrowth varied somewhat among ecotypes and across seasons. Generally, DM yield was greater during the wet than during the dry season. The greatest difference between ecotypes for stem and total DM yields was evident during the dry season. In general, DM contents were low in the whole plant, leaf and stem samples (<220 g kg?1) and increased with increasing period of regrowth. Increases in leaf:stem ratio were most dramatic during the dry season with greater periods of regrowth, although the ratio was fairly constant during the wet season. Whole‐plant CP concentration was relatively high after short periods of regrowth (up to 279 g kg?1 DM) but declined with longer periods of regrowth; the relative decline was much greater during the dry season. The RDP concentration was relatively constant during the wet season (mean 115 g kg?1 DM), but declined with longer periods of regrowth during the dry season (range 194–111 g kg?1 DM). In general, the concentrations of RDP, on a CP basis, were greater during the dry season and ranged from 590 to 700 g kg?1 CP. Season, ecotype and period of regrowth all exerted an effect on RUP concentrations.  相似文献   

8.
The regrowth of Italian ryegrass was studied at weekly intervals from 2 to 14 weeks after a cut in late April when 140 kg ha-1 N was applied. Reduction in digestibility with delay in date of harvest was due to both an increase in the proportion of cell wall and a reduction in the digestibility of the cell wall, particularly the former from week 2 to about week 5 and particularly the latter after week 5. The reduction in the digestibility of the cell wall was about equally attributable to reduction in digestibility of cellulose and to reduction in digestibility of hemicellulose. The proportion of lignin in cell wall was highly correlated with both digestibility of cellulose and digestibility of hemicellulose. The proportion of digestible cell wall in dry matter was not as constant as has sometimes been noted, increasing by about 5 percentage units from week 2 to week 5 and decreasing by about 10 percentage units from week 5 to week 13. During the latter period the decline in digestible cell wall in dry matter accounted for nearly half the decline in true digestibility of dry matter. The ratio of cellulose:hemicellulose averaged 1:0.89 and hemicellulose was more digestible than cellulose. Rate of increase in yield of cell contents appeared to diminish from about the third week of regrowth onwards, whereas the rate of increase in yield of dry matter did not begin to diminish until about the seventh week. In vitro dry matter digestibility was not increased by adding extra N to the digestion tubes, even with samples containing only 1% N in dry matter.  相似文献   

9.
Six varieties of white clover, each grown with perennial ryegrass, four intervals between cuts and two levels of applied nitrogen in all combinations, were compared in a field experiment during the first 27 months after sowing. Information about yields, crop fractions, heights and ryegrass tillers has been presented in an earlier paper (Wilman and Asiegbu, 1982). The present paper is concerned with the more detailed studies of white clover, which help to explain the yield results and contribute to the understanding of the response of this species to management when grown in competition with grass. Increasing the interval between harvests increased the length of clover stolon per unit area of ground and increased stolon diameter, petiole length, weight per leaf and number of leaves harvested as a proportion of the number present in the sward while only slightly reducing the rate of leaf emergence, helping to explain the positive effect of increasing the interval on clover yield noted in the earlier paper. During regrowth, successive leaves had longer petioles and the length of individual petioles increased beyond the stage at which the leaflets were fully opened. Weight per leaf in clover increased considerably from April to June and declined to below the April value by October. It was shown that weight per leaf can be greatly increased by increasing the interval between harvests without reducing the number of leaves harvested per unit area per year. The stolon length measurements provided some support for the view that medium large-leaved varieties of white clover can with advantage be defoliated rather less frequently than small-leaved varieties. Stolon length was less adversely affected by applied N in the medium large- than in the small-leaved varieties. The small-leaved varieties had thinner stolons than the medium large-leaved varieties but about twice the stolon length when no N was applied, and a relatively high proportion of leaves which escaped defoliation. The application of N reduced stolon diameter, increased petiole length and had little or no effect on weight per clover leaf.  相似文献   

10.
灌溉模式与施氮量互作对水稻茎蘖产量形成的影响   总被引:1,自引:0,他引:1  
[目的]明确灌溉模式与施氮量及其互作对水稻根系形态、茎蘖产量形成的影响,以期为水稻绿色生产及水肥高效利用提供理论依据.[方法]采用大田试验的方法,以两优287为材料,设置浸润式灌溉(W1)、常规灌溉(W2)和淹水灌溉(W3)三种灌水模式,不施氮(N0,0 kg/hm2)、常规施氮(N1,165.0 kg/hm2)和高氮...  相似文献   

11.
为了提高小麦的水分利用效率,并为小麦高产优质栽培提供参考,以强筋小麦品种皖麦38为材料,按小麦叶龄指标设计了9个时期的灌水试验,研究了灌水时期对强筋小麦产量和品质的影响。结果表明,皖麦38主穗的籽粒粗蛋白含量随灌水时期的推迟逐渐降低,主要分蘖穗籽粒粗蛋白含量随灌水时期的变化趋势与主穗一致;皖麦38各主要分蘖(1蘖~3蘖)穗的籽粒粗蛋白含量高于主茎穗。春4叶前的灌水处理对穗数的增加有利,春5叶至孕穗期的灌水处理对提高穗粒数有利,孕穗期至灌浆前期的灌水处理更有利于千粒重的提高,灌水时期推迟至灌浆中期会对籽粒产量造成不利影响。籽粒产量随灌水时期推迟呈增加趋势,但灌水推迟至灌浆中期会对籽粒产量造成不利影响。灌浆期进行灌水处理会使沉降值和干、湿面筋含量下降。  相似文献   

12.
13.
Different grazing treatments applied to pastures in which perennial ryegrass was dominant had little influence on DM production during the main reproductive growth period in late spring and early summer. Lax and infrequent grazing at this time did, however, reduce tiller density. During the dry summer period lax infrequent grazing increased production by 20%, while in the vegetative growth period in autumn those pastures which were alternately lax- and hard-grazed outyielded those which were hard grazed by 63%. In all treatments, initial recovery growth resulted almost exclusively from the production of leaf tissue. The rate of leaf growth declined three to five weeks after grazing, depending on treatment and season, and subsequent yield increase was dominated by sheath and stem growth.  相似文献   

14.
The effect of defoliation interval on growth patterns of contrasting perennial ryegrass (Lolium perenne)–white clover (Trifolium repens) mixtures was studied. The dynamics of increase in leaf area, light interception and dry-matter (DM) production were measured within successive regrowth periods. No N fertilizer was applied. During 1995 six mixtures were cut eight (F1) or six times (F2) at a stubble height of 5 cm. The stubble composition was stable throughout the growing season: after harvest about 50 g DM m?2 (with a white clover proportion of 0·52) was present with a leaf area index (LAI) of 0·5 (0·38 white clover). The percentage of intercepted radiation after cutting was 20–30% and increased during 3 weeks to about 95%. The relative growth rate of leaf area and DM was higher for white clover than for perennial ryegrass, with the proportion of clover in the LAI and DM increasing during each regrowth period. Mixtures with large-leaved white clover cv. Alice had a lower initial clover content after harvest, but a more rapid increase in clover LAI and DM than mixtures with the smaller leaved cvs Gwenda or Retor. Alice had the highest total and clover LAI and DM at harvest. Cutting frequency affected the change in white clover–perennial ryegrass ratio during regrowth. This was significantly higher in mixtures with Alice than in mixtures with Gwenda, but only under less frequent cutting (F2). In spring there was a mean white clover proportion of about 0·55 in the LAI and 0·45 in the total harvested DM. In summer the white clover proportion in the LAI and DM increased to 0·70–0·75. There was a decline during autumn, especially in F2 and in the mixtures with the small-leaved white clover cv. Gwenda and the medium-leaved cv. Retor. In contrast, grass DM and LAI declined from spring to summer. The decline in clover LAI in autumn was similar in Alice and Gwenda at frequent cutting (F1), but stronger in Gwenda in F2. Retor had the lowest clover specific leaf area (SLA). The SLA values of Alice and Gwenda were similar, SLA being similar between cutting treatments. No differences were found for leaf weight ratio (LWR) among the three white clover cultivars or between the grass cultivars, and LWR was not affected by cutting treatment. Defoliation interval had limited effects on the growth pattern and leaf characteristics of perennial ryegrass–white clover mixtures.  相似文献   

15.
This glasshouse study aimed to determine the relative importance of water-soluble carbohydrates (WSC) and current photosynthate on root and top regrowth of perennial ryegrass (Lolium perenne L.). Individual plants were arranged in one of two miniswards (Experiments 1 and 2) and underwent varying defoliation frequencies designed to obtain a gradient of WSC content at the final harvest of each treatment (H1), when all treatments were defoliated. In Experiment 1, the plants were defoliated either three times at the one new leaf per tiller stage of regrowth (treatment 3 × 1), once at the two-leaf and again at the one-leaf stage (treatment 2, 1), once at the one-leaf and again at the two-leaf stage (treatment 1, 2) or once only at the three-leaf stage (treatment 1 × 3), up to H1. Leaf and root growth and other parameters were assessed over 6 d after H1 in sunlight, and over a 4-week period in darkness, and related to initial plant WSC content. In Experiment 2, plant defoliation treatments were: 3 × 1, 1, 2 or 1 × 3. Leaf regrowth was assessed for 36 d until the plants had three fully expanded new leaves per tiller. Leaf regrowth in both experiments was significantly related to stubble WSC (below 50 mm height). In Experiment 1, plants were almost fully reliant upon plant reserves for the first 3 d of regrowth, with reliance decreasing up to 6 d. When regrowth of plants was compared after 1 week in light or in darkness, it was estimated that one-third of leaf regrowth was due to plant WSC reserves and the remainder due to photosynthesis. However, the capacity to photosynthesize and to grow roots after H1 was also significantly related to stubble WSC content. In Experiment 2, there was a significant difference (P<0·01) between defoliation treatments on leaf dry matter (DM) yield at 12 d (×1 leaf tiller?1) of regrowth, and this was, as in Experiment 1, significantly positively related to WSC content in the stubble. However, after 36 d of regrowth, DM yield of plants defoliated at 2 or 3 leaves tiller?1 up to H1 were similar, and both were significantly higher (P<0·01) than regrowth of plants defoliated at the one-leaf stage. After defoliation, the period of reliance on WSC reserves may be substantially increased in situations of shading (canopy competition or cloud cover) or if the new regrowth shoot is removed by regrazing.  相似文献   

16.
Paspalum dilatatum Poir., is a perennial C4 grass widely distributed in the Argentinean Pampas. The response to water availability for materials developed with forage‐production purposes is unknown. We hypothesized that genetic differences between commercial varieties are reflected in their regrowth capacity under water stress. The effect of five levels of constant water supply on three plant varieties (two derived from apomictic materials: ‘Relincho’ and ‘Alonso’ and one from sexually‐derived material: ‘Primo’) were examined in the greenhouse. Leaf‐ and plant‐response traits were followed during 38 d after a single defoliation event. Seven response variables were measured: three of them were morphogenetic (leaf elongation rate, leaf appearance rate and leaf elongation duration) and four were structural (number of live leaves, lamina length, tiller biomass and tiller production). The sexual material showed higher values for growth variables than the apomictic varieties (leaf elongation rate, leaf length and tiller biomass) across the environmental range. Apomictic varieties showed a proportionally similar drought response to the sexual material for the seven variables. No intra‐specific trade‐off (statistical interaction) was found between growth under high water availability conditions and drought tolerance.  相似文献   

17.
A field study was undertaken between April 2003 and May 2004 in southern Tasmania, Australia to quantify and compare changes in herbage productivity and water‐soluble carbohydrate (WSC) concentration of perennial ryegrass (Lolium perenne L.), prairie grass (Bromus willdenowii Kunth.) and cocksfoot (Dactylis glomerata L.) under a defoliation regime based on leaf regrowth stage. Defoliation interval was based on the time taken for two, three or four leaves per tiller to fully expand. Dry‐matter (DM) production and botanical composition were measured at every defoliation event; plant density, DM production per tiller, tiller numbers per plant and WSC concentration were measured bimonthly; and tiller initiation and death rates were monitored every 3 weeks. Species and defoliation interval had a significant effect (P < 0·05) on seasonal DM production. Prairie grass produced significantly more (P < 0·001) DM than cocksfoot and ryegrass (5·7 vs. 4·1 and 4·3 t DM ha?1 respectively). Plants defoliated at the two‐leaf stage of regrowth produced significantly less DM than plants defoliated at the three‐ and four‐leaf stages, irrespective of species. Defoliation interval had no effect on plant persistence of any species during the first year of establishment, as measured by plant density and tiller number. However, more frequent defoliation was detrimental to the productivity of all species, most likely because of decreased WSC reserves. Results from this study confirmed that to maximize rates of regrowth, the recommended defoliation interval for prairie grass and cocksfoot is the four‐leaf stage, and for perennial ryegrass between the two and three‐leaf stages.  相似文献   

18.
19.
Four perennial ryegrass (Lolium perenne L.) cultivars were compared for differences in herbage production, nutritive value and herbage intake of dry matter (DM) during the summers of 2002 and 2003. Two paddocks were sown with pure stands of four cultivars in a randomized block design with three replicates. Each plot was subdivided into fourteen subplots (22 m × 6 m) which were grazed by one cow during 24 h. Twelve lactating dairy cows were assigned to one cultivar for a period of 2 weeks in a 4 × 4 Latin square experimental design; the experiment lasted 8 weeks in each year. Sward structure (sward surface height, DM yield, green leaf mass, bulk density and tiller density) and morphological characteristics were measured. The ash, neutral‐detergent fibre, acid‐detergent lignin, crude protein and water‐soluble carbohydrate concentrations, and in vitro digestibility of the herbage were measured. The sward was also examined for infestation by crown rust (Puccinia coronata f. sp. lolii). Herbage intake of dairy cows was estimated using the n‐alkane technique. Cultivar differences for all sward structural characteristics were found except for bulk density and tiller density in 2003. Cultivars differed for proportions of pseudostem, stem (in 2003 only) and dead material. The chemical composition of the herbage was different among cultivars, with the water‐soluble carbohydrate concentration showing large variation (>0·35). Cultivars differed in susceptibility to crown rust. Herbage intake differed among cultivars in 2002 (>2 kg DM) but not in 2003. Herbage intake was positively associated with sward height, DM yield and green leaf mass. Canopy morphology did not affect herbage intake. Crown rust affected herbage intake negatively. It was concluded that options for breeders to select for higher intake were limited. High‐yielding cultivars and cultivars highly resistant to crown rust were positively related with a high herbage intake.  相似文献   

20.
The objectives of this study were to measure the variability in ‘realized’ tiller morphology and identify whether there are emergent generalizations about a tiller ideotype for productivity or survival. Morphological traits during the vegetative growth stage were measured for 2 years in the field for eight perennial ryegrass cultivars: six diploid and two tetraploid cultivars under low and high nitrogen fertilizer (50 and 225 kg N ha?1 year?1 respectively). Traits measured were lamina width, length and area; pseudo‐stem length and diameter; an index of tiller shape; tiller dry weight; tiller density; and herbage mass. Almost all the traits differed significantly between cultivars and significant correlations were found between the 2 years. Principal component analysis identified that tiller morphology and dry‐matter yield were independent. No trait associations indicating alternative cultivar‐specific tiller morphologies were detected but cultivars differed in tiller size. The patterns of change between the 2 years indicated a possible morphological trajectory as swards age. The genetic compensatory relationship between tiller size and density had a 1:1 slope, indicative of constant yield. This implies that larger tillers would be more leafy, and higher leafiness of tetraploid over diploid cultivars was confirmed by the leaf:non‐leaf ratio and tiller shape index.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号