首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Four expansin cDNA fragments, EjEXPA1, EjEXPA2, EjEXPA3 and EjEXPA4, were isolated and characterized from loquat (Eriobotrya japonica Lindl.) fruit. EjEXPA1 mRNA accumulated consistently with the increase in fruit firmness in 0 °C storage of ‘Luoyangqing’ (LYQ) fruit, where chilling injury with increased fruit firmness due to lignification was observed. EjEXPA1 mRNA levels were lower in fruit that underwent low temperature conditioning (LTC, 6 d at 5 °C then 4 d at 0 °C), and in 1-methylcyclopropene (1-MCP) treated fruit, in both cases where chilling injury was alleviated. Fruit of the ‘Baisha’ (BS) cultivar soften after harvest rather than increase in firmness, and high expression levels of EjEXPA1 and EjEXPA4 accompanied the softening of BS fruit stored at 20 °C; such mRNA accumulation was much lower when fruit were stored at 0 °C, where softening was significantly inhibited by the low temperature. Very low expression of EjEXPA2 and EjEXPA3 was observed during storage of both LYQ and BS fruit under the different storage conditions. Our results showed that of the four genes characterized, EjEXPA1 might be associated with chilling-induced lignification while both EjEXPA1 and EjEXPA4 were closely related to softening of loquat fruit during the postharvest period.  相似文献   

2.
The effect of delays of 1, 5, 10 or 15 d after harvest in establishing a static controlled atmosphere (SCA) or dynamic controlled atmosphere (DCA) on the quality of ‘Hass’ avocados (Persea americana Mill.) was investigated. Fruit were stored at 5 °C in SCA (5% O2/5% CO2) or DCA (<3% O2/0.5% CO2) for 6 weeks and compared with fruit stored in air. In addition, to determine whether increasing the CO2 in the DCA would affect the fruit quality, DCA-stored fruit were compared with fruit held in a DCA with 5% CO2 (DCA + CO2) established 1 d after harvest. The quality of fruit was assessed at the end of storage and after ripening at 20 °C. DCA-stored fruit ripened in 4.6 d compared with 7.2 d for SCA-stored fruit, or 4.8 d for air-stored fruit. In addition, the incidences of stem end rot (SER), body rot (BR) and vascular browning (VB) were lower in DCA-stored fruit (35%, 29% and 29%, respectively) than in SCA-stored fruit (57%, 52% and 49%, respectively), or air-stored fruit (76%, 88% and 95%, respectively). Delaying the establishment of both SCA and DCA for 15 d resulted in significantly more advanced skin colour at the end of storage (average rating score 11.9) compared with other delay periods (4.6–5.1). There was no significant effect of delay on the time to ripen, skin colour when ripe or any ripe fruit disorder incidence. The incidence of diffuse flesh discolouration (DFD) was not only <1% when averaged over all delays but only occurred at >0.5% incidence in the 15 d delay treatment in DCA (4.8%) and not in SCA. The incidence of diffuse flesh discolouration was 62% in air-stored fruit. Inclusion of 5% CO2 in DCA retarded fruit ripening from 4.7 to 6.9 d and increased the incidence of rots at the end of storage from 5% to 14%, and increased the incidence in ripe fruit of SER from 30% to 56% and of BR from 27% to 55%. It is concluded that fruit quality was better after CA storage than after air storage, and that DCA storage was better than SCA. The effect of DCA is to independently reduce the time to ripen after storage and the incidence of rots when ripe. Delaying the application of SCA or DCA did not affect the expression of rots, but may increase the incidence of DFD. Inclusion of CO2 at 5% in CA retarded fruit ripening but stimulated rot expression and should not be used for CA storage of New Zealand grown ‘Hass’ avocados.  相似文献   

3.
A hot water pressure process (HWP) was evaluated for its effect on conidia of Penicillium expansum and on development of blue mold, gray mold, and mucor rot of d’Anjou pear fruit. Spores were removed from the water system through dilution and also as a result of hot water in the system that was lethal to the spores. When the system was heated, viable spores were not detected after 2–4 h of operation. Reductions in decay in the HWP system were 36, 29, and 13% for Botrytis cinerea, Mucor piriformis, and P. expansum, respectively. The response of P. expansum appeared related to the length of time fruit was in cold storage. Heat injury was observed on fruit treated with 40 and 50 °C water but not on fruit at 30 °C nozzle temperature. The HWP system described in this study should be considered as a component of an integrated decay control strategy.  相似文献   

4.
Mume (Prunus mume Sieb. et Zucc.) fruit are harvested and consumed at the mature green stage and have a short storage life at ambient temperature. While cold temperature extends their storage life, improper refrigeration causes severe chilling injury (CI), with fruit suffering more severe CI at of 5–6 °C than at 1 °C. The objective of this research was to determine the involvement of reactive oxygen species (ROS) and antioxidant systems in fruit under chilling stress. ‘Nankou’ fruit were stored at 1 °C or 6 °C for 15 days. Hydrogen peroxide, a preventive ROS, decreased at a slower rate at 6 °C than 1 °C during storage. Malondialdehyde (MDA), an indicator of lipid peroxidation caused by ROS, increased during storage and the contents were higher in fruit stored at 6 °C than at 1 °C. On the other hand, fruit stored at 6 °C had a lower total antioxidant capacity (TAC) and lower activities of antioxidant-related enzymes including superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) than at 1 °C. These results indicate that the fruit at 6 °C had more oxidative stress; thus the fruit had more severe CI symptoms than at 1 °C.  相似文献   

5.
Temperatures up to 35°C have been shown to increase ethylene production and ripening of propylene-treated kiwifruit (Stavroulakis, G., Sfakiotakis, E.M., 1993. We attempted to study the regulation by high stress temperature of the propylene induced ethylene biosynthesis and ripening in ‘Hayward’ kiwifruit. ‘Hayward’ kiwifruit were treated with 130 μl/l propylene at temperatures from 30 to 45°C up to 120 h. Ethylene biosynthesis pathway and fruit ripening were investigated. Propylene induced normal ripening of kiwifruit at 30–34°C. Fruit failed to ripe normally at 38°C and above 40°C ripening was inhibited. Propylene induced autocatalytic ethylene production after a lag period of 24 h at 30–34°C. Ethylene production was drastically reduced at 38°C and almost nil at 40°C. The 1-aminocyclopropane-1-carboxylic acid (ACC) content was similar at 30–38°C and was very low at 40°C. The 1-aminocyclopropane-1-carboxylate synthase (ACC synthase) and 1-aminocyclopropane-1-carboxylate oxidase (ACC oxidase) activities decreased with a temperature increase above 30°C, but ACC oxidase decreased at a faster rate than ACC synthase. Fruit not treated with propylene showed no ripening response or ethylene production. However, kiwifruit respiration rate increased with temperature up to 45°C, reaching the respiration peak in 10 h. At temperatures up to 38°C, propylene treatment enhanced the respiration rate. After 48 h at 45°C, fruit showed injury symptoms and a larger decrease in CO2. The results suggest that high temperature stress inhibits ripening by inhibiting ethylene production and sensitivity while respiration proceeds until the breakdown of tissues.  相似文献   

6.
'Laiyang Chili’ and ‘Ya Li’ (Pyrus bertschneideri Reld) pears were treated with 3, 6, and 9% emulsions of commercial or refined (reduced -tocopherol levels) plant (soybean, corn, peanut, linseed, and cottonseed) oils at harvest an stored at 0°C for 6 months. Effects of oil treatments on ethylene production, respiration, fruit firmness, fruit color, soluble solid content (SSC), titratable acids (TA), internal browning (IB), and internal CO2, O2, and ethanol were studied. At the same concentration, oil treatments induced similar responses regardless of their sources or their -tocopherol concentrations. In both cultivars, ethylene production and respiration in fruit treated with 9% oils were lower in early storage and higher in late storage than that in the controls. Oils at 6% reduced IB, at 9% inhibited IB completely, and at 3% was not effective after 6 months at 0°C and 7 days at 20°C. Plant oil treatment maintained fruit color, firmness, SSC, and TA in a concentration-dependent manner during storage. In the first 4 months storage, 9% corn oil-treated fruit contained similar partial pressure of CO2 and O2 as the controls. After 5 months storage, oil-treated fruit contained higher partial pressure of CO2 and lower levels of O2 than the controls. When held at 20°C for 7 days, changes of internal CO2 and O2 were slower but partial pressure of CO2 were higher, and O2 were lower, in 9% corn oil-treated fruit than in the controls. Internal ethanol was not affected by oil treatment compared with control, either during storage or 7 days at 20°C. No off-flavor was detected in either oil-treated and control fruit by sensory evaluation.  相似文献   

7.
Strawberries at white ripening stage were heat treated at 45 °C for 3 h in an air oven and then stored at 20 °C for 72 h. Firmness, activity of enzymes associated to cell wall degradation, and expression of related genes were determined during the storage. Fruit firmness decreased during the incubation time, and after 24 h of storage the heat-treated fruit softened less than the control fruit. However, after 3 days at 20 °C no differences in firmness were detected between control and heat-treated fruit. Immediately after heat treatment application, the activity of endo-1,4-β-d-glucanase (EGase), β-xylosidase and β-galactosidase decreased, while polygalacturonase activity remained at a level similar to the control fruit. However, lower activities of all these enzymes, including polygalacturonase, were detected in heat-treated fruit after 24 h at 20 °C. The enzyme activity of β-xylosidase, β-galactosidase and polygalacturonase increased after 72 h up to similar or higher values than those of controls. However, endo-1,4-β-d-glucanase activity remained lower in heat-treated samples even after 72 h at 20 °C. The expression of genes encoding endoglucanase (FaCel1), β-xylosidase (FaXyl1), polygalacturonase (FaPG1) and expansin (FaExp2) was reduced immediately after treatment and during the following 4 h, and then increased after 24 h to levels similar to or higher than those of control fruit.

Therefore, the selected treatment (45 °C, 3 h in air) effectively reduced strawberry softening and caused a temporary reduction of both the expression of above-mentioned genes and the activity of a set of enzymes involved in cell wall disassembly.  相似文献   


8.
Combinations of various heat treatments with individual fruit sealing, packaging in polyethylene liners or waxing were tested as means to control pathological and physiological spoilage of ‘Oroblanco’ fruit (Citrus grandis L.×C. paradisi Macf.). The following heat treatments were used: curing at 36°C for 72 h, hot water dip at 52°C for 2 min or ‘hot drench brushing’ at 52, 56 or 60°C for 10 s. The standard packinghouse treatment included waxing with addition of thiabendazole (TBZ) and 2,4- isopropyl ester. The fruit was stored for 2 weeks at 1°C (simulated low-temperature quarantine treatment), followed by 12–13 weeks at 11°C (simulated sea transportation to Japan) and 1 additional week at 20°C (simulated retail shelf-life period). The lowest weight loss and the highest firmness were observed with individually sealed fruit. Polyethylene liners were usually more efficient for weight loss control than waxing. However, the liner packaging enhanced the risk of postharvest disease development, if not accompanied by appropriate decay-controlling measures. Applying TBZ, hot water dip or curing controlled the development of postharvest pathogens, especially that of Penicillium molds. In another trial, both hot drench brushing at 56 or 60°C and hot water dip reduced decay incidence. Hot drench brushing at 60°C and hot water dip slowed fruit softening and reduced buttons abscission. In addition, the hot drench brushing at 60°C significantly delayed the loss of ‘Oroblanco’ green rind color, especially at the stylar and stem ends of the fruit. The hot dip at 52°C inhibited yellowing only when combined with individual seal-packaging.  相似文献   

9.
The influence of aqueous 1-methylcyclopropene (1-MCP) concentration, immersion duration, and solution longevity on the ripening of early ripening-stage tomato (Solanum lycopersicum L.) has been investigated. Tomato fruit at the breaker-turning stage were fully immersed in aqueous 1-MCP at 50, 200, 400 and 600 μg L−1 for 1 min, quickly dried, and then stored at 20 °C. Ethylene production, respiration, surface color development, and rate of accumulation of lycopene and polygalacturonase (PG) activity were suppressed and/or delayed in fruit exposed to aqueous 1-MCP. Suppression of ripening was concentration dependent, with maximum inhibition in response to 1 min immersion occurring at concentrations of 400 and 600 μg L−1. Climacteric ethylene peaks were delayed approximately 6, 7, and 9 d and respiration was strongly suppressed in fruit treated with aqueous 1-MCP at 200, 400, and 600 μg L−1, respectively, compared with control fruit. Fruit firmness, lycopene content, PG activity, and surface hue of fruit treated at the three higher levels remained strongly suppressed compared with control. Skin hue values and pericarp lycopene content in response to treatment at the subthreshold 50 μg L−1 provided evidence for differential ripening suppression in external versus internal tissues. Maximum delay of softening and surface color development in response to 50 μg L−1 aqueous 1-MCP occurred following immersion periods of between 6 and 12 min. Factors affecting fruit penetration by aqueous 1-MCP and mechanisms contributing to recovery from 1-MCP-induced ripening inhibition are discussed.  相似文献   

10.
Three bunches of unripe ‘Williams’ banana fruit of different maturity, 173, 156 and 71 days from bunch emergence, were harvested. Fruit from the top, bottom and middle hands from each bunch were fumigated for 24 h with 1-methylcyclopropene (1-MCP) at 0, 5, 50 or 500 nl l−1 at 20oC. All fruit were then stored at 20oC in air containing 0.1 μl l−1 ethylene and the time taken for each fruit to ripen (green life) was noted. The green life of fruit treated with 500 nl l−1 1-MCP varied with fruit maturity. In the two most mature bunches it was 27.9±2.3 days, 4-fold longer than fruit fumigated with 0 nl l−1 1-MCP (6.7±0.6 days). In the least mature bunch, green life was 39.7±3.0 days, 1.5-fold longer than fruit fumigated with 0 nl l−1 1-MCP (25.7±2.5 days). Most fruit treated with 500 nl l−1 1-MCP showed an unacceptable uneven skin colouration when ripe. There was no significant effect on green life of 1-MCP at 50 nl l−1 and 5 nl l−1. Other fruit from these bunches were not exposed to 1-MCP and were held in ethylene-free air until ripe. In the two most mature bunches, these fruit had a significantly shorter green life (11.2±5.6 days in hand 1; 18.9±4.1 days in hands 4 and 6) than fruit that were fumigated with 500 nl l−1 1-MCP. In the least mature bunch, however, these fruit had a significantly longer green life (56.0±5.9 days) than 1-MCP treated fruit. Since the effectiveness of 1-MCP varied with fruit maturity and in any commercial consignment there is a mixture of fruit maturity, it is concluded that 1-MCP has limited commercial potential for the storage of unripe ‘Williams’ bananas.  相似文献   

11.
Pomegranates are sensitive to low temperatures. When fruit are exposed to temperatures below 5–6 °C chilling injury appears as pitting of the skin, browning of the white segments separating the arils and discoloration of the arils, and husk scald, which generally is more severe at temperatures of 6–10 °C. The main objective of this work was to assess the effectiveness of individual film packaging, applied as a stand alone treatment or in combination with fludioxonil, on reducing the occurrence of husk scald, weight loss and decay. Fruit were dipped in an aqueous mixture containing 600 mg L?1 fludioxonil, wrapped or not wrapped with a polyolephinic heat-shrinkable film and stored at 8 °C and 90% RH for 6 or 12 weeks plus one additional week of simulated shelf-life at 20 °C and 65–70% RH. Respiration rate decreased both in cold storage and at 20 °C. Ethylene production was not detected during cold storage; its rate increased upon transfer to 20 °C, but results were inconsistent. Control fruit deteriorated at a very high rate, due to excessive weight loss, skin browning and decay. Film wrapping almost completely inhibited weight loss and husk scald and preserved fruit freshness for the whole storage time. There was no statistical difference in decay incidence between wrapped and control fruit after 6 or 12 weeks of storage and after the first shelf-life, while after the second shelf-life, wrapped fruit had significantly higher decay levels. By contrast, fludioxonil, both alone and in combination with wrapping, effectively controlled mold development, resulting in 50–67% less decay than control fruit after 12 weeks at 8 °C plus one week shelf-life. Control fruit showed minor changes in nutritional compounds as well as in total polyphenols, anthocyanins and antioxidant activity, while higher losses were detected in film-wrapped fruit during storage at 20 °C.  相似文献   

12.
Mango fruit are exposed to complex postharvest handling management, intended to improve postharvest quality retention during export shipment. Susceptibility to lenticel discoloration and to Alternaria side rots and Phomopsis stem-end rot under current handling conditions led us to re-evaluate and modify the chain of postharvest treatments, from the orchard to the packinghouse. The previously developed hot-water brushing (HWB) treatment was found effective in reducing incidence of Alternaria and stem-end rots, but it significantly induced development of red lenticels. Two factors were key to improving fruit quality, by simultaneously reducing lenticel discoloration and decay development: (a) postharvest water and/or NaOH washes in the orchard, and (b) hot-water spray (HWS) applied over rollers without brushes in the packinghouse. The present results indicate that optimal management involves combinations of water washes in the orchard with packinghouse HWS treatment; this significantly reduced the severity of lenticel discoloration by 50–60%, and the incidence and extent of postharvest side rots caused by Alternaria by 60% or more. These results indicate that appropriate handling of fruit can appreciably improve their quality during prolonged storage and shipment.  相似文献   

13.
Nectarine fruit after cold storage soften normally, but become dry instead of juicy and can develop flesh browning, bleeding and a gel-like or glassy formation of the flesh near the pit. An experiment was conducted to see if time-resolved reflectance spectroscopy could distinguish these internal disorders non-destructively. The optical parameters of absorption coefficient (μa) and reduced scattering coefficient (μs) were measured at 670 nm and 780 nm, on nectarine (Prunus persica cv. Morsiani 90) fruit held at 20 °C after harvest or after 30 d of storage at 0 °C or 4 °C. Each day for 5 d 30 fruit were examined both non-destructively and destructively. Other measurements were firmness with a penetrometer, peel colour on the blush and non-blush side, expressible juice, weight loss, and visual rating of internal browning, bleeding, and gel. The fruit had been sorted at harvest according to the value of μa670 so that each batch had a similar spread of fruit maturity. More mature fruit (lower μa670 values) developed internal browning and bleeding with more severe symptoms compared to less mature ones (higher μa670 values). It was found that μa780 could distinguish healthy fruits from the chilling injured ones. Canonical discriminant analysis indicated that fruit without cold storage had low μa780, less water loss, low firmness, but high μa670 and high expressible juice compared with cool stored fruit. Fruit cool stored at 4 °C had high μa780 and less expressible juice, lower water loss and lower firmness compared with fruit cool stored at 0 °C. It was concluded that time resolved reflectance spectroscopy could detect internal woolliness and internal browning in nectarines after storage.  相似文献   

14.
The presence of surface arthropods on commercially processed apples and pears poses a problem when these fruits are exported to countries where there are either limits on the numbers of eggs or a total quarantine restriction against these pests. Removal of mite and other arthropod eggs, such as European red mite (ERM) and codling moth (CM) eggs, may be enhanced by the use of a surface cleaning system, such as a hot water, high-pressure spray. Even if organosilicones, like Silwet L-77, have been used to kill spider mites, it was unclear if these chemicals could also facilitate the removal of arthropod eggs from the surface of fruit. In the present study, high-pressure washing process was highly effective in removing CM and ERM eggs at pressures as low as 400 kPa, resulting in greater than 60% removal of ERM eggs and 90% of CM eggs. High-pressure washing was the most important factor in removal of codling moth and European red mite eggs than organosilicone dips or hot water sprays.  相似文献   

15.
The aim of this study was to determine the effects of 1-methylcyclopropene, 1-MCP (1 μL L−1 for 24 h at 5 °C) on quality attributes and shelf life of fresh-cut strawberries. The 1-MCP was applied before (whole product) and/or after cutting (wedges), followed by storage in a continuous flow of air or air +1 μL L−1 C2H4. The combined effects of 1-MCP and CaCl2 dips (1% for 2 min) and/or CA (3 kPa O2 + 10 kPa CO2) were also examined. The application of only 1-MCP before and/or after cutting did not have a significant effect on firmness and appearance quality during storage for up to 12 days at 5 °C. The exposure to a continuous flow of 1 μL L−1 C2H4 in air during storage did not increase the softening rate. 1-MCP applied before cutting or both before and after cutting of the strawberries increased respiration rates but reduced C2H4 production rates. Exposure to 1-MCP had a synergistic effect when combined with CaCl2 plus CA. The combined treatment of 1-MCP + CaCl2 + CA slowed down softening, deterioration rates, TA and microbial growth. Compared to the control, which had a 6-day shelf life, the shelf life of fresh-cut strawberries subjected to the combination treatment was extended to 9 days at 5 °C.  相似文献   

16.
Storage of ‘Fuji’ apple fruit in a high CO2 (3 kPa) and low O2 (1.5 kPa) controlled atmosphere (CA) reduced firmness and titratable acidity (TA) loss during long term storage. This CA environment also induced development of internal CO2-injury (brown-heart) and slowed the disappearance of watercore. The symptoms of internal CO2-injury were first detected 15 days after CA establishment and the severity increased during the first 4 months of CA-storage. Delaying establishment of CA conditions for 2–12 weeks significantly reduced the severity of CO2-injury. Delaying CO2 accumulation to 3 kPa for 1–4 months during CA (1.5 kPa O2+0.05 kPa CO2) storage also reduced development of CO2-injury symptoms. Delaying CA or CO2 accumulation resulted in lower firmness and TA compared to establishment of CA within 72 h of harvest. However, the delay treatments did result in firmness and TA that were significantly higher compared to values for fruit stored in air. The incidence and severity of senescent injuries (flesh browning and core flush) detected during the late period of storage were greater in air- than CA-stored fruit. The results indicate the susceptibility of ‘Fuji’ apples to CO2-injury is highest during the first weeks of storage after harvest. Delaying establishment of CA or exposure to elevated CO2 after harvest may be a practical strategy to reduce CO2-injury while maintaining other important quality attributes at acceptable levels.  相似文献   

17.
This article presents various experiments conducted under semi-controlled conditions to determine the effects of temperature on germination, phenology, growth and freezing in Chenopodium quinoa, a pseudocereal originating from the cold and dry Andean altiplano. Traditional landraces and recently released cultivars from distinct geographical origins were compared in order to look for local adaptation or breeding improvement with respect to low temperatures. Germination was evaluated in 10 cultivars at temperatures between 2 and 20 °C. Plant growth and development were examined in three cultivars over the growing cycle, under minimum temperature between 8 and 13 °C and maximum temperature between 20 and 28 °C. The thermal time concept was used to compare the various treatments and estimate the phyllochron, as well as the base temperature and optimum temperature for leaf appearance, time to flowering and leaf width growth. Two cultivars at the vegetative stage were compared for night freezing tolerance down to −6 °C, registering leaf exotherms and plant survival rate. The influence of plant water status and the possible protective or detrimental role of leaf epidermal vesicles were also examined. Low temperatures down to 2 °C delayed germination without impeding it totally. Base temperature for germination varied between −1.9 and +0.2 °C, with negative values in 9 cultivars out of 10. Thermal sensitivity in germination was not related to the geographic origin of the cultivars. Leaf appearance and time to flowering showed similar base temperatures near 1 °C. Phyllochron varied from 12.9 to 17.2 °C d with lower values in the two recently released varieties than in the traditional landrace. Leaf width increased from a base temperature around 6 °C up to an optimum temperature between 20 and 22.5 °C. Freezing experiments showed that no plant could survive after 4 h at −6 °C, while no serious effect was noted down to −3 °C. Leaf exotherms confirmed that ice nucleation occurred between −5 and −6 °C in most of the plants, the traditional landrace showing a lower freezing tolerance than the selected line. Low leaf water status delayed the freezing process, while leaf vesicles did not seem to play any protective or detrimental role towards leaf freezing. Implications of these results for quinoa crop adaptation to the Andean environment are discussed.  相似文献   

18.
A continuing challenge for commercializing 1-methylcyclopropene (1-MCP) to extend the storage life and control superficial scald of ‘d’Anjou’ pear (Pyrus communis L.) is how to initiate ripening in 1-MCP treated fruit. ‘D’Anjou’ pears harvested at commercial and late maturity were treated with 1-MCP at 0.15 μL L−1 and stored either at the commercial storage temperature −1.1 °C (1-MCP@−1.1 °C), or at 1.1 °C (1-MCP@1.1 °C) or 2.2 °C (1-MCP@2.2 °C) for 8 months. Control fruit stored at −1.1 °C ripened and developed significant scald within 7 d at 20 °C following 3–5 months of storage. While 1-MCP@−1.1 °C fruit did not develop ripening capacity due to extremely low internal ethylene concentration (IEC) and ethylene production rate for 8 months, 1-MCP@1.1 °C fruit produced significant amounts of IEC during storage and developed ripening capacity with relatively low levels of scald within 7 d at 20 °C following 6–8 months of storage. 1-MCP@2.2 °C fruit lost quality quickly during storage. Compared to the control, the expression of ethylene synthesis (PcACS1, PcACO1) and signal (PcETR1, PcETR2) genes was stable at extremely low levels in 1-MCP@−1.1 °C fruit. In contrast, they increased expression after 4 or 5 months of storage in 1-MCP@1.1 °C fruit. Other genes (PcCTR1, PcACS2, PcACS4 and PcACS5) remained at very low expression regardless of fruit capacity to ripen. A storage temperature of 1.1 °C can facilitate initiation of ripening capacity in 1-MCP treated ‘d’Anjou’ pears with relatively low scald incidence following 6–8 months storage through recovering the expression of certain ethylene synthesis and signal genes.  相似文献   

19.
Physiological responses and fruit quality of ‘d’Anjou’ pear fruit from five orchard lots were evaluated after cold storage in air or controlled atmospheres (CA) with the O2 concentration based on assessment of fruit chlorophyll fluorescence (CF) or standard conditions (1.5 kPa O2). The pCO2 for all CA fruit was 0.5 kPa. Softening, acid loss, and peel degreening of all lots were delayed at one or more evaluation dates (2, 4, 6, 8 months) by previous storage at the CF pO2 compared with fruit stored in 1.5 kPa O2 or in air. Superficial scald developed on fruit previously stored in air but not on fruit stored in a CA. Pithy brown core developed on fruit from all lots stored at the CF pO2 and on fruit stored at 1.5 kPa in 3 of the 5 lots. Pithy brown core incidence decreased with advanced harvest maturity. Post-storage ethylene and CO2 production were in most instances lowest for fruit stored at the CF pO2. A significant relationship between fruit ethanol content and pithy brown core incidence was observed. Results indicate low pO2 storage based on CF monitoring slows fruit ripening relative to fruit stored at 1.5 kPa O2, prevents superficial scald development compared with fruit stored in air, however, development of pithy brown core in fruit stored at the CF pO2 was not accompanied by a change in CF.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号