首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Qualitative and quantitative changes of individual and total phenolics induced by Colletotrichum coccodes fungal infection have been studied in two susceptible sweet pepper cultivars ‘Soroksari’ and ‘Bagoly’, and the role of soluble phenolic compounds in plant's defence mechanism has been evaluated. Three distinct parts were analysed on pepper fruit: healthy tissue, anthracnose lesion, and bordering tissue, and individual phenolic compounds have been identified with the use of HPLC-MS system. In pepper fruit pericarp 21 phenolic compounds have been determined; the prevalent apigenin, quercetin and luteolin glycosides, chlorogenic acid and one chrysoeriol glucoside. C. coccodes infection increased the accumulation of chlorogenic acid, chrysoeriol glucoside, quercetin and luteolin glycosides in infected bordering tissue of both analysed pepper cultivars compared to healthy pepper tissue or symptomatic spot. Total apigenin derivatives did not show a significant increase in bordering tissue compared to the healthy pepper fruit in contrast to other groups of phenolics. This suggests a lesser role of apigenin glycosides in pepper plant defence against the Colletotrichum fungus. Intense phenolic synthesis was characteristic for the bordering zone between the healthy and infected plant tissue resulting in higher total phenolic content which might hinder the fungus to spread from the infected cells into the healthy tissue.  相似文献   

2.
3.
Leaves of apple (Malus domestica cv. Elstar) were infected with a cloned isolate of the apple scab Venturia inaequalis. The intercellular washing fluid (IWF) of these plants was collected and the variation in the composition of proteins in the IWF was analysed by SDS-PAGE and two-dimensional gel electrophoresis during and after the infection with V. inaequalis, the causal agent of apple scab. The subsequent analysis of induced proteins by electron spray ionization quadrupole time of flight mass spectroscopy revealed the presence of -1,3-glucanase, chitinase, thaumatin-like protein and a cysteine-like protease in M. domestica leaves infected by V. inaequalis. These results were confirmed by immunoblotting with antibodies against some of these proteins. Moreover, a non-specific lipid transfer protein was identified in uninfected leaves: the amount declined to a non-detectable level within the first week after infection by V. inaequalis. The analysis of the IWF of M. domestica cv. Remo, bearing resistances to apple scab, powdery mildew and fire blight, showed a protein pattern comparable to that of the IWF from V. inaequalis infected leaves from cultivar Elstar indicating the constitutive production at least of some of the pathogenesis-related proteins in the resistant cultivar.  相似文献   

4.
Apple scab, the most important disease of apple worldwide, is caused by Venturia inaequalis. Currently, evaluation of fungal pathogenicity and host resistance is based on a symptomatic disease rating. However, this method does not provide an accurate measurement of the degree of infection and cannot detect early fungal development in symptomless leaves. In this study, a Venturia-specific real-time PCR assay was developed using primers designed around the specific internal transcribed spacer 2 (ITS2) region of the 5.8S rRNA gene. Using SYBR? Green I technology, the assay can accurately quantify Venturia DNA over a concentration range of at least five orders of magnitude. Detection sensitivities were in the order of 100?fg. The method was used to quantify Venturia genomic DNA levels in leaves of three apple cultivars with different levels and types of scab resistance and artificially infected with V. inaequalis. The assay clearly discriminated between Venturia levels in monogenic resistant (‘Topaz’), polygenic resistant (‘Discovery’), and susceptible (‘Golden Delicious’) cultivars, and proved especially useful to quantify pathogen levels during the initial latent stage of infection. The real-time PCR data of ‘Golden Delicious’ were consistent with the observed evolution of the degree of sporulation during a time-course experiment. Although measurements were influenced by the presence of co-extracted PCR-inhibitors, the impact of these compounds was independent of the apple cultivar or the initial amount of fungal DNA present. In conclusion, real-time PCR amplification of the ITS2-5.8S rDNA of Venturia spp. is a faster, more objective and more sensitive method to monitor fungal growth and to evaluate host resistance than phenotypic disease rating scores.  相似文献   

5.
Apple scab (black spot) is caused by the fungus, Venturia inaequalis. Race 1 isolates of this fungus are avirulent on Malus hosts carrying the resistance gene Vm. Detached leaves from a Vm host (resistant, differential host 5) and ‘Royal Gala’ (susceptible, host 1) were inoculated with a conidial suspension of V. inaequalis. In the resistant reaction, a hypersensitive response (HR), characterised by necrosis and the accumulation of autofluorescent materials in epidermal and mesophyll cells, was observed at the site of fungal penetration. No HR was observed in the susceptible host. V. inaequalis grown in vitro produced an elicitor that induced necrosis, similar to the HR, when infiltrated into leaves of the resistant Vm host. No response, however, was observed in the susceptible host. The elicitor was proteinaceous and a fraction with elicitor activity was isolated using ultra-filtration, acetone precipitation and ion-exchange chromatography. The elicitor activity was resistant to boiling but it was abolished by digestion with proteinase K. The protein fraction contained three major proteins all with low isoelectric points (pI 3·0–4·5). The fraction also elicited necrosis in the differential host 4, but not in any of the other resistant hosts tested, including differential hosts 2, 3, and 6. Therefore, the fraction may contain elicitors with more than one host specificity.  相似文献   

6.
Atypical scab‐like symptoms were reported for the first time in 2007 in the south of France on fruits of apple cultivars carrying the Rvi6 (=Vf) major resistance gene to Venturia inaequalis. With microscopic observations, nucleotide sequence data and pathological tests, it was shown that the causal agent was Venturia asperata. Scanning electron microscopy was used to compare its infection process and conidiogenesis to those of Venturia inaequalis on apple and Venturia pirina on pear. Venturia asperata produced fewer hyphae and fewer spores than the two other Venturia species, and resulted in weaker symptoms. This fungal species was previously described as a saprotroph on apple leaf litter. This is the first report of damage on apple fruits caused by V. asperata. Changes in host and cultural practices may have created a new context favourable for the emergence of this pathogen. It was also detected on symptomless leaves and on overwintered leaves on the ground. Pseudothecia developed on overwintered leaves and released ascospores over a 2‐month period from the end of March until the end of May, suggesting that the fungus is able to survive from season to season. However, it is not yet known if this new disease will establish over coming years and become an emergent disease.  相似文献   

7.
The research into the side effect of fungicides used in the control of the most serious disease in apples (Venturia inaequalis) i. e. the research into the influence of fungicides on the population of phytophagous mites, was carried out at Nedeliŝće (North-West Croatia) during 1997 and 1998. The study is related to the population of the mites most present in apple orchards, such as red spider mite (Pananychus ulmi) and other mites (Aculus schlechtendali andTetranychus urticae). Fungicides which are known to be effective against scab, i. e.Venturia inaequalis, and used in fruit production in Croatia, were tested in order to investigate their secondary properties which have not yet been studied. The following fungicides were used: cyprodinil, dodine, dichlofluanid + bitertanol (as tank mix), and kresoxim-methyl. The tests were repeated three times; the application time was determined by monitoring the conditions for infection. The treatments were done curatively, i. e. up to 96 h after the onset of infection conditions. The mite population was estimated by the pressing method, which yielded the average number of mites per leaf. All the results were statistically processed by variance analysis and by Duncan’s Multiple Range Test, and are presented graphically and in tables. The paper also presents graphically the climatic conditions, scab infections and application time. The research over two years have shown a pronounced suppressive effect of dichlofluanid + bitertanol on populations of phytophagous mites, while the other fungicides used in the research had a neutral effect on the mite papulation.  相似文献   

8.
European pear rust induced by the fungus Gymnosporangium sabinae (Dicks) G. causes yellow to bright orange leaf spots on leaves of pear trees. The aim of this study is to identify and quantify polyphenolic compounds found in pear leaf extracts. Identified were: ten hydroxycinnamates, eight flavonols, nine flavan-3-ols and three arbutin derivatives. Polymeric procyanidins were additionally determined by UPLC-FL. The total content of phenolics in the control healthy green leaf extract was 11,889.98 mg but in the infected leaves it reached 28,573.89 mg in the samples with yellow spots and 11,480.06 mg/100 g dry matter (dm) in the green part of leaves. The yellow spots in pear rust leaves were characterized by increased content of flavanol (catechins and procyanidins) and arbutin compounds compared with the green part of the infected leaves and control healthy leaves.  相似文献   

9.
Apple scab caused by the fungus Venturia inaequalis can result in significant crop losses if not managed effectively. Sanitation as part of an integrated management strategy aims to significantly reduce primary inoculum to lower the disease pressure. This study evaluates the possibility of molecular detection and quantification of ascospore discharge and the use of this method to test for efficacy of orchard sanitation treatments. A method to detect and quantify airborne ascospores was developed using volumetric spore traps (VSTs). V. inaequalis specific primers were tested on daily VST samples from two orchard sections (leaf litter removed compared to leaf litter left) during spring. A molecular method to detect and quantify ascospores was tested by amplifying genomic regions of the mitochondrial CYP51A1 gene, and the ITS region using SYBR® green. Timing of ascospore discharge was compared to predicted infection risk and a degree day model using weather data. The average spore detection limit was estimated to be at levels of 1 pg μl?1 DNA (approximately 37 ascospores) per daily spore trap reading using CYP51A1 primers. Using the CYP51A1 primer pair, primary inoculum was estimated to be 51 % lower in the orchard sections where leaves had been removed, indicating that this method could be used to evaluate the efficacy of alternative control strategies such as leaf removal to reduce potential ascospore dose. This is the first report of combining VSTs and quantitative PCR to monitor airborne V. inaequalis ascospores.  相似文献   

10.
Apple scab caused by Venturia inaequalis is a major disease in apple production. Epidemics in spring are initiated by ascospores produced on overwintering leaves whereas epidemics during summer are driven by conidia produced on apple leaves by biotrophic mycelium. Fungal colonisers of sporulating colonies of V. inaequalis were isolated and their potential to reduce the production of conidia of V. inaequalis was evaluated on apple seedlings under controlled conditions. The four most effective isolates of the 63 screened isolates were tested subsequently under Dutch orchard conditions in 2006. Repeated applications of conidial suspensions of Cladosporium cladosporioides H39 resulted in an average reduction of conidial production by V. inaequalis of approximately 40%. In 2007, applications of conidial suspensions of C. cladosporioides H39 reduced conidial production by V. inaequalis by 69% on August 6 and by 51% on August 16, but no effect was found on August 20. However, viability of available conidia of C. cladosporioides H39 was low at the end of the experiment. Epiphytic and endophytic colonisation by Cladosporium spp. of leaves treated during the experiment with C. cladosporioides H39 was significantly higher than on control leaves sampled 6 weeks after the last application. It is concluded that C. cladosporioides H39 has promising potential as a biological control agent for apple scab control. More information is needed on the effect of C. cladosporioides H39 on apple scab epidemics as well as on mass production, formulation and shelf life of conidia of the antagonist.  相似文献   

11.
The aim of this study was to confirm the presence of races in populations of the fungus Venturia inaequalis that are able to overcome specific apple scab resistance gene(s) within the major apple-growing areas of Poland. The monitoring was conducted in six orchards located in the north, centre and south of Poland. The study involved the use of 16 differential genotypes for pathogenicity testing conducted under both greenhouse and orchard conditions. In addition, the occurrence of apple scab on 10 apple cultivars containing the Rvi6 gene was assessed in four organic orchards in central Poland. Apple scab was found on their leaves for the first time in Poland in 2010. The use of differential genotypes containing specific resistance genes suggested that 10 apple scab resistance genes had been overcome by V. inaequalis in the orchards monitored in this study.  相似文献   

12.
The effect of an extract of Yucca schidigera on the control and infection process of the apple scab pathogen, Venturia inaequalis, was examined and compared with the chemical resistance inducer, acibenzolar-S-methyl (ASM). In seedling assays, both materials significantly reduced apple scab symptoms and pathogen sporulation on leaves and both showed similar control efficacies as the reference treatment, sulphur. Whereas yucca extract and sulphur gave significant inhibition of conidial germination in vitro, ASM did not inhibit germination. Histopathological studies of the infection process of V. inaequalis in apple leaves showed that the yucca extract primarily acted by inhibiting pre-penetration events and penetration itself. In contrast, the ASM treatment significantly inhibited more stages of the infection process (pre-penetration, penetration and post-penetration events). These observations suggest that the yucca extract acted mainly by a direct fungitoxic effect whereas ASM, as expected, acted as a resistance inducer. However, expression studies of two genes encoding the PR proteins, PR1 and PR8, in apple seedlings indicated that yucca extract may also affect plant defence as expression of both genes was up-regulated following yucca treatment, to a level similar to that observed after treatment with ASM. The fungitoxic effect of sulphur on V. inaequalis was also confirmed in this study.  相似文献   

13.
The apple cultivar Honeycrisp exhibits genetic resistance to apple scab. The characterization of the macroscopic and microscopic responses on leaves infected by the pathogen Venturia inaequalis is described. The macroscopic resistance reactions observed in ‘Honeycrisp’, its parent ‘Keepsake’, and grandparents ‘Frostbite’ and ‘Northern Spy’ ranged from 0 (no reaction) to chlorotic flecking, stellate chlorosis, necrotic flecking, and sporulation. No hypersensitive response was observed. The resistance response occurred as early as 7 days post inoculation (dpi) at the same time that susceptible plants exhibited macroscopic signs of the disease. The resistance reactions were similar in the progeny population of ‘Honeycrisp’ × ‘Twin Bee Gala’, although they were delayed to 10–14 dpi possibly due to variable greenhouse conditions. This population segregated 3 resistant:1 susceptible, which suggests the presence of two genes in ‘Honeycrisp’ and agrees with the finding that different responses within ‘Honeycrisp’ to mixed inoculum are due to differential recognition of pathogen effectors.  相似文献   

14.
15.
A duplex qPCR detection method was developed to detect and quantify Colletotrichum godetiae and C. acutatum sensu stricto (s.s.) in olive tissues. The method proved highly specific and sensitive with a detection limit of 10 pg for each pathogen. The analysis of green and senescent leaves, fertilized fruitlets with floral residues, green fruit and symptomatic and asymptomatic fruit collected in May, June, October and December revealed a high incidence of both C. godetiae and C. acutatum s.s. in Calabria, southern Italy. In comparison with previous reports, these results highlighted an ongoing population shift from C. godetiae to C. acutatum s.s. Interestingly, C. godetiae was slightly more abundant in terms of number of infected samples, yet the quantity of C. acutatum in infected samples was always higher, suggesting greater aggressiveness and/or sporulation ability of the latter pathogen. The populations of both C. godetiae and C. acutatum s.s. increased sharply in December even though both pathogens were detected widely in asymptomatic samples in May, June and October, confirming an important role of latent infections in the disease cycle. A large quantity of both C. godetiae (1.7 × 108 cells/mg of tissue) and C. acutatum s.s. (7.5 × 108 cells/mg of tissue) was estimated in symptomatic fruit, presenting an enormous inoculum potential for secondary infections. Two other important observations were a high incidence and quantity of both pathogens in senescent leaves and in fertilized fruitlets with floral residues as compared to green leaves.  相似文献   

16.
Apple scab is one of the most economically important diseases of apples worldwide. The disease is caused by the haploid ascomycete Venturia inaequalis. Growing apples in cultivar mixtures may reduce disease severity. To determine how the pathogen population structure is affected by host mixtures we studied 24 V. inaequalis isolates sampled from three different apple cultivars (Bramley, Cox, and Worcester) growing in a mixed orchard approximately 50 years old. The isolates were aligned against a reference genome and single nucleotide polymorphisms (SNPs) were called between the isolates. The populations isolated from Bramley and Worcester were distinct, while Cox isolates were an admixture. This supports previous tests of the ability of isolates to cross-infect hosts, and molecular comparisons using simple sequence repeats (SSRs). Genotype-specific allele (GSA) loci were not distributed randomly across contigs in proportion to contig length, but were clustered. Clustered GSA loci were observed in almost all contigs. This indicates population differentiation across the whole genome, presumably due to lack of crossing-over events between Bramley and Worcester isolates. This lack is probably due to physical separation effects: sexual mating is more likely to take place and succeed between isolates from lesions on the same leaf than from contact between independently infected leaves in leaf litter on the orchard floor. This would especially be the case if sexual reproduction is initiated before leaf-fall.  相似文献   

17.
Phloridzin was oxidized via 3-hydroxyphloridzin to the correspondingo-quinone by a polyphenoloxidase present in homogenates and in acetone powders of apple leaves. Phloridzin could also be hydrolyzed by a β-glucosidase to phloretin, which was oxidized, although at a lower rate, to 3-hydroxyphloretin and its correspondingo-quinone. Phloretin and its oxidation products can couple with theo-quinone of 3-hydroxyphloridzin.Oxidation products of phloridzin inactivated pectinase. Moreover, the intermediate oxidation products showed fungicidal activity. Apparently, in this way apple leaves possess a defense mechanism against those organisms which are able to cause cell collapse resulting in phloridzin oxidation. Leaves of plants with a hypersensitive reaction to infection byVenturia inaequalis were also highly sensitive to toxic proteins secreted by this fungus in vitro.  相似文献   

18.
With three plant pathogens,Botrytis cinerea, Venturia inaequalis and Puccinia graminis f. sp.tritici, the time course of sterol biosynthesis during spore germination was examined by labeling experiments along with the question whether this pathway could be inhibited by triazole fungicides. Conidia ofB. cinerea andV. inaequalis are able to synthesize sterols immediately after the beginning of the germination process when the germ tubes have not yet emerged. On the contrary uredospores ofP. graminis start sterol biosynthesis after 6 to 8 h germination time almost at the end of the germ tube phase, indicating that sterol reserves of the spores are likely to be used for the germ tube growth.The sterol C-14 demethylation appeared to be the rate limiting step within the sterol biosynthetic pathway: the half life of 24-methylenedihydrolanosterol was less than 1 h forB. cinerea. It was more than 1 h forV. inaequalis and 3 h forP. graminis. Independent of these differences in the time course of sterol biosynthesis and in the C-14 demethylation rate, the synthesis of sterols in germinating spores was strongly inhibited by triazole fungicides in all three pathogens examined. In contrast toP. graminis, this inhibition could be demonstrated withB. cinerea andV. inaequalis even in ungerminated conidia, indicating that the fungicides were rapidly taken up and reached their target within 1 or 2 h. These results are discussed along with the question whether spore germination can be used as a bioassay for the estimation of sensitivities of triazole fungicides.  相似文献   

19.
Secondary metabolites and host defense compounds were shown to occur in xylem sap, and leaves of Vitis vinifera cv. Italia and cv. Matilde naturally infected by the esca-associated fungi Phaeomoniella chlamydospora (Pch), Togninia minima (Tmi) and Fomitiporia mediterranea (Fme). Samples of xylem sap and leaves were collected from healthy vines and from vines showing severe symptoms of brown wood-streaking caused by Pch and Tmi, or from vines with symptoms of both brown wood-streaking and white rot caused by Fme. Xylem sap collection was carried out during the early spring of 2003 and 2004, corresponding to the phenological phases: (A) cotton bud; (B) green tip; (C) leaves out; (D) stretched out leaves; and (E) visible clusters. In the present work we have studied the accumulation of biomolecules (pentaketides and α-glucans), host defense compounds (benzaldehydes, benzoic acid and cinnamic acid derivatives, flavonols, flavanols, flavan-3-ol derivatives and stilbenes) at different stages of grapevine development. Accumulation and changes in total phenolics and recurring phenolics, and of three phytotoxic secondary metabolites (scytalone, isosclerone and pullulan) were analyzed by HPLC. On comparing results for cv. Italia and cv. Matilde, it can be seen that phenolic concentrations are strongly related to the cv.  相似文献   

20.
Spraying programmes for apple scab and mildew control sometimes had residual effects for one or even two years. Thus, benomyl (0.025% a.i.) and pyridinitril (0.035% a.i.) drastically reduced the subsequent incidence of cankers caused by Nectria galligena on young wood. Apple scab fruit infection, caused by Venturia inaequalis, was also less on trees on which benomyl had been used in the previous season. In the bark of such trees, toxic residues equivalent to 1 to 4 μg benomyl/g fresh wt. were detected by bioassay 7 months after spraying.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号