首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Fusarium oxysporum species complex (FOSC) causes disease in plants and animals, but is also widely dispersed in natural ecosystems without evidence of disease. The present study screened a population representing natural ecosystems across the Australian continent for the putative effector genes pisatin demethylase 1 (PDA1), pectate lyase (pelD), secreted gene expression (SGE1) and secreted in xylem (SIX). The genes pelD and SGE1 were prevalent in the natural isolates, PDA1 was present at an intermediate level, whereas SIX genes were detected at low levels. Phylogenies of these putative effector genes were compared to the EF‐1α species phylogeny to determine the likely modes of gene transmission: vertical gene transfer (VGT) and horizontal gene transfer (HGT). There was evidence of both modes of gene transmission within the F. oxysporum isolates. PDA1, pelD and SGE1 were likely to be only vertically inherited, whereas the SIX genes had evidence for both VGT and HGT. The phylogenetic relationships of SIX genes in isolates from natural ecosystems and formae speciales from agro‐ecosystems were also established. These findings have important implications for the evolution of effectors in the FOSC.  相似文献   

2.
The pathogenicity and vegetative compatibility of mainly Dutch isolates ofFusarium oxysporum collected from diseased gladioli and other Iridaceae were investigated. Based on their pathogenicity to two differential gladiolus cultivars, the isolates could tentatively be divided into two races. All self-compatible isolates ofFusarium oxysporum f.sp.gladioli belonged to one of three distinct vegetative compatibility groups, VCG 0340, 0341 or 0342, and were incompatible with isolates that were not pathogenic to gladiolus. Isolates of one of the two races were restricted to one VCG while isolates of the other race were present in all three VCGs.  相似文献   

3.
Fusarium wilt is one of the most devastating diseases on banana. The causal agent, Fusarium oxysporum f. sp. cubense (Foc) is genetically diverse and its origin and virulence are poorly understood. In this study, pathogenic Foc isolates and nonpathogenic F. oxysporum isolates from Minas Gerais in Brazil were compared using EF‐1α and IGS sequences. This allowed the examination of the origin and evolutionary potential of Foc in a country outside the region of origin of the banana plant. Two different sequence types were found among Foc isolates. One appeared to be of local origin because it was identical to the sequence type of the largest group of nonpathogenic isolates. To explore if the ‘local’ Foc isolates had acquired pathogenicity either independently through coevolution with the host, or through horizontal gene transfer (HGT) of pathogenicity genes from other, probably introduced, Foc isolates, the presence and sequence of putative SIX effector genes were analysed. Homologues of SIX1, SIX3 and SIX8 were found. SIX1 sequences were identical and exclusively found in all pathogenic isolates, while variable ratios of sequences of multicopy gene SIX8 were found among nonpathogenic and different pathogenic isolates. This observation supports the HGT hypothesis. Horizontal transfer of genes between isolates of F. oxysporum has important implications for the development of reliable diagnostic tools and effective control measures. Full genome sequencing is required to confirm HGT and to further unravel the virulence mechanisms of forma specialis cubense.  相似文献   

4.
Fusarium oxysporum isolates collected from onions in the UK and other countries were characterized using sequences of the transfer elongation factor 1‐α (TEF) gene and compared with published sequence data for 10 other isolates. Isolates associated with diseased onion bulbs in the UK formed two clades. Isolates from both clades were selected for pathogenicity testing and to develop a rapid seedling assay to screen commercial onion cultivars for resistance to F. oxysporum f. sp. cepae (FOC), the cause of basal rot. Differences in the levels of aggressiveness between isolates were observed and isolates from both clades were pathogenic. Differences in resistance/susceptibility were also observed amongst 10 commercial onion cultivars, with cvs Ailsa Craig Prizewinner and White Lisbon showing the highest levels of resistance. The results from the seedling assay were supported by those from a subsequent onion bulb rot assay. Thus, this study reports the development of a rapid, simple and repeatable seedling assay that can be used to screen large numbers of onion cultivars for resistance to FOC and which is indicative of resistance at the bulb stage.  相似文献   

5.
Thirty isolates of Fusarium oxysporum from wilted Welsh onion plants were examined for their diversity in nucleotide sequences of the ribosomal DNA (rDNA) intergenic spacer (IGS) region and for pathogenicity with regard to five Welsh onion cultivars. Phylogenetic analysis based on the IGS sequences revealed polyphyletic origins of the isolates and a relationship between phylogeny and pathogenicity; low virulence isolates differed genetically from those with high and moderate virulence. Mating type analysis revealed that all F. oxysporum isolates were MAT1-1 idiomorphs, suggesting that the pathogens may be clonal in the fields examined.  相似文献   

6.
Fusarium yellows, caused by the soil‐borne fungus Fusarium oxysporum f. sp. betae (Fob), can lead to significant yield losses in sugar beet. This fungus is variable in pathogenicity, morphology, host range and symptom production, and is not a well characterized pathogen on sugar beet. From 1998 to 2003, 86 isolates of F. oxysporum and 20 other Fusarium species from sugar beet, along with four F. oxysporum isolates from dry bean and five from spinach, were obtained from diseased plants and characterized for pathogenicity to sugar beet. A group of sugar beet Fusarium isolates from different geographic areas (including nonpathogenic and pathogenic F. oxysporum, F. solani, F. proliferatum and F. avenaceum), F. oxysporum from dry bean and spinach, and Fusarium DNA from Europe were chosen for phylogenetic analysis. Sequence data from β‐ tubulin, EF1α and ITS DNA were used to examine whether Fusarium diversity is related to geographic origin and pathogenicity. Parsimony and Bayesian MCMC analyses of individual and combined datasets revealed no clades based on geographic origin and a single clade consisting exclusively of pathogens. The presence of FOB and nonpathogenic isolates in clades predominately made up of Fusarium species from sugar beet and other hosts indicates that F. oxysporum f. sp. betae is not monophyletic.  相似文献   

7.
Fusarium oxysporum f. sp. cubense (Foc), causal agent of fusarium wilt of banana, is among the most destructive pathogens of banana and plantain. The development of a molecular diagnostic capable of reliably distinguishing between the various races of the pathogen is of key importance to disease management. However, attempts to distinguish isolates using the standard molecular loci typically used for fungal phylogenetics have been complicated by a poor correlation between phylogeny and pathogenicity. Among the available alternative loci are several putative effector genes, known as SIX genes, which have been successfully used to differentiate the three races of F. oxysporum f. sp. lycopersici. In this study, an international collection of Foc isolates was screened for the presence of the putative effector SIX8. Using a PCR and sequencing approach, variation in Foc‐SIX8 was identified which allowed race 4 to be differentiated from race 1 and 2 isolates, and tropical and subtropical race 4 isolates to be distinguished from one another.  相似文献   

8.
Biodiversity surveys of natural as well as agricultural ecosystems commonly reveal novel isolates. A new species, Pythium yorkensis sp. nov., is reported here, isolated from field soil during a survey of oomycete diversity in symptomless soybean across southeastern Pennsylvania. Molecular data from both mitochondrial and nuclear loci support a unique phylogenetic position for the isolates collected, and morphological features distinguish this new species from close relatives in Pythium clade J. Pathogenicity assays suggest that this new species may be a potential agricultural pathogen, as isolates were mildly aggressive on soybean. This study highlights the continued need for culture‐based surveys in collaboration with high‐throughput sequence‐based approaches for environmental sampling.  相似文献   

9.
Thirty-two isolates of Fusarium species were obtained from wilted Welsh onion (Allium fistulosum) grown on nine farms from six regions in Japan and identified as F. oxysporum (18 isolates), F. verticillioides (7 isolates), and F. solani (7 isolates). The pathogenicity of 32 isolates was tested on five commercial cultivars of Welsh onion and two cultivars of bulb onion in a seedling assay in a greenhouse. The Fusarium isolates varied in the degree of disease severity on the cultivars. Five F. oxysporum isolates (08, 15, 17, 22, and 30) had a higher virulence on the cultivars than the other isolates. The host range of these five isolates was limited to Allium species. Molecular characterization of Fusarium isolates was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of the internal transcribed spacer (ITS) regions of ribosomal DNA. The 32 isolates were grouped into eight types (four types for F. oxysporum, one for F. verticillioides, and three for F. solani). Restriction patterns of the ITS region were not related to pathogenicity. However, the haplotypes obtained with five enzymes (RsaI, HinfI, HaeIII, ScrFI, and MspI) and the phylogenetic analysis permitted the discernment of the three Fusarium species. The PCR-RFLP analysis should provide a rapid, simple method for differentiating Fusaruim species isolated from wilted Welsh onion in Japan.  相似文献   

10.
Thirty-six isolates of Fusarium oxysporum originated from Eruca vesicaria and Diplotaxis tenuifolia together with eight reference strains belonging to the formae speciales raphani, matthioli and conglutinans, typical on the Brassicaceae family, were tested for pathogenicity on two species of rocket plants (E. vesicaria L., syn. E. sativa, cv. ‘Rucola coltivata’; and D. tenuifolia cv. ‘Winter’) cultivated in the glasshouse. The results showed that different isolates were slightly, moderately or highly virulent. The strains were examined for differences in the nucleotide sequence of the ribosomal DNA (rDNA) intergenic spacer (IGS) region, about 2.5 kb long. The phylogenetic (neighbor-joining) analysis performed on the isolates enabled identification of four different groups, named I, II, III and IV. Thirty-one isolates out of 36 clustered in group I and were genetically similar to F. oxysporum f.sp. raphani. By considering the pathogenicity of the strains included in Group I, a partial host specialization could be observed: the average disease index of the isolates from D. tenuifolia was higher on wild rocket, whereas the average disease index of the isolates from E. vesicaria was higher on cultivated rocket. Moreover, isolates from cultivated rocket showed, on average, a higher degree of aggressiveness than the isolates from wild rocket. Concerning Group I, the sequence analysis confirmed the homogeneity of the population, with only five parsimony-informative SNPs and five haplotypes. Twenty-six out of 31 isolates belonged to haplotype 1. Groups II and III were genetically similar to strains of F. oxysporum f.sp. matthioli. Three other strains, not pathogenic or with a medium level of virulence, clustered together in Group 4, but their sequence was distant from that of other formae speciales. The pathogenicity and IGS analysis confirmed the presence of virulence variation and genetic diversity among the F. oxysporum isolates studied. To our knowledge, this is the first report of differentiation of formae speciales of F. oxysporum on rocket plants by IGS analysis.  相似文献   

11.
Isolates ofF. oxysporum collected from symptomless carnation cuttings from Australian carnation growers properties, together with isolates from national collections, were screened for pathogenicity and grouped according to vegetative compatibility and random amplified polymorphic DNA (RAPD) patterns. The collection of 82 Australian isolates sorted into 23 different vegetative compatibility groups (VCGs). Of 69 isolates tested for pathogenicity, 24 were pathogenic to carnations, while the remaining 45 were non-pathogenic. All pathogenic isolates were within two VCGs, one of which was also compatible with an isolate obtained from an international culture collection, and which is known to represent VCG 0021 and race 2. Race status of the two pathogenic VCGs remains unknown. The RAPD assay revealed distinct DNA banding patterns which could distinguish pathogenic from non-pathogenic isolates as well as differentiate between isolates from the two pathogenic VCGs.  相似文献   

12.
Fusarium wilt of tobacco could be caused by Fusarium oxysporum f. sp. batatas or f. sp. vasinfectum since f. sp. nicotianae was rejected because there was no evidence of isolates specific to tobacco. Forty isolates of F. oxysporum from soil and plants from tobacco fields in Extremadura (south-western Spain) were characterized by pathogenicity on burley and flue-cured tobacco, for vegetative compatibility group (VCG), and by random amplified polymorphic DNA (RAPD). Isolates from burley were identified as race 1 of F. oxysporum f. sp. batatas based on pathogenicity on tobacco, sweet potato and cotton, and those from flue-cured as race 2. Most isolates from soil were heterokaryon self-incompatible (HSI) and the remaining isolates from soil and tobacco were grouped into four VCGs: VCG 1 (5 isolates from burley), VCG 2 (17 isolates from flue-cured and 4 from soil), VCG 3 (2 isolates from flue-cured) and VCG 4 (2 isolates from soil). This is the first report of the two races and VCGs of F. oxysporum f. sp. batatas in Spain. Analysis of RAPD revealed two clusters (C-I and C-II) related to race and VCGs. C-I included race 1 (VCG 1) isolates from burley and nonpathogenic (VCG 4 or HSI) isolates from soils. C-II included nonpathogenic (VCG 2) and race 2 (VCG 2 or VCG 3) isolates from flue-cured. VCG and RAPD markers were effective in distinguishing race 2 from race 1, suggesting that there are two genetically differentiated groups of F. oxysporum f. sp. batatas on tobacco in Extremadura.  相似文献   

13.
In recent years in Finland, Fusarium infections in onions have increased, both in the field and in storage, and Fusarium species have taken the place of Botrytis as the worst pathogens causing post‐harvest rot of onion. To study Fusarium occurrence, samples were taken from onion sets, harvested onions and also from other plants grown in the onion fields. Isolates of five Fusarium species found in the survey were tested for pathogenicity on onion. Fusarium oxysporum was frequently found in onions and other plants, and, of the isolates tested, 31% caused disease symptoms and 15% caused growth stunting in onion seedlings. Fusarium proliferatum, a species previously not reported in Finland, was also identified. Over 50% of the diseased onion crop samples were infected with F. proliferatum, and all the F. proliferatum isolates tested were pathogenic to onion. Thus, compared to F. oxysporum, F. proliferatum seems to be more aggressive on onion. Also some of the F. redolens isolates were highly virulent, killing onion seedlings. Comparison of the translation elongation factor 1α gene sequences revealed that the majority of the aggressive isolates of F. oxysporum f. sp. cepae group together and are distinct from the other isolates. Incidence and relative proportions of the different Fusarium species differed between the sets and the mature bulbs. More research is required to determine to what extent Fusarium infections spoiling onions originate from infected onion sets rather than the field soil.  相似文献   

14.
The fungal endophytic–host relationships of Discula umbrinella and two oak species, Quercus alba and Quercus rubra, were characterized on the basis of endophytic infection, pathogenicity, and mycelial compatibility. Isolates of D. umbrinella were cultured from leaves of Q. alba and Q. rubra collected from a hardwood forest located in Patuxent Wildlife Research Center in Laurel, Maryland, USA. Endophytic infection was observed on sterile leaf discs and living 2-month-old seedlings of Q. alba and Q. rubra. Fungal-host reciprocal inoculations revealed the presence of conidiomata on both hosts but conidiomata production was more abundant on Q. alba. Isolates from Q. rubra produced milder disease symptoms on both oak species. Mycelial compatibility studies identified seven different MCG groups. MCG groups 1–3 contained isolates from both oak species whereas MCG groups 4–7 contained host specific isolates. Field studies monitored the seasonal appearance of the sexual fruiting structures, perithecia, as a possible source of new genetic variation that might alter host specificity/pathogenicity of the D. umbrinella isolates on Q. alba and Q. rubra hosts. Only 1–2% of the leaves contained perithecia throughout the sampling period (April–September). Isolates collected from Q. alba differed from those collected from Q. rubra in endophytic infection, pathogenic response, and perithecia production. The results of this study suggest that the endophyte–host relationship is one of host selective preference for Q. alba, but that the endophyte has the ability to maintain the endophytic/pathogenic life cycle on the less preferred host species, Q. rubra.  相似文献   

15.
Thirteen strains ofPhytophthora porri from five different hosts were compared with respect to their morphology, cardinal temperatures for growth, pathogenicity to leek and cabbage and restriction fragment patterns of mitochondrial DNA. Morphology of vegetative growth was rather similar in most isolates. Those characters which differed among isolates showed overlapping variability and could not be used to distinguish groups, with the exception of production of oogonia and sporangia and the antheridium type. Considerable differences were found in restriction patterns of mitochondrial DNA, isolates from the same host mostly showing identical patterns. Isolates from differentAllium species showed relatively similar restriction patterns if compared to the other isolates. Isolates fromBrassica oleracea proved to be a homogeneous group, quite different from the others with respect to restriction patterns, production of sporangia, production of oogonia, antheridium type and pathogenicity. One isolate, CBS 366.59, isolated from and pathogenic toA. porrum, deviated in many characters from the other isolates. It showed the restriction patterns ofPhytophthora nicotianae and also the high cardinal temperatures for growth typical for this species. The sporangia, however, were distinctly non-papillate and the majority of antheridia was of the paragynous type.  相似文献   

16.
四季豆枯萎病病原鉴定及防治   总被引:2,自引:0,他引:2  
从南宁市郊11个病区采集的四季豆枯萎病株标样,经分离培养鉴定和致病性测定,证明其病原菌为尖孢镰刀菌菜豆专化型(Fusarium oxysporum f. sp. phaseoli Kend & Syd)。此病在南宁于4月上中旬四季豆初花期开始发生,5月中下旬盛花至结荚期为发病高峰期。用滤纸碟法进行药效试验的结果,40%灭病威300-500倍液的抑菌圈最大,田间灌根防治也有一定效果。可用种子重量的0.5%多菌灵可湿性粉拌种。品种间抗病性有显著差异,秋抗19号和秋抗6号较抗病。  相似文献   

17.
The objective of the current study was to characterize Fusarium oxysporum f. sp. radicis-cucumerinum isolates from cucumbers in Turkey in terms of pathogenicity, vegetative compatibility and amplified fragment length polymorphism (AFLP) variation. In the 2007 and 2008 greenhouse cucumber-growing seasons, surveys were conducted in Adana, Antalya, Hatay and Mersin provinces of the Mediterranean region of Turkey. Forty-seven fungal isolates of F. oxysporum were recovered from diseased cucumber plants. The pathogenicity of each isolate was tested on cucumber seedlings at the one-true-leaf stage. Forty of the 47 isolates of F. oxysporum were virulent on cucumber seedlings. Based on disease symptoms, the differential effect of temperatures of 17°C and 29°C on disease development, and the virulence on cucumber seedlings, these 40 isolates were identified as F. oxysporum f. sp. radicis-cucumerinum. Nitrate non-utilizing mutants were generated on minimal medium containing 1.5% KClO3 and their phenotypes were determined. Mutants in different phenotypic classes were paired on minimal medium; of 40 F. oxysporum f. sp. radicis-cucumerinum isolates, thirty-eight were placed into VCG 0260. Remaining two strains were assigned to VCG 0261. The AFLP primers produced a total of 180 fragments between 200 and 500 bp in length for the 30 isolates tested. At a genetic similarity of 0.71, the UPGMA analysis separated the isolates into two distinct clusters. The first cluster, AFLP I, included 28 isolates, of which all belonged to VCG 0260. Two strains in the second AFLP cluster both belonged to VCG 0261.  相似文献   

18.
Twenty-seven seed samples belonging to the lettuce cultivars most frequently grown in Lombardy (northwestern Italy), in an area severely affected by Fusarium wilt of lettuce, were assayed for the presence ofFusarium oxysporum on a Fusarium-selective medium. Isolations were carried out on subsamples of seeds (500 to 1500) belonging to the same seed lots used for sowing, and either unwashed or disinfected in 1% sodium hypochloride. The pathogenicity of the isolates ofF. oxysporum obtained was tested in four trials carried out on lettuce cultivars of the butterhead type, very susceptible to Fusarium wilt. Nine of the 27 samples of seeds obtained from commercial seed lots used for sowing in fields affected by Fusarium wilt were contaminated byF. oxysporum. Among the 16 isolates ofF. oxysporum obtained, only one was isolated from disinfected seeds. Three of the isolates were pathogenic on the tested cultivars of lettuce, exhibiting a level of pathogenicity similar to that of the isolates ofF. oxysporum f.sp.lactucae obtained from infected wilted plants in Italy, USA and Taiwan, used as comparison. The results obtained indicate that lettuce seeds are a potential source of inoculum for Fusarium wilt of lettuce. The possibility of isolatingF. oxysporum f.sp.lactucae, although from a low percent of seeds, supports the hypothesis that the rapid spread of Fusarium wilt of lettuce observed recently in Italy is due to the use of infected propagation material. Measures for prevention and control of the disease are discussed. http://www.phytoparasitica.org posting Dec. 16, 2003.  相似文献   

19.
Almond anthracnose caused by Glomerella cingulata is a major disease of this crop in Israel. The pathogen infects young fruit resulting in fruit rot. Leaf wilting and shoot dieback accompany fruit rot, even though the pathogen cannot be isolated from leaves or twigs. Isolates of G. cingulata from diseased almond fruit were compared using vegetative compatibility grouping (VCG), molecular methods, fungicide sensitivity and pathogenicity assays in order to determine the genetic diversity and host specificity among different populations. Polymerase chain reaction amplification of genomic DNA, using four primers produced uniform banding patterns for all the almond isolates from different geographic locations in Israel. HaeIII digestion patterns of A + T-rich DNA, and Southern hybridization of the repetitive nuclear DNA element (GcpR1) to PstI-digested genomic DNA of almond isolates also revealed no polymorphism. Chlorate-resistant nitrate-nonutilizing (nit) mutants were generated and used in heterokaryon tests. Complementary heterokaryons formed between the mutants of different isolates indicated a single VCG. Isolates of G. cingulata from almond had optimal growth temperatures of 20–22°C as opposed to 26–28°C for avocado isolates. In addition, almond isolates of G. cingulata are insensitive to benzimidazole fungicides in contrast to sensitivity of isolates from avocado. In artificial inoculations, almond isolates infected almond, avocado, apple, mango and nectarine fruit at a slower rate than G. cingulata isolates from avocado, apple and mango. Only the anamorph Colletotrichum gloeosporioides has been detected on almond in Israel, whereas isolates of G. cingulata from other hosts produce ascocarps.  相似文献   

20.
In order to characterize the pathogen(s) responsible for the outbreak of fusarium diseases in Algeria, 48 Fusarium spp. isolates were collected from diseased tomato in Algeria and compared with 58 isolates of Fusarium oxysporum originating from seven other Mediterranean countries and 24 reference strains. Partial sequences of the translation elongation factor EF‐1α gene enabled identification of 27 isolates as F. oxysporum, 18 as F. commune and three as F. redolens among the Algerian isolates. Pathogenicity tests confirmed that all isolates were pathogenic on tomato, with disease incidence greater at 28°C than at 24°C. All isolates were characterized using intergenic spacer (IGS) DNA typing, vegetative compatibility group (VCG) and PCR detection of the SIX1 (secreted in xylem 1) gene specific to F. oxysporum f. sp. lycopersici (FOL). No DNA polymorphisms were detected in the isolates of F. redolens or F. commune. In contrast, the 27 Algerian isolates of F. oxysporum were shown to comprise nine IGS types and 13 VCGs, including several potentially new VCGs. As none of the isolates was scored as SIX1+, the 27 isolates could be assigned to F. oxysporum f. sp. radicis‐lycopersici (FORL). Isolates from Tunisia were also highly diverse but genetically distinct from the Algerian isolates. Several Tunisian isolates were identified as FOL by a PCR that detected the presence of SIX1. The results show that isolates from European countries were less diverse than those from Tunisia. Given the difference between Algerian populations and populations in other Mediterranean countries, newly emergent pathogenic forms could have evolved from local non‐pathogenic populations in Algeria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号