首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a novel in vivo model considering a low developmental competence embryo (demi‐embryo) and a subnormal fertility recipient (lactating high‐yielding dairy cow), this experiment evaluated the effect of human chorionic gonadotrophin (hCG) treatment at embryo transfer (ET) on embryonic size at implantation, embryonic survival and recipient plasma progesterone (P4) and bovine pregnancy‐specific protein B (PSPB) concentrations until day 63 of pregnancy. Embryos were bisected and each pair of demi‐embryos was bilaterally transferred to recipients (n = 61) on day 7 of the oestrous cycle. At ET recipients were randomly assigned to treatment with 1500 IU hCG or to untreated controls. Higher (p < 0.01) pregnancy rates on days 25, 42 and 63, and embryo survival rate on day 63 were observed in hCG‐treated cows with secondary CL than in hCG‐treated cows without secondary CL and in untreated cows. Pregnancy rates and embryo survival rate were similar in hCG‐treated cows without secondary CL and untreated cows. Embryonic size on day 42 was not affected by treatment with hCG, presence of secondary CL and type of pregnancy (single vs twin). Presence of secondary CL increased (p < 0.05) plasma P4 concentrations of pregnant cows on days 14, 19 and 25 but not thereafter and of non‐pregnant cows on days 14–21. Treatment with hCG and presence of secondary CL had no effect on plasma PSPB concentrations, which were higher (p < 0.05) in twin than in single pregnancies. In conclusion, secondary CL induced by hCG treatment at ET significantly increased plasma P4 concentrations, the survival rate of demi‐embryos and the pregnancy rate of high‐yielding lactating dairy cows. Embryos were rescued beyond maternal recognition of pregnancy, but later embryonic survival, growth until implantation and placental PSPB secretion until day 63 of pregnancy were not affected by treatment or presence of secondary CL.  相似文献   

2.
This study compared the responses shown by lactating dairy cows to four different P4-based protocols for AI at estrus. Cows with no estrous signs 96 h after progesterone intravaginal device (PRID) removal were subjected to fixed-time AI (FTAI), and their data were also included in the study. In Experiment I, follicular/luteal and endometrial dynamics were assessed every 12 h from the beginning of treatment until AI. The estrous response was examined in Experiment II, and fertility was assessed in both experiments. The protocols consisted of a PRID fitted for five days, along with the administration of different combinations of gonadotropin releasing hormone (GnRH), equine chorionic gonadotropin and a single or double dose (24 h apart) of prostaglandin F. In Experiment I (40 cows), animals receiving GnRH at the start of treatment showed a significantly higher ovulation rate during the PRID insertion period while estrus was delayed. In Experiment II (351 cows), according to the odds ratios, cows showing luteal activity at the time of treatment were less likely to show estrus than cows with no signs of luteal activity. Treatment affected the estrous response and the interval from PRID removal to estrus but did not affect conception rates 28–34 days post AI. Primiparous cows displayed a better estrous response than multiparous cows. Our findings reveal acceptable results of 5-day P4-based protocols for AI at estrus in high-producing dairy cows. Time from treatment to estrus emerged as a good guide for FTAI after a 5-day P4-based synchronization protocol.  相似文献   

3.
The present study was designed to compare the reproductive performance of pre-synchronized post-partum dairy cows subjected, either to the Ovsynch protocol without screening for ovarian status (control group), or to a specific oestrous synchronization protocol applied according to their ovarian status, as determined by transrectal ultrasound (experimental group). The study was conducted on 428 lactating dairy cows. Cows in the Ovsynch group (n = 205) were synchronized and time inseminated after receiving the Ovsynch protocol treatment. Cows in the specific synchronization (Ssynch) group (n = 223) were weekly subjected to transrectal ultrasound exams for 4 weeks, or until AI or starting treatment, and divided into four subgroups according to their ovarian status: (i). corpus luteum (CL) subgroup (n = 130), cows with a CL; (ii). natural oestrus (NE) subgroup (n = 58), cows showing NE; (iii). anovulatory follicles (AF) subgroup (n = 26), cows considered to have AF; and (iv). ovarian cysts (OC) subgroup (n = 9), cows with OC. Cows in the Ssynch group were synchronized and time inseminated following a specific oestrous synchronization protocol, or inseminated at NE. Logistic regression analysis was carried out for the dependent variables ovulation and pregnancy rates to first and to second AI (second AI: first AI + return AI). Cows subjected to Ssynch were 2.1 times more likely to become pregnant at first and at second AI compared with those synchronized using the Ovsynch protocol (P < 0.0001). Our results show that the response of post-partum pre-synchronized cows to a specific oestrous synchronization protocol applied according to their ovarian status is more effective than the response to the Ovsynch protocol applied without taking into account the ovarian status of the animals.  相似文献   

4.
The aim of this study was to investigate the effect of applying a progesterone‐based oestrous synchronization protocol at 51–57 days postpartum in high‐producing dairy cows. The data analysed were derived from 1345 lactating cows. Cows between 51 and 57 days postpartum were assigned to the groups: control, PRID (receiving a progesterone‐releasing intravaginal device for 9 days, and prostaglandin F 24 h before PRID removal) or GnRH–PRID (the same as the PRID group plus GnRH at PRID insertion). Oestrus was detected by using pedometers and confirmed by examination of the genital tract at AI. Oestrous and conception rates before days 71–77 postpartum, pregnancy loss in early pregnant cows or the cumulative conception rate registered on day 120 postpartum were considered as the dependent variables in four consecutive logistic regression analyses. Based on the odds ratios, the oestrous rate increased by a factor of 1.73 in cows showing oestrus before treatment for each unit increase in the number of previous oestruses; decreased by a factor of 0.44 in the control group with respect to the treatment groups; and by a factor of 0.61 in cows without luteal structures at treatment with respect to cows with corpora lutea. The conception rates of cows inseminated before days 71–77 postpartum remained similar across the groups, whereas the likelihood of pregnancy loss for cows becoming pregnant during this period was 0.11 times lower in the PRID group than in the control. Based on the odds ratio, the likelihood of a higher cumulative conception rate on day 120 postpartum: increased in cows showing oestrus before treatment by a factor of 1.41 for each unit increase in the number of previous oestruses, was reduced 0.56‐fold in control cows compared with treated cows, and was also reduced by a factor of 0.98 for each kilogram of milk production increase recorded at treatment. In conclusion, although oestrous synchronization programmes performed in this study did not improve fertility, cows treated with progesterone could be inseminated earlier than untreated cows, such that the treatments increased the cumulative pregnancy rates determined on day 120 postpartum. In addition, fewer pregnancy losses were observed in early pregnant cows in the PRID group than the GnRH–PRID group.  相似文献   

5.
This study aimed to determine the effect of flunixin meglumine treatment during and after the transfer of in vivo produced embryos to Angus (cows) and Holstein (cows and heifers) breeds of cattle on pregnancy rate. Holstein cows were used as donors in the study. A double dose of prostaglandin F2α was administered to the recipient animals for synchronization. Uterine flushing was performed in donors on day 7 after artificial insemination. A total of 295 transferable embryos were obtained. These embryos were transferred to Angus cows (n = 85), Holstein heifers (n = 80) and Holstein cows (n = 130). After the transfer, these animals were divided into three subgroups. The first subgroup (TI) was administered flunixin meglumine during embryo transfer, and the second subgroup (TII) was administered flunixin meglumine both during embryo transfer and on days 8 and 9 after the transfer. The third subgroup (TIII) was not administered anything and it was considered the control group. Pregnancy examination of the recipients was performed on days 30–35 after the transfer using real-time ultrasonography. The pregnancy rates after embryo transfer were found to be 43.52% in Angus cows, 42.5% in Holstein heifers, and 24.61% in Holstein cows (p < .05). When the animals were not classified according to breed, the pregnancy rates in subgroups TI, TII and TIII were found to be 29.29%, 45.10% and 29.79%, respectively (p < .05). In addition, the pregnancy rates were higher in TII and TIII subgroups of Angus cows and Holstein heifers compared to that of Holstein cows (p < .05). As a result, the pregnancy rates obtained after embryo transfer in Angus cows and Holstein heifers were found to be higher than that in Holstein cows. In addition, it was concluded that the administration of flunixin meglumine during and during/after embryo transfer has a positive effect on pregnancy rates in Angus cows and Holstein heifers.  相似文献   

6.
An experiment was conducted to determine whether pregnancy rates following the transfer of in vitro-produced embryos to heat-stressed cows could be improved by 1) culturing embryos in the presence of IGF-I and 2) treating recipients with GnRH. Lactating Holstein cows (n = 260) were synchronized using a timed ovulation protocol. Embryos were produced in vitro and cultured with or without 100 ng/mL of IGF-I. On d 7 after anticipated ovulation (d 0), a single embryo was transferred to all recipients with a palpable corpus luteum (n = 210). A subset of recipients (n = 164) was injected with either GnRH or placebo on d 11. Plasma progesterone concentrations on d 0 and 7 were used to determine the synchrony of recipients. Pregnancy was diagnosed at d 53 and 81 by rectal palpation. Among all recipients, transfer of IGF-I-treated embryos increased pregnancy rate at d 53 (P < 0.05) and tended to increase pregnancy rate at d 81 (P < 0.06). Calving rate also tended to be higher for recipients that received IGF-I-treated embryos (P < 0.07). Among the subset of synchronized recipients (n = 190), pregnancy rate at d 53 and d 81 and calving rate were higher (P < 0.05) for IGF-I-treated embryos. The GnRH tended to increase pregnancy rate at d 53 for all recipients (P < 0.08) and the subset of synchronized recipients (P < 0.10). There were no effects of GnRH (P > 0.10) for pregnancy rate at d 81 and calving rate. The overall proportion of male calves was 64.3%. There was no effect (P > 0.10) of embryo treatment or GnRH on the birth weight or sex ratio of calves. Results of this experiment indicate that treatment of embryos with IGF-I can improve pregnancy and calving rates following transfer of in vitro-produced embryos. Further research is necessary to determine whether the treatment of recipients with GnRH is a practical approach to increase pregnancy rates following in vitro embryo transfer.  相似文献   

7.
A field study was conducted aimed at (i) evaluating the practicability of a fixed‐time insemination regime for medium‐sized dairy operations of north‐western Germany, representative for many regions of Central Europe and (ii) substituting hCG for GnRH as ovulation‐inducing agent at the end of a presynch or ovsynch protocol in an attempt to reduce the incidence of premature luteal regression. Cows of two herds synchronized by presynch and two herds synchronized by ovsynch protocol were randomly allotted to three subgroups; in one group ovulation was induced by the GnRH analog buserelin, in another by hCG, whereas a third group remained untreated. The synchronized groups were fixed‐time inseminated; the untreated group bred to observed oestrus. Relative to untreated herd mates, pregnancy rate in cows subjected to a presynch protocol with buserelin as ovulation‐inducing agent was 74%; for hCG it was 60%. In cows subjected to an ovsynch protocol, the corresponding relative pregnancy rates reached 138% in the case of buserelin and 95% in the case of hCG. Average service interval was shortened by 1 week in the presynch and delayed by 2 weeks in the ovsynch group. It may be concluded that fixed‐time insemination of cows synchronized via ovsynch protocol with buserelin as ovulation‐inducing agent is practicable and may help improve efficiency and reduce the work load involved with herd management in medium‐sized dairy operations. The substitution of hCG for buserelin was found to be not advisable.  相似文献   

8.
The study compared response to prostaglandin F2α (PG), synchrony of ovulation and pregnancy per AI (P/AI) in a 5‐ vs a 7‐day Ovsynch + PRID protocol and investigated whether the initial GnRH affects P/AI in lactating dairy cows. Two hundred and seventy‐six cows (500 inseminations) were assigned to one of four timed‐AI (TAI) protocols: (i) PRID‐7G; 100 μg GnRH im, and a progesterone‐releasing intravaginal device (PRID) for 7 days. At PRID removal, PG (500 μg of cloprostenol) was given im. Cows received the second GnRH treatment at 60 h after PRID removal and TAI 12 h later. (ii) PRID‐5G; as PRID‐7G except the duration of PRID, treatment was 5 days and PG was given twice (12 h apart). (iii) PRID‐7NoG; as PRID‐7G except the initial GnRH, treatment was omitted. (iv) PRID‐5NoG; as PRID‐7NoG except the duration of PRID, treatment was 5 days. Response to treatments and pregnancy status at 32 and 60 days after TAI was determined by ultrasonography. The percentage of cows ovulating before TAI was greatest in PRID‐7G (17.1%), and the percentage of cows that did not have luteal regression was greatest in PRID‐5G (9.5%). The overall P/AI at 32 and 60 days did not differ among TAI protocols. However, during resynchronization, cows subjected to the 5‐day protocols had greater (p < 0.05) P/AI (45.3% vs 33.6%) than cows subjected to the 7‐day protocols. Pregnancy loss between 32 and 60 days tended (p = 0.10) to be greater in cows that did not receive initial GnRH (14.8%) compared to those that received GnRH (8.2%). In conclusion, the PRID‐5G protocol resulted in fewer cows responding to PG, but P/AI did not differ among TAI protocols. A 5‐day protocol resulted in more P/AI in resynchronized cows, and cows that did not receive initial GnRH tended to experience more pregnancy losses.  相似文献   

9.
This study aimed to evaluate the effect of oestrous synchrony between donors and recipients and the embryo quality on the pregnancy rate in beef cow recipients. The experiment was performed over two years at an embryo transfer (ET ) centre in Southern Brazil. Ninety Aberdeen Angus cows were subjected to superovulation (SOV ) protocols, resulting in the recovery of 1,048 transferable embryos. Eleven groups were formed with intervals of 6 hr, from ?30 to +30 hr, with respect to recipient versus donor oestrous detection. Evaluation of embryo quality was according to the IETS guidelines. The overall pregnancy rate was 52%. Effects related to donor and recipient oestrous synchronization on pregnancy rate were observed (=  .01), ranging from 36% to 50%. The embryo quality rate affected the pregnancy rate, where Grade I resulted in 57% and Grade III in 43% of pregnancy (<  .001). The embryonic state (frozen or fresh) showed no (>  .05) effect on pregnancy rate: 53% for fresh embryos and 44% for frozen embryos. The odds ratio for explanatory variables causing pregnancy indicated that Grade III embryos had 31% less chance of conception compared to Grade I. Thus, oestrous synchrony between donor and recipient, considering ±30 hr apart, can affect the pregnancy rate along with embryo quality.  相似文献   

10.
Increased embryonic losses may be associated with inadequate progesterone (P4) concentrations in high‐producing lactating dairy cattle. The objectives of the present studies were to determine if chronic administration of a gonadotropin‐releasing hormone (GnRH) agonist, Deslorelin, would increase circulating P4 concentrations and subsequently increase pregnancy rates in dairy cattle. Administration of Deslorelin for 12 days increased (p < .05) luteal volume and circulating P4 concentrations in primiparous lactating dairy cows, but increased only luteal volumes in multiparous cows. Treatment with Deslorelin increased Day 45 pregnancy rates in cows as compared to untreated controls. Chronic treatment with Deslorelin in dairy cattle; (a) increased luteal volume of the primary CL, (b) induced accessory CL, (c) increased circulating P4 concentration in primiparous cows only, (d) did not lengthen the estrous cycle upon removal of treatment, and (e) increased pregnancy rates. Although luteal volume was increased in multiparous cows and circulating P4 concentrations were not with Deslorelin treatment, there was an apparent effect on pregnancy rates. This hormonal strategy may represent a suitable model to address local effects of P4 and GnRH/luteinizing hormone on uterine environment and subsequent embryonic survival.  相似文献   

11.
It is well documented that heat stress (HS) causes subfertility in dairy cows. However, during the last ten years we have been observing that, under high temperature–humidity index (THI ≥ 75), despite the overall reduced fertility, some cows conceive at the first artificial insemination (AI). Here, we examined distinctive features of cows with conserved fertility under severe HS. From the databases of three herds, 167 lactating Holstein cows were selected; group TT cows (n = 57) conceived in the previous summer (THI ≥ 75) at the 1st AI, and group TS (n = 110) failed to conceive at the same period after at least 2 consecutive AIs. The animals calved in spring, and in August, blood samples were collected during a hot day (THI ≥ 81) for the determination of cortisol and HSP70 concentrations. In one farm, the validity of fertility data of the previous year was re-examined. In 28 cows from group TT and in 39 cows from group TS, the conception rate was examined during July and August. In 6 cows from each group (TT and TS) the oestrous cycles were synchronized, ovulation was induced with GnRH (THI = 80), and the concentration of the pre-ovulatory LH surge was determined in 9 blood samples. The progesterone concentration in the ensuing cycle was determined in blood samples collected every other day. Overall, cortisol and HSP70 were significantly lower in TT group compared to TS. More (p < .05) animals from group TT conceived at the first AI compared with those from group TS. The induced pre-ovulatory LH surge peaked at higher level (p < .002) in group TT than in group TS, while no difference was recorded among groups either in mean progesterone concentrations or in the duration of the ensuing oestrous cycle. These results are highly suggestive that thermotolerance in some dairy cows is an inherent characteristic, warranting further genetic investigation.  相似文献   

12.
We recorded conception rates and estimated pregnancy rates following second and later timed artificial inseminations (TAIs) after hormonal resynchronization on commercial dairy farms, using the so‐called G6G protocol (PGF day‐0; GnRH 2, 8 days; PGF 15, 16 days, GnRH 17 days; TAI 18 days), and the 5‐day Ovsynch protocol or 5DO (GnRH day 0; PGF 5, 6 days; GnRH 7 days; TAI 8 days). In four farms, both protocols were implemented in parallel, and these 1,368 s and later TAIs were used for the protocols’ comparison based on logistic regression (544 TAIs in primiparous; 824 in multiparous cows; 1,024 TAIs after G6G [600 TAIs in multiparous and 424 in primiparous]; 344 TAIs after 5DO [224 TAIs in multiparous and 120 in primiparous]; 280 TAIs during the hot season; 1,088 during the cool season). Conception rate (CR) was 31.7% ± 12.0% among all cows, 35.1% ± 10.7% among cows resynchronized with the G6G protocol and 21.8% ± 9.7% among cows resynchronized with the 5DO protocol (p < 0.0001). CR among all cows was lower during the hot season (19.3% ± 8.4%) than during the cool season (34.9% ± 10.6%; p < 0.0001), and similar seasonal results were observed with G6G protocols. Logistic regression showed significant effects on CR in second and later TAIs by protocol (OR = 0.514; 95% CI 0.385–0.686; p < 0.0001) and season (OR = 0.486; 95% CI 0.350–0.676; p < 0.0001). Parity did not influence CR after second and later TAIs (p > 0.1), and no interaction with season or resynchronization protocol was found. Estimated pregnancy rates based on these CR data from both hormonal protocols suggest that G6G can be effectively used for second and later TAIs and highlight the importance of considering protocol and season when designing strategies for second and later timed AIs on dairy farms.  相似文献   

13.
Lactating dairy cows (n = 667) at random stages of the oestrous cycle were assigned to either ovsynch (O, n = 228), heatsynch (H, n = 252) or control (C, n = 187) groups. Cows in O and H groups received 100 μg of GnRH agonist, i.m. (day 0) starting at 44 ± 3 days in milk (DIM), and 500 μg of cloprostenol, i.m. (day 7). In O group, cows received 100 μg of GnRH (day 9) and were artificially inseminated without oestrus detection 16–20 h later. In H group, cows received 1 mg oestradiol benzoate (EB) i.m., 24 h after the cloprostenol injection and were artificially inseminated without oestrus detection 48–52 h after the EB injection. Cows in C group were inseminated at natural oestrus. On the day of artificial insemination (AI), cows in all groups were assigned to subgroups as follows: human Chorionic Gonadotrophin (O‐hCG) (n = 112), O‐saline (n = 116), H‐hCG (n = 123), H‐saline (n = 129), C‐hCG (n = 94) and C‐saline (n = 93) subgroups. Cows in hCG and saline subgroups received 3000 IU hCG i.m. and or 10 ml saline at day 5 post‐AI (day 15), respectively. Pregnancy status was assessed by palpation per rectum at days 40 to 45 after AI. The logistic regression model using just main effects of season (summer and winter), parity (primiparous and pluriparous), method1 (O, H and C) and method2 (hCG and saline) showed that all factors, except method1, were significant. Significant effects of season (p < 0.01), hCG and parity (p < 0.01), and a trend of parity and season (p < 0.1) were detected. A clear negative effect of warm period on first service pregnancy rate was noted (p < 0.01). The pregnancy rate was the lowest in the H protocol during warm period (p < 0.05). Treatment with hCG 5 days after AI significantly improved pregnancy rates in those cows that were treated with the H protocol compared with saline treatments (41.5% vs 24.8%; p < 0.01). O and H were more effective in primiparous than in pluriparous cows (46.1% vs 29.9%; p < 0.1 and 43.6% vs 24.6%; p < 0.01). First service pregnancy rates were higher in primiparous hCG‐treated than in pluriparous hCG‐treated cows (57.9% vs 32.3%; p < 0.01). The pregnancy rate was higher for the hCG‐treated cows compared with saline‐treated cows during warm period (37.9% vs 23.6%; p < 0.001).  相似文献   

14.
Two experiments were conducted to evaluate whether hCG administered 7 d before initiating the CO-Synch + controlled internal drug release (CIDR) ovulation synchronization protocol (Exp. 1 and 2), or replacing GnRH with hCG at the time of AI (Exp. 1), would improve fertility to a fixed-time AI (TAI) in suckled beef cows. In addition, the effects of hCG on follicle dynamics, corpus luteum development, and concentrations of progesterone (P4) were evaluated. In Exp. 1, cows were stratified by days postpartum, age, and parity and assigned randomly to a 2 × 2 factorial arrangement of 4 treatments: 1) cows received 100 μg of GnRH at CIDR insertion (d -7) and 25 mg of PGF(2α) at CIDR removal (d 0), followed in 64 to 68 h by a TAI plus a second injection of GnRH at TAI (CG; n = 29); 2) same as CG but the second injection of GnRH at the time of insemination was replaced by hCG (CH; n = 28); 3) same as CG, but cows received hCG 7 d (d -14) before CIDR insertion (HG; n = 28); and 4) same as HG, but cows received hCG 7 d (d -14) before CIDR insertion (HH; n = 29). Pregnancy rates were 52, 41, 59, and 38% for GG, GH, HG, and HH, respectively. Cows receiving hCG (39%) in place of GnRH at TAI tended (P = 0.06) to have poorer pregnancy rates than those receiving GnRH (56%). Pre-CO-Synch hCG treatment increased (P < 0.05) the percentage of cows with concentrations of P4 >1 ng/mL at d -7, increased (P < 0.02) concentration of P4 on d -7, and decreased (P < 0.001) the size of the dominant follicle on d 0 and 3, compared with cows not treated with hCG on d -14. In Exp. 2, cows were stratified based on days postpartum, BCS, breed type, and calf sex and then assigned to the CG (n = 102) or HG (n = 103) treatments. Overall pregnancy rates were 51%, but no differences in pregnancy rates were detected between treatments. Pre-CO-Synch hCG treatment increased (P < 0.05) the percentage of cows cycling on d -7 and increased (P < 0.05) concentrations of P4 on d -7 compared with pre-CO-Synch controls. Therefore, pretreatment induction of ovulation after hCG injection 7 d before initiation of CO-Synch + CIDR protocol failed to enhance pregnancy rates, but replacing GnRH with hCG at the time of AI may reduce pregnancy rates.  相似文献   

15.
Two experiments were conducted to develop protocols for the use of fixed-time artificial insemination and embryo transfer (TAI and TET, respectively) to increase beef cattle productivity. Suckled beef cows were given GnRH (100 µg im) on Day − 10, and PGF (25 mg im) on Day − 3, with TAI on Day 0 (66 h later), and assigned to either embryo recipient (ER) or no embryo (NR) treatments on Days 6 or 7. Semen from Gelbvieh (GB) beef sires was used for TAI; sexed-male in vivo developed Holstein embryos (HO) were placed nonsurgically (TET) into the uterine horn contralateral to the corpus luteum. In Experiment 1, ovarian status of cows (n = 111; 69 ± 11 d postpartum; mean ± SD on Day 0) in Groups I and II was presynchronized with a single PGF treatment on Day − 24; Groups II and III received GnRH concurrent with TAI, and ER (n = 78) were selected from all groups on Days 6 or 7. Neither presynchronization nor GnRH affected rates of recipient selection, Day 45 pregnancy (43.2, 43.2, and 54.0% for Groups I, II and III, respectively), or calving (40.5, 37.8, and 43.2%). However, treatment with GnRH increased HO-birth rate (8.0, 14.0 and 24.0%; P < 0.05). In Experiment 2, cows (n = 99, 113 ± 10 d postpartum) were assigned on Day 7 to NR and ER, with and without hCG (2500 IU im), following a TAI protocol (as per Group III in Experiment 1). Treatment with hCG increased reproductive rate (1.16 vs 1.44 calves/calving; P < 0.05), but had no significant effect on rates of Day 45 pregnancy (45.3 vs 41.3%), calving (31.2 vs 37.0%) or HO-births (20.0 vs 26.0%). In summary, GnRH-based synchronization rates were 71.2% (based on circulating progesterone concentrations that were < 1.0 ng/mL on Day 0 and ≥ 1.0 ng/mL on Day 7); TET did not affect GB-birth rate, but more calves were produced by ER than NR cows (1.43 vs 1.02 calves/calving; P < 0.01); and weaned calf production was 53% greater for twin- than singleton-suckled cows (392 ± 25 vs 256 ± 11 kg/dam; mean ± SEM, P < 0.05). Therefore, GnRH-based TAI and TET protocols for mixed-breed twin production increased beef cow productivity.  相似文献   

16.
The objective of this study was to characterize the effect of dose and type of cloprostenol (CLO) on the luteolytic response of dairy cattle during the Ovsynch protocol under different oestrus cycle and physiological characteristics. Twelve non‐lactating dairy cows and 111 lactating dairy cows were used in three experiments. In Experiment I, cows were synchronized so that they had only a 5.5‐ to 6‐day‐old corpus luteum (CL) at the time of the prostaglandin F (PGF) treatment of Ovsynch. In Experiment II, cows were synchronized so that they had at least a CL of approximately 14 days old at the time of PGF treatment and an accessory CL if they had responded to the first GnRH of Ovsynch. Furthermore, in each experiment, cows received either a standard or a double dose of d‐CLO as the luteolytic treatment. In Experiment III, lactating cows were blocked by parity and assigned to one of three luteolytic treatments during Ovsynch: 500 μg d,l‐CLO, 150 or 300 μg of d‐CLO. In Experiment I, the dose of d‐CLO had an effect (p = 0.08) on the percentage of cows with full luteolysis, but not in Experiment II (p > 0.1). More cows in Experiment II had full luteolysis than did cows of Experiment I (87% vs 58%, respectively; p = 0.007). In Experiment III, 87.1%, 84.4% and 86.2% lactating dairy cows had full luteolysis and 37.8%, 36.8% and 36.1% of cows became pregnant after treatment with 500 μg d,l‐CLO, 150 or 300 μg of d‐CLO, respectively (p > 0.05).  相似文献   

17.
The objective of this study was to determine the effect of timing of artificial insemination on pregnancy rates, calving rates, abortion rates, twinning rates, and calf gender ratio after synchronization of ovulation with Ovsynch protocol in Holstein dairy cows. The ovulation of 219 lactating Holstein dairy cows was synchronized using the Ovsynch protocol. Therefore, cows received an injection of GnRH followed by an injection of prostaglandin F 7 days later and a second treatment with GnRH 2 days later. Cows were artificially inseminated at 0, 12, or 24 h after the second injection of GnRH. Reproductive performance did not differ between cows inseminated at 0 h (n?=?82), 12 h (n?=?66), or 24 h (n?=?71) after the last injection of GnRH (pregnancy rate: 0 h 48 %, 12 h 47 %, 24 h 52 %; abortion rate: 0 h 5 %, 12 h 0 %, 24 h 11 %; calving rate: 0 h 43 %, 12 h 47 %, 24 h 41 %; twinning rate: 0 h 2 %, 12 h 0 %, 24 h 0 %; calf gender ratio (F/M): 0 h 61:39 %, 12 h 48:52 %, 24 h 39:61 %; P?>?0.05). Pregnancy rates for cows inseminated in postpartum times of 50–75, 76–100, and >100 days within the first and ≥3 parities were statistically similar (P?>?0.05), but pregnancy rates for cows inseminated at different postpartum times of 50–75, 76–100, and >100 days within the second parity were different (P?<?0.01). In general, pregnancy rates of cows inseminated at different postpartum times (P?<?0.01) and parities (P?<?0.001) differed. The findings of the current study showed that rates of pregnancy, abortion, calving, and twinning of Holstein dairy cows subjected to artificial insemination at different times after synchronization were similar. These results also indicate that the timing of artificial insemination after synchronization did not influence calf gender ratio. Furthermore, pregnancy rates of Holstein dairy cows inseminated after synchronization were significantly influenced by postpartum time and parity number.  相似文献   

18.
19.
This field study investigated whether the administration of a single dose of gonadotropin‐releasing hormone (GnRH) to dairy cows without a corpus luteum (CL) 4 weeks after calving can improve reproductive performance. Holstein dairy cows underwent ultrasonography to assess the presence of ovarian structures at 29.2 ± 5.2 days post‐partum, and cows were divided into two main groups based on the presence (CL group, n = 230) or absence (non‐CL group, n = 460) of a CL. The non‐CL group was further randomly divided into two subgroups based on the administration of GnRH (non‐CL GnRH group, n = 230) or no GnRH (non‐CL control group, n = 230). Subsets of cows from non‐CL control (n = 166) and non‐CL GnRH (n = 175) groups received a second ultrasonography at 44.5 ± 5.4 days post‐partum to assess CL formation. The percentage of cows with CL at the second ultrasonography was greater in the non‐CL GnRH group (70.9%) than in the non‐CL control group (53.0%, p = 0.0006). The hazard of the first post‐partum insemination by 150 days in milk (DIM) was higher in the CL group than in the non‐CL control group (hazard ratio [HR]: 1.36, p = 0.001). The probability of a pregnancy to the first insemination was higher in non‐CL GnRH (odds ratio [OR]: 1.50, p = 0.04) and CL groups (OR: 1.55, p = 0.03) compared to the non‐CL control group. Furthermore, the hazard of pregnancy by 210 DIM was higher in non‐CL GnRH (HR: 1.30, p = 0.01) and CL (HR: 1.51, p = 0.0001) groups than in the non‐CL control group. In conclusion, administration of GnRH to dairy cows without a CL 4 weeks after calving was associated with an increase in ovulation and improved reproductive performance.  相似文献   

20.
The aim of this study was to evaluate the effects of the transfer side, transfer location, cervix transfer score, type and diameter of corpus luteum (CL) during embryo transfer on pregnancy rates in beef heifers. Progesterone-based synchronization and superovulation protocol were applied to Simmental cows used as donors (n = 168). Uterine flushings were performed on day 7 following artificial insemination. Obtained Code I (excellent or good) and II (fair) quality embryos were transferred to recipient beef heifers (n = 561). During embryo transfer, side of transfer (right or left), transfer location (the cranial or middle third of uterine horn), cervix transfer score (easy, moderate or difficult) and type (CLa, CLb and CLc) and diameter of CL were determined. Pregnancy rates following the transfer of Code I and II embryos were 44.66% and 33.07%, respectively (p < .05). The rates of pregnancy after transfers to the right and left uterine horn were 37% and 42.2%, respectively (p > .05). The pregnancy rates were 41.2%, 34.9% and 30.3% for cervix transfer scores as easy, moderate and difficult, respectively (p > .05). Pregnancy rates after transfer to the cranial third and middle third were 41.06% and 29.67%, respectively (p < .05). According to types of CL, pregnancy rates were 31.7%, 40.4% and 45.3% for CLa, CLb and CLc, respectively (p < .05). Moreover, it was found that as the CL diameter increased, the pregnancy rates increased. As a result, it was concluded that there was no effect of side of transfer and cervix transfer score, but embryo quality, transfer location, type and diameter of CL had significant effects on the pregnancy rate during embryo transfer in beef heifers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号