首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A total of 360 Pseudomonas savastanoi pv. savastanoi isolates obtained from 11 Italian olive ( Olea europaea ) cultivars grown in different provinces were assessed with repetitive PCR using short interspersed elements of the bacterial genome as primers (ERIC, BOX and REP primer sets). The population structure of the isolates was determined by using three different hierarchical clustering algorithms: UPGMA, single-link and complete-link methods. REP primers were the most discriminatory. The various fingerprints obtained from the same cultivar and locality persisted over 2 years of knot sampling. Repetitive PCR and UPGMA analysis, using the three data sets combined, revealed 20 patterns with an overall similarity of 81%, with no grouping of the isolates. The resulting dendrogram shows a bush-like topology. Similar results were obtained with the other two clustering methods. In contrast, data obtained from the literature showed that the genetic structure of olive is characterized by bifurcated dendrograms and clear grouping of cultivars. Therefore it appears that the host plant and its pathogen did not cospeciate. The strict adaptation of the bacterium to olive would represent a case of association by colonization.  相似文献   

2.
For efficient integrated management of verticillium wilt in olive (VWO), it is important to establish whether irrigation treatments (with Verticillium dahliae‐free water) that mitigate the disease in V. dahliae‐infested soil, also reduce the levels of more and less persistent propagules of the pathogen in the soil. Effects of irrigation on VWO and V. dahliae propagules were evaluated under natural environmental conditions. Potted plants were irrigated (pathogen‐free water) to two ranges of soil water content (RWC; high and low) at three surface drip‐irrigation frequencies (daily, weekly, and daily during some periods and otherwise weekly). VWO and total inoculum density (ID), density of less persistent micropropagules (MpD) and more persistent sclerotia in wet soil (SwD), and sclerotia density for air‐dried soil (SdD) were monitored. A logistic model (multiple sigmoid) of disease incidence revealed the lowest parameter values in treatments irrigated daily. Daily frequency of irrigation showed significantly lower disease incidence (39.2%) and disease intensity index (43.9%) and MpD (88.0%) values as areas compared with other frequencies, regardless of the RWC. High RWC significantly reduced (70.8–84.9%) ID, SwD and SdD as areas, but significantly increased (18.0%) the incidence of infected plants (IIP), regardless of the irrigation frequency. The disease incidence was not correlated with temperature. Daily irrigation to low RWC mitigated the VWO and the IIP, kept soil to the lowest MpD and resulted in the lowest SdD level at the end of the trial. Results suggested that less persistent propagules could have played a part in the disease development.  相似文献   

3.
应用聚合酶链式反应鉴定新疆棉花落叶型黄萎病菌   总被引:9,自引:0,他引:9  
张莉  段维军  李国英  宋蓓 《植物检疫》2004,18(5):266-268
用一对棉花落叶型黄萎病菌的特异性引物D1和D2进行PCR扩增,对于落叶型黄萎病菌,该对引物可特异性地扩增产生一段550bp的产物,而非落叶型黄萎病菌则不能被扩增.供试的35个新疆黄萎菌系中,有3个菌系扩增出550bp大小的落叶型黄萎病菌特异性片段,表明目前新疆已存在落叶型黄萎病菌,用此技术可快速、准确地检疫和鉴定落叶型黄萎病菌.  相似文献   

4.
    
  相似文献   

5.
    
Verticillium wilt of olive is best managed by resistant cultivars, but those currently available show incomplete resistance to the defoliating (D) Verticillium dahliae pathotype. Moreover, these cultivars do not satisfy consumers' demand for high yields and oil quality. Highly resistant rootstocks would be of paramount importance for production of agronomically adapted and commercially desirable olive cultivars in D V. dahliae‐infested soils. In this work, resistance to D V. dahliae in wild olive clones Ac‐13, Ac‐18, OutVert and StopVert was assessed by quantifying the fungal DNA along the stem using a highly sensitive real‐time quantitative polymerase chain reaction (qPCR) protocol and a stem colonization index (SCI) based on isolation of V. dahliae following artificial inoculations under conditions highly conducive for verticillium wilt. Ac‐13, Ac‐18, OutVert and StopVert showed a symptomless reaction to D V. dahliae. The mean amount of D V. dahliaeDNA quantified in stems of the four clones ranged from 3.64 to 28.89 pg/100 ng olive DNA, which was 249 to 1537 times lower than that in susceptible Picual olive. The reduction in the quantitative stem colonization of wild olive clones by D V. dahliae was also indicated by a sharp decrease in the SCI. Overall, there was a pattern of decreasing SCI in acropetal progression along the plant axis, as well as correlation between positive reisolation and quantification of pathogen DNA. The results of this research show that wild olive clones Ac‐13, Ac‐18, OutVert and StopVert have a valuable potential as rootstocks for the management of verticillium wilt in olive.  相似文献   

6.
    
The olive species(Olea europaea L.) is an ancient traditional crop grown under rainfed conditions in the Mediterranean Basin. In response to the growing national and international demand for olive oil,the olive cultivars are introduced into highly arid new bioclimatic areas. Subsequently, the morpho-physiology and phytochemistry of olive trees are potentially changing among cultivar types and geographical conditions. In the present work, we have undertaken an assessment on the impacts of geograp...  相似文献   

7.
杨华  任佐华  宋琼  黄露  刘二明 《植物保护》2015,41(3):143-148
为了弄清湖南省白菜和红菜薹根肿病菌生理小种组成和分布,2013年采集长沙、湘潭、益阳、怀化4个地区的十字花科作物白菜、红菜薹根肿病株27个,用Williams根肿病鉴别品种对其进行生理小种鉴定。初步鉴定出5个生理小种,即1号、5号、8号、9号和11号,它们在湖南病区中出现的频率分别为22.3%、18.5%、14.8%、33.3%和11.1%。按寄主生理小种组成,湖南白菜根肿病菌生理小种有1号、5号、9号、11号,红菜薹根肿病菌为8号、9号和11号;按地区生理小种分布,长沙白菜根肿病菌生理小种为5号和9号,湘潭白菜和红菜薹根肿病菌生理小种分别1号、8号和11号,怀化白菜根肿病菌为生理小种9号;益阳白菜和红菜薹根肿病菌分别为生理小种1号、11号、8号和9号。目前,在湖南4个市白菜和红菜薹根肿病菌生理小种是9号。  相似文献   

8.
Verticillium wilt is the most serious olive disease in the Mediterranean countries and worldwide. The most effective control strategy is the use of resistant cultivars. However, limited information is available about the level and source of resistance in most of the olive cultivars and there are no published data using microsclerotia, the resting structures of Verticillium dahliae, as the infective inoculum. In the present study, we correlated symptomatology and the presence of the fungus along with the DNA relative amount (molecules μl−1) of a defoliating (D) and a non-defoliating (ND) V. dahliae strain in the susceptible cv. Amfissis and the tolerant cvs Kalamon and Koroneiki, as quantified by the Real-Time QPCR technology. The viability of the pathogen in the plant tissues was confirmed by isolating the fungus on PDA plates, while symptom assessment proved the correlation between the DNA relative amount of V. dahliae in plant tissues and cultivar susceptibility. It was further demonstrated that the D and ND strains were present at a significantly higher level in cv. Amfissis than in cvs Kalamon and Koroneiki. It was finally observed that the relative amount of the pathogen in roots was lower than in stems and shoots and declined in plant tissues over time. These data constitute a valuable contribution in evaluating resistance of olive cultivars or olive root-stocks to V. dahliae pathotypes.  相似文献   

9.
    
BACKGROUND:Studies for nine years in southern Spain on the olive moth, Prays oleae Bern., have tested the possibility of altering oviposition behaviour on newly formed olive fruits by means of a single ethylene application. RESULTS: A single spraying of ethylene on the olive trees at the beginning of fruiting significantly decreased the olive moth egg populations and consequent the olive fruit fall. At the same time, no negative effect was found in the activity of natural oophagous predators of the olive moth. CONCLUSIONS: The ethylene treatments against P. oleae yielded substantial economical benefits each year (a mean of euro526 ha(-1)), benefits that fluctuated depending on the olive crop and on the annual fruit fall caused by this major pest.  相似文献   

10.
Species of Botryosphaeria and Neofusicoccum are well known as pathogens of woody hosts. In this study the species that occur on rotting olive drupes in the main production areas of southern Italy were studied. Species were identified from the morphology of their conidial states in culture and from sequence data of the ITS rDNA operon and partial sequence of the translation elongation factor 1‐α gene. Botryosphaeria and Neofusicoccum species were isolated from more than 60% of the affected drupes, suggesting that they are the main contributors to this disease. The most common species was B. dothidea, which was isolated from 34% of the drupes. However, N. australe and N. vitifusiforme were also common and were isolated from 16 and 12%, respectively. Two other species (N. parvum and N. mediterraneum) were uncommon and occurred on less than 1% of the drupes. All five species were pathogenic on the two cultivars of olive tested. The most aggressive species was N. vitifusiforme, followed by N. australe and B. dothidea. The two olive cultivars differed in their susceptibility to the pathogens. The results show that B. dothidea, N. vitifusiforme and N. australe are important pathogens of olives.  相似文献   

11.
  总被引:1,自引:0,他引:1  
Morphological and cultural features and restriction fragment length polymorphism analysis of ITS regions, including 5.8S rDNA, from 26 isolates of Colletotrichum species revealed that isolates from olive fruits, previously identified as C. gloeosporioides, belong to two taxa: C. acutatum and C. gloeosporioides. Comparison of both ITS sequence data with reference isolates confirmed the presence of both species in olives affected by anthracnose disease.  相似文献   

12.
The manner in which the bacterium Pseudomonas savastanoi pv. savastanoi ( Pss ), the causal agent of knot disease, infects olive plants is erratic and has not been fully documented. To investigate the process of Pss invasion, olive explants were inoculated in vitro and examined visually and by light microscopy at 2-weekly intervals for 10 weeks. In all host genotypes tested, interaction with the pathogen resulted in: (i) a progressive collapse of the stem, originating at the inoculation site at the apex of the explant, and proceeding downwards; and (ii), localized outgrowths on the stem located at various distances from the inoculation site. Histological analysis revealed that the anatomy of the outgrowths closely resembled that of knots formed in vivo ; they showed that Ps. savastanoi also diffused within the olive explants through the xylem vessels, and that the olive host reacted to pathogen invasion, possibly by producing substances of polysaccharidic and/or phenolic nature.  相似文献   

13.
    
The application of disinfectants through drip irrigation could be a feasible practice against verticillium wilt (Verticillium dahliae) of olive. OX-VIRIN (activated peroxide) and OX-AGUA AL25 (quaternary ammonium compounds) are two disinfectants that have shown efficacy against V. dahliae in irrigation water and potential for reducing the disease in young olive plants. In this work, various post-planting application strategies incorporating OX-VIRIN (once a month, or twice a month on alternate or successive weeks) or OX-AGUA AL25 (once a month, or twice a month on alternate weeks) were assessed for their effect on V. dahliae in soil, disease in olive trees, and olive yield, in a 2-year pot-experiment under natural environmental conditions. The disinfectants were injected via metering pumps into a drip irrigation system that irrigated olive trees planted in V. dahliae-inoculated soil. All the application strategies significantly reduced the total inoculum density in soil compared to controls with no disinfectants and noninoculated soil. The microsclerotia density was also significantly reduced in disinfested soils by 73.6–86.8%, depending on the strategy. The symptoms and infection incidence were always lower in treatments subjected to disinfestation. The treatment with OX-AGUA AL25 applied twice a month on alternate weeks most reduced the symptoms (by 53.0%) and colonization index (by 70.8%) with respect to untreated water control. This soil disinfestation also significantly strengthened the symptom remission. Tree growth and production were negatively affected by soil inoculation (reduced by 45.6% and 88.7%, respectively), but not so by disinfectants, which even relieved the reduction in inoculated soils, especially when OX-AGUA AL25 was applied.  相似文献   

14.
15.
    
Wild olive (Olea europaea subsp. europaea var. sylvestris) is an important component of Mediterranean forests and a key genetic source for olive improvement programmes. Since 2009, a severe decline caused by Phytophthora cryptogea and P. megasperma has been detected in a protected wild olive forest of high ecological value (Dehesa de Abajo, Seville, Spain). In this natural forest, sampling of roots and soil was carried out on 25 wild olives with symptoms in 2014 and 2015. Apart from the already known P. cryptogea A1 and P. megasperma, a third Phytophthora species was consistently isolated from wild olive rootlets with symptoms. These isolates conformed morphologically with the newly described species P. oleae and were confirmed by analysis of their ITS regions and cox1 sequences. Temperature–growth relationships showed a maximum growth at 19.9 °C on carrot agar medium, making it the lowest temperature Phytophthora species infecting wild olive roots. Pathogenicity was confirmed on 1-year-old healthy wild olive seedlings and was similar to the previously known pathogenic phytophthoras. As temperature requirements are quite different, the three Phytophthora species may be active against wild olive roots in different seasons. However, the prevalence of P. oleae infecting wild olives in recent years could be due to its introduction as a new invasive pathogen. The probable invasive nature of P. oleae, together with increasing rain episodes concentrated in short periods frequent in southern Spain, would allow the outbreak of infections in wild olive forests, and also put cultivated olive orchards at risk.  相似文献   

16.
Experiments were conducted on olive plants in controlled environments to determine the effect of conidial concentration, leaf age, temperature, continuous and interrupted leaf wetness periods, and relative humidity (RH) during the drier periods that interrupted wet periods, on olive leaf spot (OLS) severity. As inoculum concentration increased from 1·0 × 102 to 2·5 × 105 conidia mL?1, the severity of OLS increased at all five temperatures (5, 10, 15, 20 and 25°C). A simple polynomial model satisfactorily described the relationship between the inoculum concentration at the upper asymptote (maximum number of lesions) and temperature. The results showed that for the three leaf age groups tested (2–4, 6–8 and 10–12 weeks old) OLS severity decreased significantly (P < 0·001) with increasing leaf age at the time of inoculation. Overall, temperature also affected (P < 0·001) OLS severity, with the lesion numbers increasing gradually from 5°C to a maximum at 15°C, and then declining to a minimum at 25°C. When nine leaf wetness periods (0, 6, 12, 18, 24, 36, 48, 72 and 96 h) were tested at the same temperatures, the numbers of lesions increased with increasing leaf wetness period at all temperatures tested. The minimum leaf wetness periods for infection at 5, 10, 15, 20 and 25°C were 18, 12, 12, 12 and 24 h, respectively. The wet periods during early infection processes were interrupted with drying periods (0, 3, 6, 12, 18 and 24 h) at two levels of RH (70 and 100%). The length of drying period had a significant (P < 0·001) effect on disease severity, the effect depending on the RH during the interruption. High RH (100%) resulted in greater disease severity than low RH (70%). A polynomial equation with linear and quadratic terms of temperature, wetness and leaf age was developed to describe the effects of temperature, wetness and leaf age on OLS infection, which could be incorporated as a forecasting component of an integrated system for the control of OLS.  相似文献   

17.
Pseudomonas savastanoi pv. savastanoi (Psv) is the causal agent of olive knot disease. The bacterium survives epiphytically and gains ingress through new wounds where infections and colonization result in knot formation. The natural spread of the bacterium and the subsequent appearance of the disease in olive orchards is poorly understood. The aim of this study was to monitor Psv epiphytic populations in inoculated plants with knots versus non‐inoculated healthy trees within the same orchard over four years. Additionally, disease severity was measured in both inoculated and non‐inoculated control trees. Epiphytic Psv populations moved from inoculated to non‐inoculated trees, although average Psv populations were higher in inoculated trees. Olive knot severity increased over the course of the study in all treatments and cultivars, with all plants reaching a high level of disease by the end of the study. However, the delay in the onset of disease was longer in non‐inoculated than in inoculated trees. Molecular typing of Psv isolates recovered from non‐inoculated control trees confirmed that they were similar to the inoculated strain. These data demonstrate that Psv can move over short distances in olive orchards through dissemination of epiphytic bacteria and suggest a relationship between the presence of epiphytic Psv and the number of knots on trees.  相似文献   

18.
    
The biodiversity of farmed landscapes is, in the context of agricultural intensification, a key aspect with regard to improving the sustainability of agroecosystems. Olive groves are undergoing rapid changes because of the spread of intensive farming systems, which may have negative environmental impacts. This paper reports a survey on the aboveground flora and seed banks in five olive groves located in Andalusia (Southern Spain). In this study, the following three management systems have been compared: no‐tillage, with the mowing of spontaneous weedy vegetation; no‐tillage, with the mowing of planted cover crops (Poaceae); and conventional tillage practices. Results showed that coverage and an abundance of vegetation are favored by spontaneous weedy vegetation with mowing management, while the richness of aboveground species was affected by landscape diversity and the presence of edges, which increases the richness and diversity of aboveground flora species in olive groves. Seed bank composition showed a low relationship with aboveground flora in the three cover crop management systems. The multivariate analysis performed pointed to those seed species that have a major influence on the aboveground flora communities of each of the three agricultural systems. The seed bank was clearly impoverished in terms of both abundance and species richness after the long‐term conventional tillage practices. We conclude that the intensive long‐term conventional tillage dramatically reduces weed communities in olive orchards and the subsequent ecosystem services provided by them.  相似文献   

19.
    
Survival, germination, olive colonization, and water-use efficiency (WUE) impairments by Verticillium dahliae could be influenced by cultivar susceptibility or irrigation, and this could modify the irrigation–pathogen–disease relationship. In this study, the combined effects of irrigation and cultivar susceptibility on Verticillium wilt (VW) development were modelled by the temporary assessment of V. dahliae propagules (total inoculum density, density of micropropagules, and sclerotia in wet and air-dried soil; ID, MpD, SwD, and SdD, respectively), root (RCI) and shoot (SCI) colonization indexes, and WUE. The relationship of disease severity to the measured parameters was then explored. Under controlled conditions, plants of cultivars ‘Picual’ and ‘Frantoio’ were irrigated to a high and low rate by varying drip-irrigation frequencies: daily, twice weekly, and a combination of daily for 11 days and then twice weekly. Disease severity and colonization parameters were higher in ‘Picual’, while WUE was higher in ‘Frantoio’. However, high rate and twice weekly and combination treatments significantly increased disease incidence and reduced time-to-symptoms-onset only in ‘Picual’, while high rate reduced WUE and increased relative ID, MpD, and SwD in both cultivars. Irrigation did not affect SCI, but a higher RCI was found at high rate during the development of symptoms in ‘Picual’. By using classification trees to examine parameters—disease severity relationships, it was possible to determine the degree to which VW was affected by irrigation and/or cultivar susceptibility. MpD was the best indicator for VW detection at any time, WUE was best before symptoms developed, and RCI, total ID, and SdD after symptoms developed.  相似文献   

20.
  总被引:4,自引:0,他引:4  
The potential of solarization to control Meloidogyne incognita in piles of soil used at olive nurseries in southern Spain was studied in 1999 and 2000. Kaolin and soil infested with free eggs and egg masses of the nematode in nylon bags were buried 20 and 40 cm deep inside conical piles of soil 80 cm high and with a base diameter of 1 m. Soil piles were solarized for 3 weeks in July and August. The effect of various periods of solarization was assessed by egg hatch bioassays in sterile water, and by infectivity to tomato plants. Maximum soil temperature at 20 cm depth in solarized piles was 47·4°C in 1999 and 48·2°C in 2000, compared with 32·9°C and 31·7°C in nonsolarized piles. Solarization reduced egg hatch by > 95% compared with nonsolarized samples, irrespective of type, burial depth and location of inocula in a soil pile. Egg hatch of egg mass-infested samples buried at 20 cm depth was higher than that of free eggs buried at the same depth. The differential effect associated with burial depth and type of inoculum was not found in solarized piles. In nonsolarized piles, hatch of free eggs from samples buried at 40 cm depth was higher than that from samples buried at 20 cm depth. Egg hatch in samples from solarized piles was lower than that from nonsolarized piles. A bioassay of tomato plants in 2000 confirmed the reduction in infectivity of free eggs buried in solarized soil piles. Under the conditions in southern Spain, solarization of 40 cm-high piles of soil for 3 weeks can therefore be used for the control of root-knot nematodes in potting soil for olive nursery production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号