首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 490 毫秒
1.
Simple and rapid chemical indices of soil nitrogen (N)-supplying capacity are necessary for fertilizer recommendations. In this study, pot experiment involving rice, anaerobic incubation, and chemical analysis were conducted for paddy soils collected from nine locations in the Taihu Lake region of China. The paddy soils showed large variability in N-supplying capacity as indicated by the total N uptake (TNU) by rice plants in a pot experiment, which ranged from 639.7 to 1,046.2 mg N pot−1 at maturity stage, representing 5.8% of the total soil N on average. Anaerobic incubation for 3, 14, 28, and 112 days all resulted in a significant (P < 0.01) correlation between cumulative mineral NH4+-N and TNU, but generally better correlations were obtained with increasing incubation time. Soil organic C, total soil N, microbial C, and ultraviolet absorbance of NaHCO3 extract at 205 and 260 nm revealed no clear relationship with TNU or cumulative mineral NH4+-N. Soil C/N ratio, acid KMnO4-NH4+-N, alkaline KMnO4-NH4+-N, phosphate–borate buffer extractable NH4+-N (PB-NH4+-N), phosphate–borate buffer hydrolyzable NH4+-N (PBHYDR-NH4+-N) and hot KCl extractable NH4+-N (HKCl−NH4+-N) were all significantly (P < 0.05) related to TNU and cumulative mineral NH4+-N of long-term incubation (>28 days). However, the best chemical index of soil N-supplying capacity was the soil C/N ratio, which showed the highest correlation with TNU at maturity stage (R = −0.929, P < 0.001) and cumulative mineral NH4+-N (R = −0.971, P < 0.001). Acid KMnO4-NH4+-N plus native soil NH4+-N produced similar, but slightly worse predictions of soil N-supplying capacity than the soil C/N ratio.  相似文献   

2.
The objective of this study is to evaluate different agricultural land‐use practices in terms of N leaching and to give recommendations for a sustainable agriculture on sandy soils in Middle Germany. Soil mineral N (Nmin) and leachate N were quantified at a sandy soil in N Saxony during 3 years. Two treatments were applied: intensive (I)—using inorganic and organic fertilizer and pesticides, and organic (O)—exclusively using organic fertilizer, legume‐based crop rotation, and no pesticides. Split application of mineral fertilizers did not result in substantial N losses at treatment I. Legumes induced a considerable increase of soil mineral N and particularly of leachate mineral N (Nmin_perc) at treatment O. High Nmin_perc concentrations (up to 78 mg N L–1) were observed during as well as after the cultivation of legumes. These high Nmin_perc concentrations are the reason why clearly higher Nmin_perc losses were determined at treatment O (62 kg N ha–1 y–1) compared to treatment I (23 kg N ha–1 y–1). At both treatments, the quantity of N losses was strongly affected by the precipitation rates. Concentrations and losses of dissolved organic N (DONperc) were assessed as above average at both treatments. The results suggest that the DONperc concentration is influenced by precipitation, soil coverage, and organic fertilizers. Higher values were determined in the percolation water of treatment O. The average annual DONperc losses amounted to 15 kg N ha–1 at I and to 32 kg N ha–1 at O. The average monthly percentage of DONperc losses on the loss of the dissolved total N of percolation water (DTNperc) ranged between <1% and 55% at O and between 2% and 56% at I. For the whole measuring period of 29 months, the relative amounts of DONperc of DTNperc (21% at O and 25% at I) were more or less the same for both treatments. The results show that DONperc can contribute significantly to the total N loss, confirming the importance to consider this N fraction in N‐leaching studies. It was concluded that at sandy sites, a split application of mineral fertilizers, as applied at treatment I, seems to be more expedient for limiting the N leaching losses than legume‐based crop rotations.  相似文献   

3.
An increasing area of oilseed rape cultivation in Europe is used to produce biodiesel. However, a large amount of straw residue is often left in the field in autumn. Straw mineralization provides both carbon (C) and nitrogen (N) sources for emission of soil nitrous oxide (N2O), which is an important greenhouse gas with a high warming potential. Some studies have focused on soil N2O emissions immediately post-harvest; however, straw mineralization could possibly last over winter. Most field studies in winter have focused on freeze-thaw cycles. It is still not clear how straw mineralization affects soil N2O emissions in unfrozen wintertime conditions. We carried out a field experiment in northern Germany in winter 2014, adding straw and glucose as a source of C with three rates of N fertilizer (0, 30, and 60 kg N ha−1). During the 26 days of observation, cumulative N2O emission in treatments without C addition was negative at all N fertilizer levels. Straw addition produced –3.2, 11.2, and 5.0 mg N2O-N m−2 at 0, 30, and 60 kg N ha−1, respectively. Addition of glucose surprisingly caused –1.5, 74.6, and 165 mg N2O–N m−2 at 0, 30, and 60 kg N ha−1, respectively. This study demonstrates that oilseed rape straw does not cause high N2O emissions in wintertime when no extreme precipitation or freeze-thaw cycles are involved, and soil organic C content is low. However, N2O emission could be intensively stimulated, when both easily available organic C and nitrate are not limited and the soil temperature between 0 and 10°C. These results provide useful information on potential changes to N2O emissions that may occur due to the increased use of oilseed rape for biodiesel combined with less severe winters in the northern hemisphere driven by global warming.  相似文献   

4.
It has been suggested that soil-thawing and snow-melting are critical triggers for vigorous emissions of nitrous oxide (N2O) from soils in cold regions. However, because soil freezing is affected by air temperature and snow cover, accurate predictions that estimate subsequent emissions of this important greenhouse gas are difficult to make. In this study, we measured in situ soil gas N2O and oxygen (O2) concentrations at two experimental sites in northern Japan over the period of a year, from November 2008 to October 2009, to clarify the factors stimulating N2O production in soil at low temperatures. The sites were N-fertilized bare arable lands with different soil frost depths and snowmelt rates, according to the snow cover management imposed. Winter-to-spring net N2O fluxes, ranging from −0.10 to 1.95 kg N2O-N ha−1, were positively correlated with the annual maximum soil frost depth (ranging from 0.03 to 0.41 m; r = 0.951***). In the plots with deeper maximum soil frost, winter-to-spring N2O fluxes represented 58% to 85% of the annual values. Soil N2O production was stimulated when the soil frost depth was greater than 0.15 m or the daily mean soil temperature at 0.05-m depth was below −2.0 °C. In the soil with the greatest frost depth, soil gas N2O concentrations at the depth of 0.10 m peaked at 46 ppm when soil gas O2 concentrations fell down to 0.12 m3 m−3 under soil temperature below 0.0 °C. Snowmelt acceleration had no stimulating effect on N2O production in the soil during the winter-to-spring period.  相似文献   

5.
Crop residues with high C/N ratio immobilize N released during decomposition in soil, thus reducing N losses through leaching, denitrification, and nitrous oxide (N2O) emission. A laboratory incubation experiment was conducted for 84 days under controlled conditions (24°C and moisture content 55% of water-holding capacity) to study the influence of sugarcane, maize, sorghum, cotton and lucerne residues, and mineral N addition, on N mineralization–immobilization and N2O emission. Residues were added at the rate of 3 t C ha−1 to soil with, and without, 150 kg urea N ha−1. The addition of sugarcane, maize, and sorghum residues without N fertilizer resulted in a significant immobilization of soil N. Amended soil had significantly (P < 0.05) lower NO3–N, which reached minimum values of 2.8 mg N kg−1 for sugarcane (at day 28), 10.3 mg N kg−1 for maize (day 7), and 5.9 mg N kg−1 for sorghum (day 7), compared to 22.7 mg N kg−1 for the unamended soil (day 7). During 84 days of incubation, the total mineral N in the residues + N treatments were decreased by 45 mg N kg−1 in sugarcane, 34 mg kg−1 in maize, 29 mg kg−1 in sorghum, and 16 mg kg−1 in cotton amended soil compared to soil + N fertilizer, although soil NO3–N increased by 7 mg kg−1 in lucerne amended soil. The addition of residues also significantly increased amended soil microbial biomass C and N. Maximum emissions of N2O from crop residue amended soils occurred in the first 4–5 days of incubation. Overall, after 84 days of incubation, the cumulative N2O emission was 25% lower with cotton + N fertilizer, compared to soil + N fertilizer. The cumulative N2O emission was significantly and positively correlated with NO3–N (r = 0.92, P < 0.01) and total mineral N (r = 0.93, P < 0.01) after 84 days of incubation, and had a weak but significant positive correlation with cumulative CO2 in the first 3 and 5 days of incubation (r = 0.59, P < 0.05).  相似文献   

6.
《Soil biology & biochemistry》2001,33(7-8):1113-1121
In this study, the influence of temperature and vegetation cover on soluble inorganic and organic nitrogen in a spodosol from north east Scotland was investigated. Firstly, soil cores were incubated at 5, 10 and 15°C for up to 8 weeks. Net mineralisation was observed at all temperatures with larger rates observed at higher temperatures. In contrast, water extractable dissolved organic nitrogen (DON) displayed no clear trend with time and showed little response to temperature. Secondly, intact cores of the same soil, with and without vegetation, were leached with artificial rain for 6 weeks at 6.5 and 15°C. Temperature and the presence of vegetation interacted to have a significant (P<0.01) effect on the concentration of NO3 in leachates; highest concentrations were observed in leachates from cores without vegetation at 15°C, whereas lowest concentrations were observed in leachates from cores with vegetation at 6.5°C. In contrast, concentrations of DON and dissolved organic carbon (DOC) were significantly (P<0.001) higher in leachates from cores with vegetation than without vegetation and were not affected by temperature. The cumulative amounts of DON and DOC leached from the cores with vegetation were 4 and 2.5 times greater, respectively, than those leached from the cores without vegetation. Comparison of soil solution (extracted by centrifugation at 0–5 and 5–10 cm depth) after leaching for 6 weeks, showed that the upper layer contained more than twice the amount of DON than the 5–10 cm layer and that the difference in concentration between the two depths was enhanced in the presence of vegetation. The results indicate that vegetation is an important source of DON and DOC. However, the removal of vegetation did not lead to an increase in the quantity of total dissolved nitrogen (TDN) in soil water, but resulted in a change in the dominant N fraction from DON to NO3. In addition, the results show that DON, in both the incubated and leached cores, did not change as inorganic N was mineralised. This suggests that if water extractable DON was acting as a source of NH4+ or NO3, then it was being replenished by, and in equilibrium with, a large reserve of organic N. Evidence of such a pool was indirect in the form of additional DON (equivalent to 2 g N m−2) being extracted by 0.5 M K2SO4.  相似文献   

7.
The objective of this study was to examine the effects of soil moisture, irrigation pattern, and temperature on gaseous and leaching losses of carbon (C) and nitrogen (N) from soils amended with biogas slurry (BS). Undisturbed soil cores were amended with BS (33 kg N ha−1) and incubated at 13.5°C and 23.5°C under continuous irrigation (2 mm day−1) or cycles of strong irrigation and partial drying (every 6 weeks, 1 week with 12 mm day−1). During the 6 weeks after BS application, on average, 30% and 3.8% of the C and N applied with BS were emitted as carbon dioxide (CO2) and nitrous oxide (N2O), respectively. Across all treatments, a temperature increase of 10°C increased N2O and CO2 emissions by a factor of 3.7 and 1.7, respectively. The irrigation pattern strongly affected the temporal production of CO2 and N2O but had no significant effect on the cumulative production. Nitrogen was predominantly lost in the form of nitrate (NO3). On average, 16% of the N applied was lost as NO3. Nitrate leaching was significantly increased at the higher temperature (P < 0.01), while the irrigation pattern had no effect (P = 0.63). Our results show that the C and N turnovers were strongly affected by BS application and soil temperature whereas irrigation pattern had only minor effects. A considerable proportion of the C and N in BS were readily available for soil microorganisms.  相似文献   

8.
A laboratory investigation was performed to compare the fluxes of dinitrogen (N2), N2O and carbon dioxide (CO2) from no-till (NT) and conventional till (CT) soils under the same water, mineral nitrogen and temperature status. Intact soil cores (0-10 cm) were incubated for 2 weeks at 25 °C at either 75% or 60% water-filled pore space (WFPS) with 15N-labeled fertilizers (100 mg N kg−1 soil). Gas and soil samples were collected at 1-4 day intervals during the incubation period. The N2O and CO2 fluxes were measured by a gas chromatography (GC) system while total N2 and N2O losses and their 15N mole fractions in the soil mineral N pool were determined by a mass spectrometer. The daily accumulative fluxes of N2 and N2O were significantly affected by tillage, N source and soil moisture. We observed higher (P<0.05) fluxes of N2+N2O, N2O and CO2 from the NT soils than from the CT soils. Compared with the addition of nitrate (NO3), the addition of ammonium (NH4+) enhanced the emissions of these N and C gases in the CT and NT soils, but the effect of NH4+ on the N2 and/or N2O fluxes was evident only at 60% WFPS, indicating that nitrification and subsequent denitrification contributed largely to the gaseous N losses and N2O emission under the lower moisture condition. Total and fertilizer-induced emissions of N2 and/or N2O were higher (P<0.05) at 75% WFPS than with 60% WFPS, while CO2 fluxes were not influenced by the two moisture levels. These laboratory results indicate that there is greater potential for N2O loss from NT soils than CT soils. Avoiding wet soil conditions (>60% WFPS) and applying a NO3 form of N fertilizer would reduce potential N2O emissions from arable soils.  相似文献   

9.
Adequate use of manure in grasslands may constitute an economical means of manure disposal and an abundant source of nutrients for plants; however, excessive nitrogen (N) additions to these soils could create new environmental risks such as increasing nitrous oxide (N2O) emissions. These potentially adverse effects in grasslands may be mitigated by improved management practices. In pasture systems, the combined effects of poultry litter applications and interseeded rye (Secale cereale L.) on N2O emissions are still not well established. This study was conducted to estimate the magnitude of soil surface N2O fluxes as affected by interseeded winter rye forage, annually spring-applied composted turkey litter as well as by weather and soil parameters. Fluxes were measured by vented chambers during 2 yr in a bermudagrass (Cynodon dactylon [L.] Pers.) pasture in moderately well-drained Tonti gravelly silt loam (fine-loamy, active, mesic Typic Fragiudault) located in northwestern Arkansas, USA. During the 60 d following turkey litter applications, N2O fluxes were frequently well correlated with soil nitrate (NO3; r: up to 0.82, P's < 0.05) implying substrate stimulation on soil N2O production. Likewise, rainfall patterns strongly influenced N2O fluxes. Large rainfalls of 91 and 32 mm occurred within 6 d prior to the maximum N2O flux means (263 and 290 μg N m−2 h−1, respectively). Treatment effects on N2O emissions were significant only in spring periods following manure addition, particularly in the second year of our study. In the spring of 2000, additions of composted turkey litter resulted in 1.5-fold increase in seasonal cumulative N2O emissions (P = 0.04) which was directly associated to a numerically greater soil NO3. In the spring of 2001, soils planted to rye exhibited a pronounced significant effect on mitigating N2O emissions (30 vs. 112 mg N m−2; P = 0.04). During the winter and early spring, rye growth also decreased quantities of both soil NO3 and water-filled pore space (WFPS) partly accounting for the lower N2O emissions in these fields. These results suggest that because poultry litter additions increased and interseeded rye diminished N2O emissions, the combined implementation of both management practices can produce environmental benefits while sustaining productivity in temperate pasture systems.  相似文献   

10.
In this study, a 15N tracing incubation experiment and an in situ monitoring study were combined to investigate the effects of different N fertilizer regimes on the mechanisms of soil N dynamics from a long-term repeated N application experiment. The field study was initiated in 2003 under a wheat-maize rotation system in the subtropical rain-fed purple soil region of China. The experiment included six fertilization treatments applied on an equivalent N basis (280 kg N ha−1), except for the residue only treatment which received 112 kg N ha−1: (1) UC, unfertilized control; (2) NPK, mineral fertilizer NPK; (3) OM, pig manure; (4) OM-NPK, pig manure (40% of applied N) with mineral NPK (60% of applied N); (5) RSD, crop straw; (6) RSD-NPK, crop straw (40% of applied N) with mineral NPK (60% of applied N). The results showed that long-term repeated applications of mineral or organic N fertilizer significantly stimulated soil gross N mineralization rates, which was associated with enhanced soil C and N contents following the application of N fertilizer. The crop N offtake and yield were positively correlated with gross mineralization. Gross autotrophic nitrification rates were enhanced by approximately 2.5-fold in the NPK, OM, OM-NPK, and RSD-NPK treatments, and to a lesser extent by RSD application, compared to the UC. A significant positive relationship between gross nitrification rates and cumulative N loss via interflow and runoff indicated that the mechanisms responsible for increasing N loss following long-term applications of N fertilizer were governed by the nitrification dynamics. Organic fertilizers stimulated gross ammonium (NH4+) immobilization rates and caused a strong competition with nitrifiers for NH4+, thus preventing a build-up of nitrate (NO3). Overall, in this study, we found that partial or complete substitution of NPK fertilizers with organic fertilizers can reduce N losses and maintain high crop production, except for the treatment involving application of RSD alone. Therefore, based on the N transformation dynamics observed in this study, organic fertilizers in combination with mineral fertilizer applications (i.e. OM, OM-NPK, and RSD-NPK treatments) are recommended for crop production in the subtropical rain-fed purple soils in China.  相似文献   

11.
The intensive conversion from woodland to tea plantation in subtropical China might significantly change the potential supply processes and cycling of inorganic Nitrogen (N). However, few studies have been conducted to investigate the internal N transformations involved in the production and consumption of inorganic N and N2O emissions in subtropical soils under tea plantations. In a 15N tracing experiment, nine tea fields with different plantation ages (1-y, 5-y and 30-y) and three adjacent woodlands were sampled to investigate changes in soil gross N transformation rates in humid subtropical China. Conversion of woodland to tea plantation significantly altered soil gross N transformation rates. The mineralization rate (MNorg) was much lower in soils under tea plantation (0.53–0.75 mg N kg−1 d−1) than in soil sampled from woodland (1.71 mg N kg−1 d−1), while the biological inorganic N supply (INS), defined as the sum of organic N mineralized into NH4+ (MNorg) and heterotrophic nitrification (ONrec), was not significantly different between soils under woodland and tea plantation, apart from soil under 30-y tea plantation which had the largest INS. Interestingly, the contribution of ONrec to INS increased from 19.6% in soil under woodland to 65.0–82.4% in tea-planted soils, suggesting ONrec is the dominant process producing inorganic N in tea-planted soils. Meanwhile, the conversion from woodland to tea plantation destroyed soil NO3 retention by increasing ONrec, autotrophic nitrification (ONH4) and abiotic release of stored NO3 while decreasing microbial NO3 immobilization (INO3), resulting in greater NO3 production in soil. In addition, long-term tea plantation significantly enhanced the potential release of N2O. Soil C/N was positively correlated with MNorg and INO3, suggesting that an increase in soil C/N from added organic materials (e.g. rice hull) is likely to reduce the increased production of NO3 in the soils under tea plantation.  相似文献   

12.
Tree species have significant effects on the availability and dynamics of soil organic matter. In the present study, the pool sizes of soil dissolved organic matter (DOM), potential mineralizable N (PMN) and bio-available carbon (C) (measured as cumulative CO2 evolution over 63 days) were compared in soils under three coniferous species — 73 year old slash (Pinus elliottii), hoop (Araucaria cunninghamii) and kauri (Agathis robusta) pines. Results have shown that dissolved organic N (DON) in hot water extracts was 1.5–1.7 times lower in soils under slash pine than under hoop and kauri pines, while soil dissolved organic C (DOC) in hot water extracts tended to be higher under slash pine than hoop and kauri pines but this was not statistically significant. This has led to the higher DOC:DON ratio in soils under slash pine (32) than under hoop and kauri pines (17). Soil DOC and DON in 2 M KCl extracts were not significantly different among the three tree species. The DOC:DON ratio (hot water extracts) was positively and significantly correlated with soil C:N (R2 = 0.886, P < 0.01) and surface litter C:N ratios (R2 = 0.768, P < 0.01), indicating that DOM was mainly derived from litter materials and soil organic matter through dissolution and decomposition. Soil pH was lower under slash pine (4.5) than under hoop (6.0) and kauri (6.2) pines, and negatively correlated with soil total C, C:N ratio, DOC and DOC:DON ratio (hot water extracts), indicating the soil acidity under slash pine favored the accumulation of soil C. Moreover, the amounts of dissolved inorganic N, PMN and bio-available C were also significantly lower in soils under slash pine than under hoop and kauri pines. It is concluded that changes in the quantity and quality of surface litters and soil pH induced by different tree species largely determined the size and quality of soil DOM, and plantations of hoop and kauri pine trees may be better in maintaining long-term soil N fertility than slash pine plantations.  相似文献   

13.
Nitrogen (N) is an essential element associated with crop yield and its availability is largely controlled by microbially-mediated processes. The abundance of microbial functional genes (MFG) involved in N transformations can be influenced by agricultural practices and soil amendments. Biochar may alter microbial functional gene abundances through changing soil properties, thereby affecting N cycling and its availability to crops. The objective of this study was to assess the effects of wood biochar application on N retention and MFG under field settings. This was achieved by characterising soil labile N and their stable isotope compositions and by quantifying the gene abundance of nifH (nitrogen fixation), narG (nitrate reduction), nirS, nirK (nitrite reduction), nosZ (nitrous oxide reduction), and bacterial and archeal amoA (ammonia oxidation). A wood-based biochar was applied to a macadamia orchard soil at rates of 10 t ha−1 (B10) and 30 t ha−1 (B30). The soil was sampled after 6 and 12 months. The abundance of narG in both B10 and B30 was lower than that of control at both sampling months. Canonical Correspondence Analysis showed that soil variables (including dissolved organic C, NO3–N and NH4+–N) and sampling time influenced MFG, but biochar did not directly impact on MFG. Twelve months after biochar application, NH4+–N concentrations had significantly decreased in both B10 (4.74 μg g−1) and B30 (5.49 μg g−1) compared to C10 (13.9 μg g−1) and C30 (17.9 μg g−1), whereas NO3–N concentrations increased significantly in B30 (24.7 μg g−1) compared to B10 (12.7 μg g−1) and control plots (6.18 μg g−1 and 7.97 μg g−1 in C10 and C30 respectively). At month 12, significant δ15N of NO3–N depletion observed in B30 may have been caused by a marked increase in NO3–N availability and retention in those plots. Hence, it is probable that the N retention in high rate biochar plots was mediated primarily by abiotic factors.  相似文献   

14.
There is now clear evidence for a prolonged increase in atmospheric CO2 concentrations and enrichment of the biosphere with N. Understanding the fate of C in the plant-soil system under different CO2 and N regimes is therefore of considerable importance in predicting the environmental effects of climate change and in predicting the sustainability of ecosystems. Swards of Lolium perenne were grown from seed in a Eutric Cambisol at either ambient (ca. 350 μmol mol−1) or elevated (700 μmol mol−1) atmospheric pCO2 and subjected to two inorganic N fertilizer regimes (no added N and 70 kg N ha−1 month−1). After germination, soil solution concentrations of dissolved organic C (DOC), dissolved inorganic N (DIN), dissolved organic N (DON), phenolics and H+ were measured at five depths down the soil profile over 3 months. The exploration of soil layers down the soil profile by roots caused transient increases in soil solution DOC, DON and phenolic concentrations, which then subsequently returned to lower quasi-stable concentrations. In general, the addition of N tended to increase DOC and DON concentrations while exposure to elevated pCO2 had the opposite effect. These treatment effects, however, gradually diminished over the duration of the experiment from the top of the soil profile downwards. The ambient pCO2 plus added N regime was the only treatment to maintain a notable difference in soil solution solute concentration, relative to other treatments. This effect on soil solution chemistry appeared to be largely indirect resulting from increased plant growth and a decrease in soil moisture content. Our results show that although plant growth responses to elevated pCO2 are critically dependent upon N availability, the organic chemistry of the soil solution is relatively insensitive to changes in plant growth once the plants have become established.  相似文献   

15.
Seasonal drought in tropical agroecosystems may affect C and N mineralization of organic residues. To understand this effect, C and N mineralization dynamics in three tropical soils (Af, An1, and An2) amended with haricot bean (HB; Phaseolus vulgaris L.) and pigeon pea (PP; Cajanus cajan L.) residues (each at 5 mg g−1 dry soil) at two contrasting soil moisture contents (pF2.5 and pF3.9) were investigated under laboratory incubation for 100–135 days. The legume residues markedly enhanced the net cumulative CO2–C flux and its rate throughout the incubation period. The cumulative CO2–C fluxes and their rates were lower at pF3.9 than at pF2.5 with control soils and also relatively lower with HB-treated than PP-treated soil samples. After 100 days of incubation, 32–42% of the amended C of residues was recovered as CO2–C. In one of the three soils (An1), the results revealed that the decomposition of the recalcitrant fraction was more inhibited by drought stress than easily degradable fraction, suggesting further studies of moisture stress and litter quality interactions. Significantly (p < 0.05) greater NH4+–N and NO3–N were produced with PP-treated (C/N ratio, 20.4) than HB-treated (C/N ratio, 40.6) soil samples. Greater net N mineralization or lower immobilization was displayed at pF2.5 than at pF3.9 with all soil samples. Strikingly, N was immobilized equivocally in both NH4+–N and NO3–N forms, challenging the paradigm that ammonium is the preferred N source for microorganisms. The results strongly exhibited altered C/N stoichiometry due to drought stress substantially affecting the active microbial functional groups, fungi being dominant over bacteria. Interestingly, the results showed that legume residues can be potential fertilizer sources for nutrient-depleted tropical soils. In addition, application of plant residue can help to counter the N loss caused by leaching. It can also synchronize crop N uptake and N release from soil by utilizing microbes as an ephemeral nutrient pool during the early crop growth period.  相似文献   

16.
In many forest ecosystems chronically large atmospheric deposition of N has caused considerable losses of inorganic N by seepage. Freezing and thawing of soil may alter the N turnover in soils and thereby the interannual variation of N seepage fluxes, which in turn makes it difficult to evaluate the N status of forest ecosystems. Here, we analyzed long‐term monitoring data of concentrations and fluxes of dissolved inorganic N (DIN) in throughfall and seepage from a Norway spruce stand at the Fichtelgebirge (SE Germany) between 1993 and 2004. Despite constant or even slightly increasing N inputs in throughfall, N losses with seepage at 90 cm declined from 15–32 kg N ha–1 y–1 in the first years of the study period (1993–1999) to 3–10 kg N ha–1 y–1 in 2000 to 2004. The large N losses in the first years coincided with extreme soil frost in the winter of 1995/96, ranging from –3.3°C to –1.0°C at 35 cm soil depth. Over the entire observation period, maximum fluxes of nitrate and ammonium were observed in the mineral soil following thawing of the soil. The elevated ammonium and nitrate fluxes resulted apparently from increased net ammonification and nitrification rates in the mineral soil, whereas mineral‐N fluxes in the O horizon were less affected by frost. Our data suggest that (1) extreme soil frost may cause substantial annual variations of nitrate losses with seepage and that (2) the assessment of the N status of forest ecosystems requires long periods of monitoring. Time series of biogeochemical data collected over the last 20–30 y include years with extreme cold winters and warm summers as well as unusual precipitation patterns. Analysis of such long‐term monitoring data should address climate extremes as a cause of variation in N outputs via leaching. The mean loss of 14.7 kg N with seepage water during 12 y of observation suggests that the forest ecosystem was saturated with N.  相似文献   

17.
Soil freeze-thaw cycles in the winter-cold zone can substantially affect soil carbon, nitrogen and phosphorus cycling, and deserve special consideration in wetlands of cold climates. Semi-disturbed soil columns from three natural wetlands (Carex marsh, Carex marshy meadow and Calamagrostis wet grassland) and a soybean field that has been reclaimed from a wetland were exposed to seven freeze-thaw cycles. The freeze-thaw treatments were performed by incubating the soil columns at −10 °C for 1 d and at 5 °C for 7 d. The control columns were incubated at 5 °C for 8 d. After each freeze-thaw cycle, the soil solution was extracted by a solution extractor installed in each soil layer of the soil column, and was analyzed for dissolved organic carbon (DOC), NH4+-N, NO3-N and total dissolved phosphorus (TDP). The results showed that freeze-thaw cycles could increase DOC, NH4+-N and NO3-N concentrations in soil solutions, and decrease TDP concentrations. Moreover, the changes of DOC, NH4+-N, NO3-N and TDP concentrations in soil solutions caused by freeze-thaw cycles were different in various sampling sites and soil layers. The increments of DOC concentrations caused by freeze-thaw cycles were greater in the wetland soil columns than in the soybean field soil columns. The increments of NH4+-N concentrations caused by freeze-thaw cycles decreased with the increase of soil depth. The depth variation in the increments of NO3-N concentrations caused by freeze-thaw cycles in the wetland soil columns was different from that in the soybean field soil columns. The decrements of TDP concentrations caused by freeze-thaw cycles were greater in columns of Carex marsh and Carex marshy meadow than in columns of Calamagrostis wet grassland and the soybean field. The study results provide information on the timing of nutrient release related to freezing and thawing in natural versus agronomic soils, and have implications for the timing of nutrient application in farm fields in relation to water quality protection.  相似文献   

18.
To test the hypothesis that N isotope composition can be used as evidence of excessive compost application, we measured variation in patterns of N concentrations and corresponding δ15N values of plants and soil after compost application. To do so, a pot experiment with Chinese cabbage (Brassica campestris L. cv. Maeryok) was conducted for 42 days. Compost was applied at rates of 0 (SC0), 500 (SC1), 1000 (SC2), and 1500 mg N kg−1 soil (SC3). Plant-N uptake linearly increased with compost application (r2 = 0.956, P < 0.05) with an uptake efficiency of 76 g N kg−1 of compost-N at 42 days after application, while dry-mass accumulation did not show such linear increases. Net N mineralized from compost-N increased linearly (r2 = 0.998, P < 0.01) with a slope of 122 g N kg−1 of compost-N. Plant-δ15N increased curvilinearly with increasing compost application, but this increase was insignificant between SC2 and SC3 treatments. The δ15N of soil inorganic-N (particularly NO3-N) increased with compost application. We found that plant-δ15N reflected the N isotope signal of soil NO3-N at each measurement during plant growth, and that δ15N of inner leaves and soil NO3-N was similar when initial NO3 in the compost was abundant. Therefore, we concluded that δ15N of whole plant (more obviously in newer plant parts) and soil NO3-N could reveal whether compost application was excessive, suggesting a possible use of δ15N in plants and soil as evidence of excess compost application.  相似文献   

19.
This study aimed to quantify the dynamics of soil CO2 fluxes in two silvopastoral systems based on Leucaena leucocephala, one associated with Panicum maximum (L + P) and another with Cynodon plectostachyus (L + C). We measured CO2 fluxes fortnightly during the dry and rainy seasons in the morning and the afternoon, with an infrared gas analyzer. Simultaneously, we measured soil temperature, soil moisture, ambient temperature, and relative humidity. Soil CO2 fluxes ranged from 6.0 ± 0.14 to 6.1 ± 0.12 µmol CO2/m2/s but no statistical differences were observed between systems. Soil CO2 flux in the L + P was 12.5% higher in the rainy season compared with the dry season but the season did not affect the fluxes in L + C. Regarding the diurnal variation, CO2 fluxes were 17.6%–34.8% higher in the morning compared with afternoon measurements. Soil moisture and temperature were higher in L + C, but the ambient temperature and relative humidity showed no statistical differences between systems. In both systems, soil temperature was greater in the afternoon, while the soil moisture and relative humidity were greater in the morning. The diurnal variation of soil CO2 fluxes in silvopastoral systems correlated positively with soil temperature and ambient temperature, but negatively with relative humidity. We concluded that soil CO2 fluxes did not vary between silvopastoral systems but respond differently to the seasons. The results have important implications on the establishment and management of Leucaena-based silvopastoral systems for the mitigation of soil CO2 fluxes from extensive livestock production lands.  相似文献   

20.
Weathering of piled material in the field is a popular method to treat spent mushroom substrate (SMS) before reuse. During the weathering process, rainfall and snowmelt pass through SMS piles and a large amount of solutes is released in the leachate. To investigate solute release patterns, the field weathering process was simulated under controlled conditions in the laboratory. Fresh SMS was packed in an acrylic column (20 cm i.d.) to 150 cm height and leached intermittently with a cumulative total of 230 cm of deionized water over 180 days. Leachate was collected and analyzed for dissolved organic carbon (DOC), dissolved organic nitrogen (DON), electrical conductivity (EC), and inorganic salts. Solute release patterns were described using first order models, and total released solutes were calculated. The SMS leachate had DOC, DON and EC values ranging from 450 to 15,500 mg L?1, 50 to 1,700 mg L?1, and 3 to 50 dS m?1, respectively. The major inorganic cations were K+, Na+, Ca2+, Mg2+ and NH4+, and anions were Cl? and SO42?. Release of DOC, DON, and bivalent cations Ca2+ and Mg2+ were described by a first order Exponential Rise to Maximum model, while releases of monovalent ions Cl?, K+, Na+ and NH4+ were described as a first order Sigmoidal Logistic process, and SO42? release was best modeled by a Sigmoidal Chapman equation. Following six months and 230 cm applied water, 3.1 kg of DOC, 0.58 kg of dissolved N, and 8.6 kg of inorganic salts were leached per cubic meter of bulk SMS (220 kg oven dry mass). Weathering of SMS involves a significant removal of nutrients from the composted material, which can contribute to pollution of soil and groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号