首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 324 毫秒
1.
Field isolates of Alternaria alternata collected from tomato processors were characterized for sensitivity to respiration inhibitors using in vitro mycelial growth assays. Pyraclostrobin (QoI), boscalid, fluopyram and isopyrazam (SDHIs) mean EC50 values were 0.32, 1.43, 2.21, and 3.53 μg/ml respectively. Of the 42 isolates, 36 were sensitive to all respiration inhibiting fungicides tested whereas three isolates were less sensitive to boscalid, one to pyraclostrobin and two were simultaneously resistant to both inhibitors and isopyrazam. Correlation analysis between fungicide sensitivities revealed a positive cross-resistance between pyraclostrobin and tebuconazole, and between cyprodinil and mancozeb. There was no cross-resistance between QoIs, SHDIs or any other mode of action. Sequencing of the QoI and SDHI targets revealed the G143A cytochrome b resistance mutation in all pyraclostrobin-resistant isolates while analysis of the succinate dehydrogenase coding gene revealed point mutations in two of three of the gene subunits analyzed in boscalid-resistant isolates. Specifically, two isolates carried the H277Y and three the H133Q resistance mutations located in the sdhB and sdhD subunits of the respiration complex II, respectively. Isolates bearing the H277Y mutation also carried the G143A cytochrome b resistance mutation. Boscalid and pyraclostrobin-resistant isolates exhibited greater pathogenicity and sporulation compared to sensitive isolates, respectively. Isolates with cross-resistance exhibited greater pathogenicity and sporulation but slower mycelial growth compared to sensitive isolates. This is the first report of field isolates of A. alternata with single or double resistance to QoIs and SDHIs in Greece and should be considered in planning and implementing effective anti-resistance strategies.  相似文献   

2.
Puccinia horiana is the causal agent of chrysanthemum white rust or Japanese rust. This microcyclic autoecious rust has a quarantine status and can cause major damage in the commercial production of Chrysanthemum x morifolium. Given the international and often trans-continental production of planting material and cut flowers of chrysanthemum and the decreasing availability of registered fungicides in specific regions, breeding for resistance against P. horiana will gain importance and will need to involve the appropriate resistance genes for the pathotypes that may be present. As pathotypes have not been well characterized in this system, the main objective was to build an international collection of isolates and screen these on a large collection of cultivars to identify different pathotypes. Using a robust and high throughput bioassay, we tested 36 selected cultivars with 22 individual single-pustule isolates of P. horiana. The isolates originated from three different continents over 4 different collection years and included some isolates from cultivars previously reported as resistant. In most cases the bioassays resulted in a clear scoring of interaction phenotypes as susceptible or resistant, while in several cases consistent intermediate phenotypes were found, often on specific cultivars. Twenty-four of the cultivars gave a differential interaction phenotype profile. All isolates produced a unique profile, infecting a minimum of 4 and a maximum of 19 differential cultivars. Based on the Person analysis of these profiles, this pathosystem contains at least seven resistance genes (and seven avirulence genes), demonstrating the highly complex race structure in this pathosystem.  相似文献   

3.
Pyrenopeziza brassicae causes leaf spot disease of Brassicaceae in Europe/Oceania (lineage 1) and North America (lineage 2). In Europe, fungicides currently used for disease management are sterol 14α-demethylase (CYP51) inhibitors (azoles), quinone outside inhibitors (QoIs), and succinate dehydrogenase inhibitors (SDHIs); methyl benzimidazole carbamates (MBCs) are no longer applied. In this study, in vitro screening revealed European populations (collected 2018–2020) had shifted towards decreased azole sensitivity, but the North American population (2014–2016) was highly sensitive. Genotyping revealed CYP51 substitutions G460S or S508T were prevalent in European populations, often with a CYP51 promoter insert. Compared to wildtype CYP51 isolates, those with G460S plus an insert (44/46/151/210/302 bp) were c.25–32-fold and c.50-fold less sensitive to tebuconazole and prochloraz, respectively; those with S508T plus an insert (44/46/151/233 bp) were c.9–15-fold and c.25–40-fold less sensitive to tebuconazole and prochloraz, respectively. Selection for G460S (quantified via pyrosequencing) under different fungicide regimes was investigated in UK field trials, but G460S levels were high (c.76%) before treatment, so further selection during the trials was unclear. Despite the high G460S frequency and low disease pressure, yield data indicated measurable benefit for both azole- and non-azole-based programmes. In vitro screening against the MBC carbendazim showed European populations were predominantly moderately resistant/resistant; the North American population was sensitive. European and North American populations were sensitive to QoI (pyraclostrobin) and SDHI (penthiopyrad) fungicides. Results support an azole plus QoI/SDHI mixing partner for robust disease control and decreased risk of resistance, with continued sensitivity monitoring to ensure optimal strategies are deployed.  相似文献   

4.
Rust fungi are major pathogens of many annual and perennial crops. Crop protection is largely based on genetic and chemical control. Fungicide resistance is a significant issue that has affected many crop pathogens. Some pathogens have rapidly developed resistance and hence are regarded as high‐risk species. Rust fungi have been classified as being low risk, in spite of sharing many relevant features with high‐risk pathogens. An examination of the evidence suggests that rust fungi may be wrongly classified as low risk. Of the nine classes of fungicide to which resistance has developed, six are inactive against rusts. The three remaining classes are quinone outside inhibitors (QoIs), demethylation inhibitors (DMIs) and succinate dehydrogenase inhibitors (SDHIs). QoIs have been protected by a recently discovered intron that renders resistant mutants unviable. Low levels of resistance have developed to DMIs, but with limited field significance. Older SDHI fungicides were inactive against rusts. Some of the SDHIs introduced since 2003 are active against rusts, so it may be that insufficient time has elapsed for resistance to develop, especially as SDHIs are generally sold in mixtures with other actives. It would therefore seem prudent to increase the level of vigilance for possible cases of resistance to established and new fungicides in rusts. © 2014 Society of Chemical Industry  相似文献   

5.
Cercospora species cause cercospora leaf blight (CLB) and purple seed stain (PSS) on soybean. Because there are few resistant soybean varieties available, CLB/PSS management relies heavily upon fungicide applications. Sensitivity of 62 Argentinian Cercospora isolates to demethylation inhibitor (DMI), methyl benzimidazole carbamate (MBC), quinone outside inhibitor (QoI), succinate dehydrogenase inhibitor (SDHI) fungicides, and mancozeb was determined in this study. All isolates were sensitive to difenoconazole, epoxiconazole, prothioconazole, tebuconazole, and cyproconazole (EC50 values ranged from 0.006 to 2.4 µg/ml). In contrast, 51% of the tested isolates were sensitive (EC50 values ranged from 0.003 to 0.2 µg/ml), and 49% were highly resistant (EC50 > 100 µg/ml) to carbendazim. Interestingly, all isolates were completely resistant to azoxystrobin, trifloxystrobin, and pyraclostrobin, and insensitive to boscalid, fluxapyroxad, and pydiflumetofen (EC50 > 100 µg/ml). The G143A mutation was detected in 82% (53) of the QoI-resistant isolates and the E198A mutation in 97% (31) of the carbendazim-resistant isolates. No apparent resistance mutations were detected in the succinate dehydrogenase genes (subunits sdhB, sdhC, and sdhD). Mancozeb completely inhibited mycelial growth of the isolates evaluated at a concentration of 100 µg/ml. All Argentinian Cercospora isolates were sensitive to the DMI fungicides tested, but we report for the first time resistance to QoI and MBC fungicides. Mechanism(s) other than fungicide target-site modification may be responsible for resistance of Cercospora to QoI and MBC fungicides. Moreover, based on our results and on the recent introduction of SDHI fungicides on soybean in Argentina, Cercospora species causing CLB/PSS are insensitive (naturally resistant) to SDHI fungicides. Insensitivity must be confirmed under field conditions.  相似文献   

6.
BACKGROUND: Recently in Japan, isolates resistant to boscalid, a succinate dehydrogenase inhibitor (SDHI), have been detected in Corynespora cassiicola (Burk. & Curt.) Wei and Podosphaera xanthii (Castaggne) Braun & Shishkoff, the pathogens causing Corynespora leaf spot and powdery mildew disease on cucumber, respectively. Resistant isolates of C. cassiicola are widely distributed and represent a serious problem in disease control at present. Novel SDHI fungicides, including fluopyram, are now under development. RESULTS: The growth of very highly boscalid‐resistant, highly resistant and sensitive isolates of C. cassiicola was strongly suppressed on fluopyram‐amended YBA agar medium. Although boscalid and another SDHI, penthiopyrad, hardly controlled Corynespora leaf spot and powdery mildew on cucumber plants when very highly or highly boscalid‐resistant isolates were employed for inoculation, fluopyram still exhibited excellent control efficacy against these resistant isolates as well as sensitive isolates of C. cassiicola and P. xanthii. CONCLUSION: Differential sensitivity to boscalid, penthiopyrad and fluopyram, clearly found in these two important pathogens of cucumber, may indicate involvement of a slightly distinct site of action for fluopyram from the two other SDHIs. This finding may lead to the discovery of unique SDHIs in the future. Copyright © 2011 Society of Chemical Industry  相似文献   

7.
Zymoseptoria tritici is the causal agent of septoria tritici blotch (STB), a foliar wheat disease important worldwide. Succinate dehydrogenase inhibitors (SDHIs) have been used in cereals for effective control of STB for several years, but resistance towards SDHIs has been reported in several phytopathogenic fungi. Resistance mechanisms are target‐site mutations in the genes coding for subunits B, C and D of the succinate dehydrogenase (SDH) enzyme. Previous monitoring data in Europe indicated the presence of single isolates of Z. tritici with reduced SDHI sensitivity. These isolates carried mutations leading to amino acid exchanges: C‐T79N, C‐W80S in 2012; C‐N86S in 2013; B‐N225T and C‐T79N in 2014; and C‐V166M, B‐T268I, C‐N86S, C‐T79N and C‐H152R in 2015. The current study provides results from microtitre and greenhouse experiments to give an insight into the impact of different mutations in field isolates on various SDHIs. In microtitre tests, the highest EC50 values for all tested SDHIs were obtained with mutants carrying C‐H152R. Curative greenhouse tests with various SDHIs confirmed the findings of microtitre tests that isolates with C‐H152R are, in general, controlled with lower efficacy than isolates carrying B‐T268I, C‐T79N and C‐N86S. SDHI‐resistant isolates of Z. tritici found in the field were shown to have cross‐resistance towards all SDHIs tested. So far, SDHI‐resistant isolates of Z. tritici have been found in low frequencies in Europe. Therefore, FRAC recommendations for resistance management in cereals, including a limited number of applications, alternation and combination with other MOAs, should be followed to prolong SDHI field efficacy.  相似文献   

8.
Anthracnose, caused by Colletotrichum gloeosporioides, is one of the most important diseases in grape-growing regions worldwide. In Jiangsu Province of China, quinone-outside inhibitor fungicides (QoIs) have been extensively sprayed as disease control for more than 10 years. A spore germination assay of 64 isolates obtained from 32 commercial vineyards was used to assess isolate sensitivity to azoxystrobin and 62 were found to be resistant to azoxystrobin. The biological fitness of QoI-resistant (QoIR) isolates was significantly lower than the sensitive isolates (QoIS) in terms of mycelial growth and conidiation. Nucleotide sequence alignment of CgCytb genes from the QoIR and QoIS isolates revealed that two point mutations (F129L and G143A) are involved in the QoI resistance. Isolates with the G143A mutation expressed high resistance to azoxystrobin, whereas isolates carrying the F129L mutation exhibited moderate resistance. Positive cross-resistance was observed between azoxystrobin and kersoxim-methyl, pyraclostrobin, or benzothiostrobin, but not with fluazinam. This study provides important information for management of QoIR populations of C. gloeosporioides in the field.  相似文献   

9.
Fungicide sprays on soybean in Brazil have contributed to the selection of less sensitive isolates of Corynespora cassiicola. We collected 59 isolates of Ccassiicola from three Brazilian states and two isolates from Paraguay. We investigated their EC50 to quinone outside inhibitors (QoI) and methyl benzimidazole carbamate (MBC), any cross-resistance to compounds within QoI and MBC groups, and characterized the polymorphisms in their cytb and β-tubulin genes. Local associations of polymorphisms identified in each gene were statistically correlated with assays results. In total, 79% and 74% of the isolates were classified as resistant to QoI and MBC fungicides, respectively. There was positive cross-resistance to active ingredients within QoI and MBC groups. For QoI, all isolates presented heteroplasmy in G143A of cytb gene; the mutations F129L and G137R were not found. For MBC, 63% of isolates possessed E198A and 21% possessed F200Y mutations, associated with reduced control by MBC fungicides. Heteroplasmy was identified in two and one isolates from Brazil with E198A and F200Y mutations, respectively. The resistance factor for isolates with E198A (10.9) was statistically similar to the isolate with F200Y (8.8) mutation. Genic association analysis of the in vitro assays using discriminatory doses proved them to be accurate. Reduced sensitivity of Ccassiicola to QoI and MBC was also identified in isolates from Paraguay and resistance to QoI and MBC was widely present in Ccassiicola isolates from the main soybean-producing states in Brazil. Thus, integrated management measures should be adopted to manage soybean target spot in these countries.  相似文献   

10.
Wheat blast is one of the most important and devastating fungal diseases of wheat in South America, South-east Asia, and now in southern Africa. The disease can reduce grain yield by up to 70% and is best controlled using integrated disease management strategies. The difficulty in disease management is compounded by the lack of durable host resistance and the ineffectiveness of fungicide sprays. New succinate dehydrogenase inhibitor (SDHI) fungicides were recently introduced for the management of wheat diseases. Brazilian field populations of the wheat blast pathogen Pyricularia oryzae Triticum lineage (PoTl) sampled from different geographical regions in 2012 and 2018 were shown to be resistant to both QoI (strobilurin) and DMI (azole) fungicides. The main objective of the current study was to determine the SDHI baseline sensitivity in these populations. Moderate levels of SDHI resistance were detected in five out of the six field populations sampled in 2012 and in most of the strains isolated in 2018. No association was found between target site mutations in the sdhB, sdhC, and sdhD genes and the levels of SDHI resistance, indicating that a pre-existing resistance mechanism not associated with target site mutations is probably present in Brazilian wheat blast populations.  相似文献   

11.
BACKGROUND: It is possible that a single nucleotide polymorphism (SNP) (G143A mutation) in the cytochrome b gene could confer resistance to quinone outside inhibiting (QoI) fungicides (strobilurins) in rice blast fungus because this mutation caused a high level of resistance to fungicides such as azoxystrobin in Pyricularia grisea Sacc. and other fungal plant pathogens. The aim of this study was to survey Magnaporthe oryzae B Couch sp. nov. isolates in Japan for resistance to QoIs, and to try to develop molecular detection methods for QoI resistance. RESULTS: A survey on the QoI resistance among M. oryzae isolates from rice was conducted in Japan. A total of 813 single‐spore isolates of M. oryzae were tested for their sensitivity to azoxystrobin using a mycelial growth test on PDA. QoI fungicide resistance was not found among these isolates. The introduction of G143A mutation into a plasmid containing the cytochrome b gene sequence of rice blast fungus was achieved by site‐directed mutagenesis. Molecular diagnostic methods were developed for identifying QoI resistance in rice blast fungus using the plasmid construct. CONCLUSION: As the management of rice blast disease is often dependent on chemicals, the rational design of control programmes requires a proper understanding of the fungicide resistance phenomenon in field populations of the pathogen. Mutation of the cytochrome b gene of rice blast fungus would be specifically detected from diseased leaves and seeds using the molecular methods developed in this study. Copyright © 2009 Society of Chemical Industry  相似文献   

12.
Qo inhibitor (QoI) fungicides are used to control gray blight caused by Pestalotiopsis longiseta in Japanese tea cultivation. However, field isolates of P. longiseta highly resistant to QoI fungicides were found in 2008, resulting in failure of QoI fungicidal control. This resistance was attributed to a mutation in the cytochrome b gene (cytb) in which alanine was substituted for glycine at position 143 (G143A). In 2009–2010, we detected field isolates that had an intermediate reaction between sensitive and resistant isolates in a preliminary assay. These isolates showed intermediate sensitivity to azoxystrobin and kresoxim-methyl on PDA plates. The intermediate reaction to azoxystrobin was also confirmed on detached tea leaves. Consequently, they were considered moderately resistant to QoI fungicides. Nucleotide sequencing of cytb showed that moderate resistance correlated with a single point mutation; leucine was substituted for phenylalanine at amino acid position 129 (F129L). Sequence analysis also revealed two types of cytb, with or without an intron between codons 131 and 132, in P. longiseta. F129L and G143A mutations were detected in both types of cytb according to their QoI resistance. This result suggests that G143A and F129L mutations have each occurred at least twice in the P. longiseta population.  相似文献   

13.
BACKGROUND: Didymella bryoniae has a history of developing resistance to single‐site fungicides. A recent example is with the succinate‐dehydrogenase‐inhibiting fungicide (SDHI) boscalid. In laboratory assays, out of 103 isolates of this fungus, 82 and seven were found to be very highly resistant (BVHR) and highly resistant (BHR) to boscalid respectively. Cross‐resistance studies with the new SDHI penthiopyrad showed that the BVHR isolates were only highly resistant to penthiopyrad (BVHR‐PHR), while the BHR isolates appeared sensitive to penthiopyrad (BHR‐PS). In this study, the molecular mechanism of resistance in these two phenotypes (BVHR‐PHR and BHR‐PS) was elucidated, and their sensitivity to the new SDHI fluopyram was assessed. RESULTS: A 456 bp cDNA amplified fragment of the succinate dehydrogenase iron sulfur gene (DbSDHB) was initially cloned and sequenced from two sensitive (BS‐PS), two BVHR‐PHR and one BHR‐PS isolate of D. bryoniae. Comparative analysis of the DbSDHB protein revealed that a highly conserved histidine residue involved in the binding of SDHIs and present in wild‐type isolates was replaced by tyrosine (H277Y) or arginine (H277R) in the BVHR‐PHR and BHR‐PS variants respectively. Further examination of the role and extent of these alterations showed that the H/Y and H/R substitutions were present in the remaining BVHR‐PHR and BHR‐PS variants respectively. Analysis of the sensitivity to fluopyram of representative isolates showed that both SDHB mutants were sensitive to this fungicide as the wild‐type isolates. CONCLUSION: The genotype‐specific cross‐resistance relationships between the SDHIs boscalid and penthiopyrad and the lack of cross‐resistance between these fungicides and fluopyram should be taken into account when selecting SDHIs for gummy stem blight management. Copyright © 2011 Society of Chemical Industry  相似文献   

14.
BACKGROUND: In 2004, field isolates of Botrytis cinerea Pers. ex Fr., resistant to strobilurin fungicides (QoIs), were first found in commercial citrus orchards in Wakayama Prefecture, Japan. Subsequently, QoI‐resistant isolates of this fungus were also detected in plastic strawberry greenhouses in Saga, Ibaraki and Chiba prefectures, Japan. Biological and molecular characterisation of resistant isolates was conducted in this study. RESULTS: QoI‐resistant isolates of B. cinerea grew well on PDA plates containing kresoxim‐methyl or azoxystrobin at 1 mg L?1, supplemented with 1 mM of n‐propyl gallate, an inhibitor of alternative oxidase, whereas the growth of sensitive isolates was strongly suppressed. Results from this in vitro test were in good agreement with those of fungus inoculation tests in vivo. In resistant isolates, the mutation at amino acid position 143 of the cytochrome b gene, known to be the cause of high QoI resistance in various fungal pathogens, was found, but only occasionally. The heteroplasmy of cytochrome b gene was confirmed, and the wild‐type sequence often present in the majority of resistant isolates, indicating that the proportion of mutated cytochrome b gene was very low. CONCLUSION: The conventional RFLP and sequence analyses of PCR‐amplified cytochrome b gene are insufficient for molecular identification of QoI resistance in B. cinerea. Copyright © 2009 Society of Chemical Industry  相似文献   

15.
Resistance to QoI fungicides in Pyrenophora teres (Dreschsler) and P. tritici-repentis (Died.) Dreschsler was detected in 2003 in France and in Sweden and Denmark respectively. Molecular analysis revealed the presence of the F129L mutation in resistant isolates of both pathogens. In 2004, the frequency of the F129L mutation in populations of both pathogens further increased. The G143A mutation was also detected in a few isolates of P. tritici-repentis from Denmark and Germany. In 2005, the F129L mutation in P. teres increased in frequency and geographical distribution in France and the UK but remained below 2% in Germany, Switzerland, Belgium and Ireland. In P. tritici-repentis, both mutations were found in a significant proportion of the isolates from Sweden, Denmark and Germany. The G143A mutation conferred a significantly higher level of resistance (higher EC50 values) to Qo inhibitors (QoIs) than did the F129L mutation. In greenhouse trials, resistant isolates with G143A were not well controlled on plants sprayed with recommended field rates, whereas satisfactory control of isolates with F129L was achieved. For the F129L mutation, three different single nucleotide polymorphisms (SNPs), TTA, TTG and CTC, can code for L (leucine) in P. teres, whereas only the CTC codon was detected in P. tritici-repentis isolates. In two out of 250 isolates of P. tritici-repentis from 2005, a mutation at position 137 (G137R) was detected at very low frequency. This mutation conferred similar resistance levels to F129L. The structure of the cytochrome b gene of P. tritici-repentis is significantly different from that of P. teres: an intron directly after amino acid position 143 was detected in P. teres which is not present in P. tritici-repentis. This gene structure suggests that resistance based on the G143A mutation may not occur in P. teres because it is lethal. No G143A isolates were found in any P. teres populations. Although different mutations may evolve in P. tritici-repentis, the G143A mutation will have the strongest impact on field performance of QoI fungicides.  相似文献   

16.
BACKGROUND: Previous studies have shown that resistance of Botrytis cinerea to QoI fungicides has been attributed to the G143A mutation in the cytochrome b (cytb) gene, while, in a part of the fungal population, an intron has been detected at codon 143 of the gene, preventing QoI resistance. During 2005–2009, 304 grey mould isolates were collected from strawberry, tomato, grape, kiwifruit, cucumber and apple in Greece and screened for resistance to pyraclostrobin and for the presence of the cytb intron, using a novel real‐time TaqMan PCR assay developed in the present study. RESULTS: QoI‐resistant phenotypes existed only within the population collected from strawberries. All resistant isolates possessed the G143A mutation. Differences were observed in the genotypic structure of cytb. Individuals possessing the intron were found at high incidence in apple fruit and greenhouse‐grown tomato and cucumber populations, whereas in the strawberry population the intron frequency was lower. Cultivation of QoI‐resistant and QoI‐sensitive isolates for ten culture cycles on artificial nutrient medium in the presence or absence of fungicide selection showed that QoI resistance was stable. CONCLUSIONS: The results of the study suggest that a high risk for selection of QoI‐resistant strains exists in crops heavily treated with QoIs, in spite of the widespread occurrence of the cytb intron in B. cinerea populations. The developed real‐time TaqMan PCR constitutes a powerful tool to streamline detection of the mutation by reducing pre‐ and post‐amplification manipulations, and can be used for rapid screening and quantification of QoI resistance. Copyright © 2011 Society of Chemical Industry  相似文献   

17.
J.K. WATER 《EPPO Bulletin》1981,11(3):239-242
Since its introduction from South-east Asia into several western European countries, chrysanthemum white rust (Puccinia horiana) has become a serious problem for chrysanthemum growers. This rust is easily spread, by spores and infected plant material, and chemical control is laborious. Some EPPO countries are still able to prevent its establishment. Other EPPO countries, with a ← settled → white rust condition, have developed an inspection system which enables them to keep the disease at a low level. The approach in both situations is discussed.  相似文献   

18.
BACKGROUND: QoI fungicides, inhibitors of mitochondrial respiration, are considered to be at high risk of resistance development. In several phytopathogenic fungi, resistance is caused by mutations (most frequently G143A) in the mitochondrial cytochrome b (cytb) gene. The genetic and molecular basis of QoI resistance were investigated in laboratory and field mutants of Botryotinia fuckeliana (de Bary) Whetz. exhibiting in vitro reduced sensitivity to trifloxystrobin. RESULTS: B. fuckeliana mutants highly resistant to trifloxystrobin were obtained in the laboratory by spontaneous mutations in wild‐type strains, or from naturally infected plants on a medium amended with 1–3 mg L?1 trifloxystrobin and 2 mM salicylhydroxamic acid, an inhibitor of alternative oxidase. No point mutations were detected, either in the complete nucleotide sequences of the cytb gene or in those of the aox and Rieske protein genes of laboratory mutants, whereas all field mutants carried the G143A mutation in the mitochondrial cytb gene. QoI resistance was always maternally inherited in ascospore progeny of sexual crosses of field mutants with sensitive reference strains. CONCLUSIONS: The G143A mutation in cytb gene is confirmed to be responsible for field resistance to QoIs in B. fuckeliana. Maternal inheritance of resistance to QoIs in progeny of sexual crosses confirmed that it is caused by extranuclear genetic determinants. In laboratory mutants the heteroplasmic state of mutated mitochondria could likely hamper the G143A detection, otherwise other gene(s) underlying different mechanisms of resistance could be involved. Copyright © 2012 Society of Chemical Industry  相似文献   

19.
BACKGROUND: Botrytis cinerea Pers.: Fr. is a high‐risk pathogen for fungicide resistance development that has caused resistance problems on many crops throughout the world. This study investigated the fungicide sensitivity profile of isolates from kiwifruits originating from three Greek locations with different fungicide use histories. Sensitivity was measured by in vitro fungitoxicity tests on artificial nutrient media. RESULTS: Seventy‐six single‐spore isolates were tested for sensitivity to the SDHI fungicide boscalid, the QoI pyraclostrobin, the anilinopyrimidine cyprodinil, the hydroxyanilide fenhexamid, the phenylpyrrole fludioxonil, the dicarboxamide iprodione and the benzimidazole carbendazim. All isolates from Thessaloniki showed resistance to both boscalid and pyraclostrobin, while in the other two locations the fungal population was sensitive to these two fungicides. Sensitive isolates showed EC50 values to boscalid and pyraclostrobin ranging from 0.9 to 5.2 and from 0.04 to 0.14 mg L?1 respectively, while the resistant isolates showed EC50 values higher than 50 mg L?1 for boscalid and from 16 to > 50 mg L?1 for pyraclostrobin. All QoI‐resistant isolates carried the G143A mutation in cytb. Sensitivity determinations to the remaining fungicides revealed in total eight resistance phenotypes. No isolates were resistant to the fungicides fenhexamid and fludioxonil. CONCLUSION: This is the first report of B. cinerea field isolates with resistance to both boscalid and pyraclostrobin, and it strongly suggests that there may be a major problem in controlling this important pathogen on kiwifruit. Copyright © 2010 Society of Chemical Industry  相似文献   

20.
Wheat farmers rely on fungicides to protect fields against several foliar and flowering diseases, including Fusarium head blight (FHB). A range of active ingredients is used in isolation or in dual premixes that include a dimethylation inhibitor (DMI) or a quinone outside inhibitor (QoI) fungicide. Comprehensive information about fungicide resistance in F. graminearum is available for DMIs, while for QoIs the data are scarce. We characterized 225 strains obtained from two states in southern Brazil, Rio Grande do Sul (RS) and Paraná (PR), in relation to their response to two QoIs. The median EC50 (effective concentration leading to 50% inhibition of conidial germination) value for azoxystrobin (n = 25 isolates) was 2.20 μg/ml in the PR population and 4.04 μg/ml in the RS population. For pyraclostrobin (n = 50), the median EC50 was 0.28 μg/ml in the PR population and 0.24 μg/ml in the RS population. Evidence of cross-resistance could not be detected. Screening using a discriminatory dose (DD) for azoxystrobin in a larger number of isolates from PR (n = 75) and RS (n = 100) states allowed the detection of 50% and 28% sensitive strains, respectively. Using the DD for pyraclostrobin, 33% and 18.8% were classified as less sensitive in the PR and RS isolates, respectively. In RS, the frequency of less-sensitive isolates increased over time (2007–2011). No point mutation at any of the target spots (F129L, G137R, G143A) was detected. Our results represent an important step towards the establishment of a sensitivity profile for two of the most commonly used QoIs in commercial premixes targeting FHB control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号