首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study tests the effects of supplementation of high-dosing Aspergillus oryzae phytase into the corn – wheat – soybean meal (SBM)-based basal diet on growth performance, nutrient digestibility, faecal gas emission, carcass traits and meat quality in growing-finishing pigs (29.73–110.86 kg live weight; 70-day-old to 166-day-old). A total of 56 crossbred pigs [(Landrace × Yorkshire) × Duroc] were divided into two dietary groups for a 96-day experiment (growing period, days 0 – 42; finishing period, days 43 – 96) with a completely randomized block design. There were seven replicate pens in each dietary group, and each pen has four pigs (two barrows and two gilts). The dietary treatments consisted of a corn – wheat – SBM-based nutrient sufficient basal diet or the basal diet supplemented with 1500 FTU/kg Aoryzae phytase. One phytase unit (FTU) was defined as the amount of enzyme that catalyses the release of one micromole phosphate from phytate/min at 37°C and pH 5.5. Higher average daily gain and lower feed conversion ratio were observed in growing-finishing pigs consuming a high-dosing Aoryzae phytase supplementing diet during days 0 – 42 and 0 – 96. Supplementing high-dosing Aoryzae phytase to the diet of growing-finishing pigs increased apparent total tract digestibility of phosphorus on days 42 and 96. Moreover, growing-finishing pigs fed the diet supplemented with high-dosing Aoryzae phytase had higher carcass back-fat thickness than those fed the control diet. However, the faecal gas emission and meat quality were not affected by high-dosing Aoryzae phytase supplementation. In conclusion, dietary supplementation of high-dosing Aoryzae phytase (1500 FTU/kg) had beneficial effects on the growth performance, apparent phosphorus digestibility and carcass back-fat thickness in growing-finishing pigs.  相似文献   

2.
A 12‐week trial with 120 [(Landrace×Yorkshire)×Duroc] pigs (45.65 ± 1.93 kg) was conducted to evaluate the effects of Astragalus membranaceus, Codonopsis pilosula and allicin mixture (HM) supplementation on growth performance, nutrient digestibility, faecal microbial shedding, immune response and meat quality in finishing pigs. Pigs were allocated to one of three treatments with 0, 0.025% (HM1) and 0.05% (HM2) HM supplementation in a randomized complete block design according to sex and BW. Each treatment contained 10 replications with four pigs (two barrows and two gilts) per pen. Dietary HM resulted in a higher G:F (p < 0.05) than CON group during weeks 7 to 12 and the overall periods. Pigs fed HM2 diet had higher ADG than pigs fed CON diet. Pigs fed HM2 supplementation diet led to a higher (p < 0.05) apparent total tract digestibility (ATTD) of dry matter (DM) and gross energy (GE) than pigs fed CON diet at week 6, while the supplementation of HM led to a higher (p < 0.05) ATTD of DM and GE than pigs fed CON diet at week 12. The faecal E. coli counts were reduced, and Lactobacillus counts were increased by increasing HM supplementation (p < 0.05). Pigs fed HM1 diet had higher (p < 0.05) WBC concentration than those fed CON and HM2 diets at week 6. Pigs fed HM‐supplemented diet had higher (p < 0.05) IgG and IgA concentrations than those fed CON diet at week 12. Pigs fed HM diet noted better (p < 0.05) meat colour and redness value than pigs fed CON diet. Pig fed HM2 reduced (p < 0.05) the lightness value compared with CON group. In conclusion, dietary HM supplementation exerted beneficial effects on growth performance, nutrient digestibility, intestinal microbial balance (increased Lactobacillus counts and decreased E. coli counts), immune response and meat quality.  相似文献   

3.
Three experiments were conducted to evaluate the effect of supplementing phytase and xylanase on nutrient digestibility and performance of growing pigs fed wheat-based diets. In Exp. 1, 10 diets were fed to 60 pigs from 20 to 60 kg of BW to determine the effect of combining phytase and xylanase on apparent total tract digestibility (ATTD) of nutrients and growth performance. The 10 diets included a positive control diet (PC; 0.23% available P; 0.60% Ca) and a negative control diet (NC; 0.16% available P; 0.50% Ca) supplemented with phytase at 0, 250, and 500 fytase units (FTU)/kg and xylanase at 0, 2,000, and 4,000 xylanase units (XU)/kg in a 3 x 3 factorial arrangement. In Exp. 2, 6 ileally cannulated barrows (initial BW = 35.1 kg) were fed 4 wheat-based diets in a 4 x 4 Latin square design, with 2 added columns to determine the effect of combining phytase and xylanase on apparent ileal digestibility (AID) of nutrients. The 4 diets were NC (same as that used in Exp. 1) or NC supplemented with phytase at 500 FTU/kg, xylanase at 4,000 XU/kg, or phytase at 500 FTU/kg plus xylanase at 4,000 XU/kg. In Exp. 3, 36 barrows (initial BW = 55.5 kg) were fed 4 diets based on prepelleted (at 80 degrees C) and crumpled wheat for 2 wk to determine the effect of phytase supplementation on ATTD of nutrients. The 4 diets fed were a PC (0.22% available P; 0.54% Ca) and a NC (0.13% available P; 0.43% Ca) alone or with phytase at 500 or 1,000 FTU/kg. All diets in the 3 experiments contained Cr(2)O(3) as an indigestible marker. No synergistic interactions were detected between phytase and xylanase on any of the response criteria measured in Exp. 1 or 2. There were no dietary effects on growth performance in Exp. 1. In Exp. 1, phytase at 250 FTU/kg increased the ATTD of P and Ca by 51 and 11% at 20 kg of BW or by 54 and 10% at 60 kg of BW, respectively, but increasing the level of phytase to 500 FTU/kg only increased (P < 0.05) ATTD of P at 20 kg of BW. In Exp. 2, phytase at 500 FTU/kg increased (P < 0.05) the AID of P and Ca by 21 and 12%, respectively. In Exp. 3, phytase at 500 FTU/kg improved (P < 0.05) ATTD of P by 36%, but had no further effect at 1,000 FTU/kg. Xylanase at 4,000 XU/kg improved (P < 0.05) AID of Lys, Leu, Phe, Thr, Gly, and Ser in Exp. 2. In conclusion, phytase and xylanase improved P and AA digestibilities, respectively, but no interaction between the 2 enzymes was noted.  相似文献   

4.
This study was conducted to assess the effects of different dose levels of zinc oxide (ZnO) combined with probiotics complex supplementation on the growth, performance, nutrient digestibility, faecal lactobacillus and Enterobacteria counts, noxious gas emissions and faecal score of weaned piglets. A total of 180 crossbred weaning pigs ([Yorkshire × Landrace] × Duroc; 6.61 ± 1.29 kg [mean ± SE]; 28 days old) were used in a 42-day trial. All pigs were randomly allotted to 1 of 4 treatment diets based on initial BW and sex (9 replicate pens/treatment; 2 gilts and 3 barrows/pen). Dietary treatment groups were as follows: CON, basal diet +ZnO 3,000 ppm; BZS, basal diet +ZnO 2,100 ppm +0.1% SynerZymeF10; BZS1, basal diet +ZnO 1,200 ppm +0.1% SynerZymeF10; BZS2, basal diet +ZnO 300 ppm +0.1% SynerZymeF10. During the phase 3, decreasing the ZnO concentration led to a linear reduction in ADG (p = 0.044), and the ADG was lower (p < 0.05) in BZS2 compared with CON treatment during the whole experimental period. The effects of dietary ZnO with probiotics complex were not detected (p > 0.05) on nutrient digestibility, Lactobacillus and E. coli counts, faecal gas emissions and faecal scores. In conclusion, the diet supplementation of ZnO (1,200 ppm) with probiotics complex has been shown to have comparable efficacy to ZnO (3,000 ppm) diet on growth performance, nutrient digestibility, faecal microbiota, noxious gas emissions and faecal score of weaning pigs.  相似文献   

5.
Fermentation of cereal grains may degrade myo-inositol 1,2,3,4,5,6-hexakis (dihydrogen phosphate) (InsP6) thereby increasing nutrient digestibility. Effects of chemical acidification or fermentation with Limosilactobacillus (L.) reuteri with or without phytase of high β-glucan hull-less barley grain on apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of nutrients and gross energy (GE), standardized ileal digestibility (SID) of crude protein (CP) and amino acids (AAs), and standardized total tract digestibility (STTD) of P were assessed in growing pigs. Pigs were fed four mash barley-based diets balanced for water content: 1) unfermented barley (Control); 2) chemically acidified barley (ACD) with lactic acid and acidic acid (0.019 L/kg barley grain at a ratio of 4:1 [vol/vol]); 3) barley fermented with L. reuteri TMW 1.656 (Fermented without phytase); and 4) barley fermented with L. reuteri TMW 1.656 and phytase (Fermented with phytase; 500 FYT/kg barley grain). The acidification and fermentation treatments occurred for 24 h at 37 °C in a water bath. The four diets were fed to eight ileal-cannulated barrows (initial body weight [BW], 17.4 kg) for four 11-d periods in a double 4 × 4 Latin square. Barley grain InsP6 content of Control, ACD, Fermented without phytase, or Fermented with phytase was 1.12%, 0.59%, 0.52% dry matter (DM), or not detectable, respectively. Diet ATTD of DM, CP, Ca, and GE, digestible energy (DE), predicted net energy (NE) value, and urinary excretion of P were greater (P < 0.05) for ACD than Control. Diet ATTD of DM, CP, Ca, GE, DE and predicted NE value, urinary excretion of P was greater (P < 0.05), and diet AID of Ca and ATTD and STTD of P tended to be greater (P < 0.10) for Fermented without phytase than Control. Diet ATTD of GE was lower (P < 0.05) and diet ATTD and STTD of P, AID and ATTD of Ca was greater (P < 0.05) for Fermented with phytase than Fermented without phytase. Acidification or fermentation with/without phytase did not affect diet SID of CP and AA. In conclusion, ACD or Fermented without phytase partially degraded InsP6 in barley grain and increased diet ATTD of DM, CP, and GE, but not SID of CP and most AA in growing pigs. Fermentation with phytase entirely degraded InsP6 in barley grain and maximized P and Ca digestibility, thereby reducing the need to provide inorganic dietary P to meet P requirements of growing pigs.  相似文献   

6.
This study was conducted to evaluate the effects of dietary supplementation of protease derived from Pseudoalteromonas arctica (PPA) in finishing pigs. A total of 160 pigs were used in this 10‐week trial. Dietary treatment groups were as follows: CON (basal diet); TRT1 (basal diet + 0.1% PPA); TRT2 (basal diet + 0.2% PPA); and TRT3 (basal diet + 0.3% PPA). During weeks 1–5, pigs fed with different levels of PPA‐supplemented diet showed linear increase (p < .05) in the apparent total tract digestibility (ATTD) of nitrogen (N) and linear decrease (p < .05) in the concentrations of serum total protein. During weeks 6–10, pigs fed with different levels of PPA‐supplemented diet showed a linear decrease in feed conversion ratio (p < .05). During the overall period, there was a linear decrease in feed conversion ratio (p < .05) associated with the inclusion of PPA. Pigs fed diets with 0.2% PPA supplementation had lower (p < .05) feed conversion ratio than those fed CON diet during weeks 6–10 and the overall period, and had higher (p < .05) ATTD of N than those fed CON diet during weeks 1–5. Pigs fed diets with PPA supplementation had lower (p < .05) concentrations of serum total protein than those fed CON diet on week 5. In conclusion, dietary supplementation with PPA diet has beneficial effects on growth performance, nutrient digestibility, backfat thickness and the concentrations of serum total protein.  相似文献   

7.
Effects of adding protease with or without fructooligosaccharide (FOS) to low protein diet on growth performance, nutrient digestibility and fecal noxious gas emission were evaluated in 160 finishing pigs (57.70 ± 1.16 kg) in a 9‐week study. Pigs were randomly divided into four dietary treatments, PC: positive control diet (15.97% crude protein (CP)); NC: negative control diet (12.94% CP); PRO: NC supplemented with 0.05% protease; PROFOS: NC supplemented with 0.05% protease and 0.1% FOS. During weeks 4–9 and weeks 0–9, gain : feed ratio was impaired (< 0.05) in pigs fed NC diet compared with those fed PC, PRO and PROFOS diets. Pigs fed PC, PRO and PROFOS diets had higher (< 0.05) apparent total tract digestibility (ATTD) of CP than pigs fed NC diet. Pigs fed PROFOS diet had reduced (< 0.05) ammonia emissions compared to pigs fed NC and PRO diets. These data indicate that reducing dietary CP concentrations impaired growth performance, decreased ATTD of CP and reduced ammonia emissions. Supplementation of protease in low CP diet improved growth performance and increased ATTD of CP. Dietary supplementation with protease and FOS in low CP diet improved growth performance, increased ATTD of CP and decreased fecal ammonia emission.  相似文献   

8.
1. The current study was conducted to investigate the effect of high phytase doses on growth performance and real-time gastric pH measurements in broiler chickens and pigs.

2. In the first experiment, 576 male Ross 308 broilers were fed in two phases (0–21 and 21–42 d) with 4 treatment groups, with diets meeting nutrient requirements containing 0, 500, 1500 or 2500 FTU/kg phytase. In the second, 64 Landrace weaners were fed on diets meeting nutrient requirements with or without phytase (0 or 2500 FTU/kg) in two phases (0–21 and 21–42 d). Heidelberg pH capsules were administered to 7 broilers and approximately 13 pigs per treatment group, pre- and post-phase change, with readings monitored over several hours.

3. Addition of phytase into an adequate Ca and P diet had no significant effect on broiler performance although phytase tended (< 0.07) to improve feed conversion in pigs over the entire experimental period. Real-time pH capsule readings in broilers demonstrated an increase (< 0.05) in gizzard pH when phytase was dosed at 500 or 1500 FTU/kg, while higher doses of 2500 FTU/kg phytase lowered pH to a level comparable to control birds. Gastric pH increased (< 0.01) when animals were exposed to dietary phase change, signifying a potential challenge period for nutrient digestibility. However, pigs fed 2500 FTU/kg were able to maintain gastric pH levels through diet phase change. In contrast, spear-tip probe measurements showed no treatment effect on gastric pH.

4. These findings demonstrate dietary manipulation of gastric pH and the value of real-time pH capsule technology as a means of determining phytase dose response.  相似文献   

9.
An experiment was conducted to test the hypothesis that inclusion of hybrid rye in diets containing corn and soybean meal (SBM) without or with microbial phytase improves the apparent total tract digestibility (ATTD) and the standardized total tract digestibility (STTD) of P because of the intrinsic phytase activity in hybrid rye. Forty-eight growing barrows (initial body weight: 39.5 ± 7.7 kg) were allotted to six diets. A basal diet containing corn and SBM; a rye-based diet; and a diet containing corn, SBM, and rye were formulated. Each diet was formulated without and with microbial phytase (500 units/kg of diet) for a total of six diets. Fecal samples were collected for 4 d following a 5-d adaptation period according to the marker-to-marker procedure. Results indicated that no interactions between diets and concentration of phytase were observed for any of the response criteria measured. The ATTD and STTD of P and the ATTD of Ca differed (P < 0.05) among diets, but regardless of diet, the concentration of P in feces was reduced (P < 0.05) by adding microbial phytase to the diets. As a consequence, microbial phytase increased (P < 0.05) ATTD and STTD of P, and the ATTD of Ca was also increased (P < 0.05) by the use of microbial phytase. Measured values for the ATTD and STTD of P in the diets containing corn, SBM, and hybrid rye without or with phytase were greater (P < 0.05) than values that were predicted based on the ATTD and STTD of P for the corn–SBM and the hybrid rye diet. The observation that STTD predicted from the individual ingredients underestimated the STTD of P in the mixed diet indicates that the intrinsic phytase in hybrid rye resulted in increased digestibility of the P in the corn and SBM included in the corn–SBM–hybrid rye diet. In conclusion, microbial phytase increased the ATTD and STTD of P and the ATTD of Ca regardless of feed ingredients used in diets fed to pigs. In addition, the intrinsic phytase from hybrid rye increased the ATTD and STTD of P in corn and SBM.  相似文献   

10.
This study was conducted to evaluate the effect of dietary fenugreek seed extract (FSE) on growth performance, apparent total tract digestibility (ATTD), diarrhoea scores, blood profiles, faecal microflora and faecal gas emission in weanling pigs. A total of 135 weanling pigs [(Yorkshire × Landrace)  × Duroc] with an average BW of (7.96 ± 1.03 kg; 28 days of age) were used in a 42‐day study. Piglets were randomly allotted to three experimental diets with nine replicate pens and five pigs per pen. Dietary treatments were as follows: CON, basal diet; FSE1, basal diet + 0.1% FSE; FSE2, basal diet + 0.2% FSE. Pigs were fed with phase 1 (0–14 days) and phase 2 (14–42 days) diets in the form of mash. Average daily gain (ADG) was linearly increased (p = 0.031) by FSE supplementation compared with CON diet during days 0–14. From days 14–42, FSE2 diet had increased ADG and growth efficiency (G/F) compared with the CON diet (p = 0.014 and 0.026 respectively). Moreover, ADG and G/F were increased by FSE supplementation during days 0–42 (linear, p = 0.037 and 0.014 respectively). Energy digestibility was higher (linear, p = 0.030) by FSE supplementation at 6 weeks. On day 42, dietary supplementation of FSE linearly increased red blood cells (RBC) and immunoglobulin G (IgG) concentration (p = 0.042 and 0.038 respectively). Piglets fed FSE2 diet had higher (linear, p = 0.025) serum high‐density lipoprotein cholesterol (HDL‐C) concentration compared with those fed CON diet. However, piglets fed FSE2 diet had linearly reduced faecal ammonia (NH3) and hydrogen sulphide (H2S) gas emission compared with those fed the CON diet (p = 0.018 and 0.010 respectively). In conclusion, FSE supplementation increased the performance and reduced faecal gas emission in weanling pigs.  相似文献   

11.
An experiment was conducted to test the hypothesis that the apparent total tract digestibility (ATTD) and the standardized total tract digestibility (STTD) of P in fermented soybean meal (FSBM) are greater than in conventional soybean meal (SBM-CV) when fed to growing pigs. Four diets were formulated to contain FSBM or SBM-CV and either 0 or 800 units/kg of microbial phytase. The only sources of P in these diets were FSBM and SBM-CV. A P-free diet to estimate basal endogenous losses of P was also formulated. Thirty barrows (initial BW: 14.0 ± 2.3 kg) were placed in metabolism cages and allotted to 5 diets in a randomized complete block design with 6 pigs per diet. Feces were collected for 5 d after a 5-d adaptation period. All samples of ingredients, diets, and feces were analyzed for P, and values for ATTD and STTD of P were calculated. Results indicated that the basal endogenous P losses were 187 mg/kg of DMI. As phytase was added to the diet, the ATTD and STTD of P increased (P < 0.01) from 60.9 to 67.5% and from 65.5 to 71.9%, respectively, in pigs fed FSMB. Likewise, addition of phytase to SBM-CV increased (P < 0.01) the ATTD and STTD of P from 41.6 to 66.2% and from 46.1 to 71.4%, respectively. The ATTD and STTD of P were greater (P < 0.01) in FSBM than in SBM-CV when no phytase was used, but that was not observed when phytase was added to the diet (soybean meal × phytase interaction, P < 0.01). In conclusion, the ATTD and STTD of P in FSBM was greater than SBM-CV when no microbial phytase was added, but when phytase was added to the diets, no differences between FSBM and SBM-CV were observed in the ATTD and STTD of P.  相似文献   

12.
The overall objective of the studies reported here was to evaluate the growth and nutrient utilization responses of pigs to dietary supplementation of phytate- or nonstarch polysaccharide-degrading enzymes. In Exp. 1, growth performance and nutrient digestibility responses of forty-eight 10-kg pigs to dietary supplementation of phytase or a cocktail of xylanase, amylase, and protease (XAP) alone or in combination were evaluated. The growth response of one hundred fifty 23-kg pigs to dietary supplementation of phytase or xylanase individually or in combination was studied in Exp. 2 in a 6-wk growth trial, whereas Exp. 3 investigated the nutrient digestibility and nutrient retention responses of thirty 24-kg pigs to dietary supplementation of the same enzymes used in Exp. 2. In Exp. 1, the pigs were used in a 28-d feeding trial. They were blocked by BW and sex and allocated to 6 dietary treatments. The treatments were a positive control (PC) diet; a negative control (NC) diet marginally deficient in P and DE; NC with phytase added at 500 or 1,000 phytase units (FTU)/kg; NC with xylanase at 2,500 units (U)/kg, amylase at 400 U/kg, and protease at 4,000 U/kg; and NC with a combination of phytase added at 500 FTU/kg and XAP as above. In Exp. 2 and 3, the 5 dietary treatments were positive control (PC), negative control (NC), NC plus 500 FTU of phytase/kg, NC plus 4,000 U of xylanase/kg, and NC plus phytase and xylanase. In Exp. 1, low levels of nonphytate P and DE in the NC diet depressed (P < 0.05) ADG of the pigs by 16%, but phytase linearly increased (P < 0.05) ADG by up to 24% compared with NC. The cocktail of XAP alone had no effect on ADG of pigs, but the combination of XAP and phytase increased (P < 0.05) ADG by 17% compared with the NC treatment. There was a linear increase (P < 0.01) in Ca and P digestibility in response to phytase. In Exp. 2, ADG was 7% greater in PC than NC (P < 0.05); there were no effects of enzyme addition on any response. In Exp. 3, addition of phytase alone or in combination with xylanase improved (P < 0.05) P digestibility. Phosphorus excretion was greatest (P < 0.01) in the PC and lowest (P < 0.05) in the diet with the combination of phytase and xylanase. The combination of phytase and xylanase improved P retention (P < 0.01) above the NC diet to a level similar to the PC diet. In conclusion, a combination of phytase and carbohydrases improved ADG in 10-kg but not 23-kg pigs, but was efficient in improving P digestibility in pigs of all ages.  相似文献   

13.
This experiment was conducted to investigate the efficacy of multistrain probiotics in weaning pigs. A total of 125 28‐day‐old weaning pigs [(Landrace × Yorkshire) × Duroc] with an initial average body weight (BW) of 7.26 ± 0.76 kg were randomly allotted into 5 treatments, 5 replicate pens/treatment with 5 pigs/pen for 42‐day experiment. Dietary treatments were as follows: CON, basal diet; PC1, CON + 0.01% multistrain probiotics; PC2, CON + 0.03% multistrain probiotics; PC3, CON + 0.06% multistrain probiotics; PC4, CON + 0.1% multistrain probiotics. On day 14, pigs fed the PC4 diet had higher BW gain than pigs fed the CON diet. On day 42, pigs fed multistrain probiotics supplementation diets had higher BW gain than pigs fed the CON diet. From days 1 to 14, pigs fed the PC2, PC3 and PC4 diets had higher (p < 0.05) ADG than pigs fed the CON diet. From day 15 to 42, pigs fed the multistrain probiotics supplementation diets had higher (p < 0.05) average daily gain (ADG) and gain: feed ratio (G:F) than pigs fed the CON diet. In the overall period, pigs fed the multistrain probiotics supplementation diets had higher (p < 0.05) ADG and pigs fed the PC2 and PC4 diets had higher (p < 0.05) G:F than pigs fed the CON diet. On day 42, pigs fed the PC4 diet had higher (p < 0.05) apparent total tract digestibility (ATTD) of dry matter (DM), nitrogen (N) and gross energy (GE), faecal Lactobacillus counts and lower (p < 0.05) E. coli counts and NH3 emission than pigs fed the CON diet. Pigs fed the multistrain probiotics supplementation diets had lower (p < 0.05) H2S and total mercaptans emissions than pigs fed the CON diet. Conclusions, dietary supplementation with 0.1% probiotics improved growth performance, nutrition digestibility and intestinal microflora balance and decreased faecal noxious gas emissions in weaning pigs.  相似文献   

14.
An experiment with 224 weaner pigs (initial BW of 7.8 kg) was conducted to determine the effect of dose of dietary phytase supplementation on apparent fecal digestibility of minerals (P, Ca, Mg, Na, K, and Cu) and on performance. Four blocks, each with 8 pens of 7 pigs, were formed. Eight dietary treatments were applied to each block in the 43-d experiment: supplementation of 0 (basal diet), 100, 250, 500, 750, 1,500, or 15,000 phytase units (FTU) or of 1.5 g of digestible P (dP; monocalcium phosphate; positive control) per kilogram of feed. The basal diet, with corn, barley, soybean meal, and sunflower seed meal as the main components, contained 1.2 g of dP per kilogram of feed. Fresh fecal grab samples were collected in wk 4 and 5 of the experiment. Average daily feed intake, ADG, G:F, and digestibility of all of the minerals increased (P < 0.001) with increasing phytase dose. Digestibility of P increased from 34% in the basal diet to a maximum of 84% in the diet supplemented with 15,000 FTU, generating 1.76 g of dP per kilogram of feed. At this level, 85% of the phytate phosphorus was digested, compared with 15% in the basal diet. Compared with the basal diet, digestibility of the monovalent minerals increased maximally at 15,000 FTU, from 81 to 92% (Na) and from 76 to 86% (K). In conclusion, phytase supplementation up to a level of 15,000 FTU/kg of a dP-deficient diet improved performance of weaner pigs and digestibility of minerals, including monovalent minerals. Up to 85% of the phytate-P was digested. Thus, dietary phytase supplementation beyond present day standards (500 FTU/kg) could further improve mineral use and consequently reduce mineral output to the environment.  相似文献   

15.
Phytase supplementation beyond the standard doses used for phosphorus release has been reported to result in extraphosphoric effects by enhancing nutrient digestibility resulting in improved performance of broilers. A study was conducted to examine the effects of the progressive addition of an enhancedEscherichia Coli phytase (400–1,600 phytase units; FTU) on growth performance and carcass characteristics from 1 to 42 d of age in male broilers. One thousand four hundred Hubbard × Cobb 500 1-d-old chicks were randomly distributed into 56 floor pens (0.08 m2/bird). Seven dietary treatments were provided in a 3-phase feeding program consisting of (1) a positive control (adequate Ca and nonphytate P; PC); (2) 1 negative control (Ca and nonphytate P reduced by 0.14% and 0.13%; NC); (3 to 6) the NC diet with 4 increasing supplemental phytase concentrations (NC + 400 FTU, NC + 800 FTU, NC + 1,200 FTU, and NC + 1,600 FTU, respectively); and (7) a low-energy NC diet without phytase and xylanase (reduced 66 kcal of AMEn/kg). Body weight gain, feed conversion, mortality, weight and yield of whole carcass, abdominal fat, and pectoralis major and minor muscles were evaluated. Progressive supplementation of phytase decreased cumulative FCR linearly. Broilers fed diets containing 1,600 FTU had heavier total breast meat by 49 g compared with birds receiving the PC diets. Broilers consuming the NC + 400 FTU or the low-energy NC diet had similar growth performance and meat yield compared with birds provided PC diet. These data indicated that phytase supplementation beyond the need for phosphorus enhances growth performance and carcass characteristics.  相似文献   

16.
The objectives of this experiment were to (a) determine the effects of fiber increase in diets on heat production (HP), (b) determine the net energy (NE) of oat bran (OB), wheat bran (WB), and palm kernel expellers (PKE) fed to growing pigs using indirect calorimetry (IC). Twenty‐four growing barrows (29.2 ± 2.6 kg) were randomly allotted to one of four diets with six replicate pigs per diet. Diets included a corn‐soybean meal basal diet and three test diets containing 30% OB, WB or PKE, respectively. During each period, pigs were individually housed in metabolism crates for 20 days, including 14 days to adapt to the diets. On day (d) 15, pigs were transferred to the open‐circuit respiration chambers for determination of daily total HP and were fed one of the four diets at 2.3MJ ME/kg body weight (BW)0.6/day. Total feces and urine were collected for the determination of digestible energy (DE) and metabolizable energy (ME) and daily total HP was measured from d 15 to d 19 and fasted on day 20 for the measurement of fasting heat production (FHP). The apparent total tract digestibility (ATTD) of dry matter (DM), gross energy (GE), and organic matter (OM) were greater (< 0.01) in pigs fed the basal diet compared with those fed the test diets. The ATTD of neutral detergent fiber (NDF) was lower (< 0.01) in pigs fed the WB diet compared with those fed the basal, OB, or PKE diets. The ATTD of ether extract (EE) in pigs fed the PKE diet was greater (< 0.01) compared with those fed the other diets. The average total HP and FHP in pigs fed the four diets were 1261 and 787 kJ/kg BW0.6/d, respectively, and were not significantly affected by diet characteristics. The NE:ME ratio for diets ranged from 78.1 to 80.9%. The NE contents of OB, WB, and PKE were 10.93, 7.47, and 8.71 MJ/kg DM, respectively.  相似文献   

17.
This study was aimed to evaluate the effect of phytoncide (PTC) instead of zinc oxide on growth performance, blood profile, nutrient digestibility and faecal microflora in growing pigs. A total of 120 growing pigs [(Landrace × Yorkshire) × Duroc] with initial body weight 24.48 ± 1.62 kg were randomly assigned to four dietary treatments for a 6 weeks feeding trials, the treatments as follow: CON (base diet),ZO (CON + 0.03% Zinc Oxide), PTC1 (CON + 0.5% PTC), PTC2 (CON + 1.0% PTC). Compared to basal diet, during weeks 1–3, 3–6, and overall experimental period, the ADG of growing pigs fed phytoncide diet trend to be increased, and fed ZO diet was significantly increased (p < 0.05). During weeks 3–6 and overall experiment period, pigs fed the ZO diet showed improvement in feed intake compared to pigs fed basal diet as a trend. Compared with basal diet, the pigs receiving phytoncide diet significantly increased the digestibility of DM and reduced the concentration of aspartate transaminase in pigs receiving 1.0% phytoncide diet. These results suggested that dietary supplement of phytoncide, Korean pine extract, could be used as an alternative to zinc oxide by decreasing detoxify to soil and plants without influencing the performance of growing pigs. Further study is needed to determine the systemic estimation of the dose of phytoncide.  相似文献   

18.
In 2 experiments, 48 weanling (initial BW: 13.5 ± 2.4 kg, Exp. 1) and 24 growing pigs (initial BW: 36.2 ± 4.0 kg, Exp. 2) were used to determine effects of a novel bacterial 6-phytase expressed in Aspergillus oryzae on the apparent total tract digestibility (ATTD) of phosphorus and calcium in corn-soybean meal diets fed to weanling and growing pigs. In Exp. 1 and 2, pigs were randomly allotted to 6 dietary treatments using a randomized complete block design and a balanced 2 period changeover design, respectively. In both experiments, 6 diets were formulated. The positive control diet was a corn-soybean meal diet with added inorganic phosphorus (Exp. 1: 0.42 and 0.86% standardized total tract digestible phosphorus and total calcium, respectively; Exp. 2: 0.32 and 0.79% standardized total tract digestible phosphorus and total calcium, respectively). A negative control diet and 4 diets with the novel phytase (Ronozyme HiPhos, DSM Nutritional Products Inc., Parsippany, NJ) added to the negative control diet at levels of 500, 1,000, 2,000, and 4,000 phytase units (FYT)/kg were also formulated. In Exp. 1, the ATTD of phosphorus was greater (P < 0.01) for the positive control diet (60.5%) than for the negative control diet (40.5%), but increased (linear and quadratic, P < 0.01) as phytase was added to the negative control diet (40.5% vs. 61.6%, 65.1%, 68.7%, and 68.0%). The breakpoint for the ATTD of phosphorus (68.4%) was reached at a phytase inclusion level of 1,016 FYT/kg. In Exp. 2, the ATTD of phosphorus was greater (P < 0.01) for the positive control diet (59.4%) than for the negative control diet (39.8%) and increased (linear and quadratic, P < 0.01) as phytase was added to the negative control diet (39.8% vs. 58.1%, 65.4%, 69.1%, and 72.8%). The breakpoint for the ATTD of phosphorus (69.1%) was reached at a phytase inclusion level of 801 FYT/kg. In conclusion, the novel bacterial 6-phytase improved the ATTD of phosphorus and calcium in both weanling and growing pigs. The optimum level of inclusion for this phytase is 800 to 1,000 FYT/kg of complete feed to maximize ATTD of phosphorus and calcium in weanling and growing pigs.  相似文献   

19.
This experiment was carried out to evaluate the effect of reduced dietary crude protein (CP) levels supplemented with or without exogenous phytase on growing pigs. Six dietary treatments arranged in a 3 × 2 factorial arrangements of 3 CP levels (containing 14%, 16%, and 18% CP) supplemented each with or without 5,000 FTU/g phytase enzyme. Thirty growing pigs (average weight of 17.80 ± 0.10 kg) were allotted to the six dietary treatments in a complete randomized design. The final weight, daily weight gain, and feed conversion ratio (FCR) increased significantly with increasing CP levels. While, phytase supplementation improved (p = .044) FCR in pigs. Total solid and volatile solid content of the slurry were higher (p = .001) in pigs fed 14% and 16% CP diets supplemented with phytase when compared with other treatment groups. Concentration of methane gas emitted was lowest (p = .001) in the slurry of pigs fed 14% CP diet with or without phytase and those fed 16% CP diet with phytase supplementation. In conclusion, reduction in dietary CP levels resulted in reduced weight gain and poor FCR. While, reduced CP with phytase supplementation reduced concentration of methane gas emitted.  相似文献   

20.
The efficacy of an Escherichia coli-derived phytase preparation   总被引:1,自引:0,他引:1  
Five experiments were conducted to evaluate the effect of an Escherichia coli-derived phytase on phytate-P use and growth performance by young pigs. The first experiment involved time course, pH dependence, and phytase activity studies to investigate the in vitro release of P from corn, soybean meal, and an inorganic P-unsupplemented corn-soybean meal negative control diet. In Exp. 2, which was designed to determine the efficacy of the E. coli-derived vs. fungal phytase-added diets at 0, 250, 500, 750, 1,000, or 1,250 FTU/kg (as-fed basis; one phytase unit or FTU is defined as the quantity of enzyme required to liberate 1 micromol of inorganic P/min, at pH 5.5, from an excess of 15 microM sodium phytate at 37 approximately C) and a positive control diet, eight individually penned 10-kg pigs per diet (12 diets, 96 pigs) were used in a 28-d growth study. The third experiment was a 10-d nutrient balance study involving six 13-kg pigs per diet (four diets, 24 pigs) in individual metabolism crates. In Exp. 4, eight pens (four pigs per pen) of 19-kg pigs per treatment were used in a 42-d growth performance study to examine the effect of adding the E. coli-derived phytase to corn-soybean diets at 0, 500, or 1,000 FTU/kg (as-fed basis) and a positive control (four diets, 128 pigs). In Exp. 5, six 19-kg pigs per treatment were used in a 10-d nutrient balance study to investigate the effects of the E. coli-derived phytase added to diets at 0, 250, 500, 750, or 1,000 FTU/kg (as-fed basis) and a positive control diet (six diets, 36 pigs). The in vitro study showed that the E. coli-derived phytase has an optimal activity and pH range of 2 to 4.5. Inorganic phosphate release was greatest for soybean meal, least for corn, and intermediate for the negative control diet. Dietary supplementation with graded amounts of E. coli-derived phytase resulted in linear increases (P < 0.05) in weight gain, feed efficiency, and plasma Ca and P concentrations in 10-kg pigs in Exp. 2. Phytase also increased P digestibility and retention in the 13-kg pigs in Exp. 3. In Exp. 4, dietary supplementation with E. coli-derived phytase resulted in linear increases (P < 0.05) in weight gain and feed efficiency of 19-kg pigs. Supplementation of the diets of 19-kg pigs with the E. coli-derived phytase also improved Ca and P digestibility and retention in Exp. 5. In the current study, the new E. coli-derived phytase was efficacious in hydrolyzing phytate-P, both in vitro and in vivo, in young pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号