首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to control the H9N2 subtype low pathogenic avian influenza (LPAI), an inactivated vaccine has been used in Korea since 2007. The Korean veterinary authority permitted the use of a single H9N2 LPAI vaccine strain to simplify the evolution of the circulating virus due to the immune pressure caused by the vaccine use. It is therefore important to determine the suitability of the vaccine strain in the final inactivated oil emulsion LPAI vaccine. In this study, we applied molecular rather than biological methods to verify the suitability of the vaccine strain used in commercial vaccines and successfully identified the strain by comparing the nucleotide sequences of the hemagglutinin and neuraminidase genes with that of the permitted Korean LPAI vaccine strain. It is thought that the method used in this study might be successfully applied to other viral genes of the LPAI vaccine strain and perhaps to other veterinary oil emulsion vaccines.  相似文献   

2.
During the spring of 2002, a low pathogenic avian influenza (LPAI) A (H7N2) virus caused a major outbreak among commercial poultry in Virginia and adjacent states. The virus primarily affected turkey flocks, causing respiratory distress and decreased egg production. Experimentally, turkeys were more susceptible than chickens to H7N2 virus infection, with 50% bird infectious dose titers equal to 10(0.8) and 10(2.8-3.2), respectively. Comparison of virus shedding from the cloaca and oropharynx demonstrated that recent H7N2 virus isolates were readily isolated from the upper respiratory tract but rarely from the gastrointestinal tract. The outbreak of H7N2 virus raised concerns regarding the availability of vaccines that could be used for the prevention and control of this virus in poultry. We sought to determine if an existing commercial avian influenza (AI) vaccine prepared from a 1997 seed stock virus could provide protection against a 2002 LPAI H7N2 virus isolated from a turkey (A/turkey/Virginia/158512/02 [TV/02]) in Virginia that was from the same lineage as the vaccine virus. The inactivated AI vaccine, prepared from A/chicken/ Pennsylvania/21342/97 (CP/97) virus, significantly reduced viral shedding from vaccinated turkeys in comparison with sham controls but did not prevent infection. The protective effect of vaccination correlated with the level of virus-specific antibody because a second dose of vaccine increased antiviral serum immunoglobulin G and hemagglutination inhibition (HI) reactivity titers in two different turkey age groups. Serum from CP/97-vaccinated turkeys reacted equally well to CP/97 and TV/02 antigens by HI and enzyme-linked immunosorbent assay. These results demonstrate the potential benefit of using an antigenically related 1997 H7N2 virus as a vaccine candidate for protection in poultry against a H7N2 virus isolate from 2002.  相似文献   

3.
H D Stone 《Avian diseases》1987,31(3):483-490
An experimental avian influenza (AI) oil-emulsion vaccine was formulated with 1 part inactivated A/turkey/Wisconsin/68 (H5N9) AI virus emulsified in 4 parts oil. Broilers were vaccinated subcutaneously (SC) either at 1 or 3 days old or at 4 or 5 wks old. Commercial white leghorn (WL) layers were vaccinated SC at 12 and 20 wks old or at only 20 wks old. Maximum geometric mean hemagglutination-inhibition titers postvaccination (PV) were 1:86-1:320 for broilers, 1:597 for twice-vaccinated layers, and 1:422 for once-vaccinated layers. Ninety to 100% of vaccinated broilers were protected against death and morbidity when challenged with highly pathogenic A/chicken/Penn/83 (H5N2) AI virus 4 weeks PV, and all were protected when challenged 8 wks PV. All controls and most vaccinates were infected by challenge virus, and 90-100% of controls died or exhibited clinical signs. Vaccinated commercial pullets were protected against morbidity, death, and egg-production decline at either peak of lay (25 wks old) or at 55 wks old. All unvaccinated controls became morbid or died, and egg production ceased 72 hours after challenge. The 0.5-ml vaccine dose was determined to contain 251 and 528 mean protective doses (PD50S) in 4-wk-old and 1-year-old SPF WL chickens, respectively, challenged 4 wks PV.  相似文献   

4.
Lee YN  Lee DH  Park JK  Lim TH  Youn HN  Yuk SS  Lee YJ  Mo IP  Sung HW  Lee JB  Park SY  Choi IS  Song CS 《Avian diseases》2011,55(4):724-727
An outbreak of avian influenza, caused by an H9N2 low-pathogenic avian influenza virus (AIV), occurred in a chicken farm and caused severe economic losses due to mortality and diarrhea. AIV was isolated and identified in a sample from an affected native Korean chicken. Genetic analysis of the isolate revealed a high sequence similarity to genes of novel reassortant H9N2 viruses isolated from slaughterhouses and live bird markets in Korea in 2008 and 2009. Animal challenge studies demonstrated that the replication kinetics and pathogenicity of the isolate were considerably altered due to adaptation in chickens. Vaccine protection studies indicated that commercial vaccine was not able to prevent virus shedding and clinical disease when chickens were challenged with the isolate. These results suggest that the novel H9N2 virus possesses the capacity to replicate efficiently in the respiratory system against vaccination and to cause severe disease in domestic chickens. The results also highlight the importance of appropriate updating of vaccine strains, based on continuous surveillance data, to prevent the possibility of a new H9N2 epidemic in Korea.  相似文献   

5.
The H9N2 subtype low pathogenic avian influenza is one of the most prevalent avian diseases worldwide, and was first documented in 1996 in Korea. This disease caused serious economic loss in Korea''s poultry industry.In order to develop an oil-based inactivated vaccine, a virus that had been isolated in 2001 (A/chicken/Korea/01310/2001) was selected based on its pathogenic, antigenic, and genetic properties. However, in animal experiments, the efficacy of the vaccine was found to be very low without concentration of the antigen (27 to 210 hemagglutinin unit). In order to overcome the low productivity, we passaged the vaccine candidate virus to chicken eggs. After the 20th passage, the virus was approximately ten times more productive compared with the parent virus. For the most part, the passaged virus maintained the hemagglutinin cleavage site amino acid motif (PATSGR/GLF) and had only three amino acid changes (T133N, V216G, E439D, H3 numbering) in the hemagglutinin molecule, as well as 18 amino acid deletions (55-72) and one amino acid change (E54D) in the NA stalk region. The amino acid changes did not significantly affect the antigenicity of the vaccine virus when tested by hemagglutination inhibition assay. Though not complete, the vaccine produced after the 20th passage of the virus (01310 CE20) showed good protection against a homologous and recent Korean isolate (A/chicken/Korea/Q30/2004) in specific pathogen- free chickens.The vaccine developed in this study would be helpful for controlling the H9N2 LPAI in Korea.  相似文献   

6.
In order to develop better control measures against avian influenza, it is necessary to understand how the virus transmits in poultry. In a previous study in which the infectivity and transmissibility of the pandemic H1N1 influenza virus was examined in different poultry species, we found that no or minimal infection occurred in chicken and turkeys intranasally (IN) inoculated with the virus. However, we demonstrated that the virus can infect laying turkey hens by the intracloacal (IC) and intraoviduct (IO) routes, possibly explaining the drops in egg production observed in turkey breeder farms affected by the virus. Such novel routes of exposure have not been previously examined in chickens and could also explain outbreaks of low pathogenicity avian influenza (LPAI) that cause a decrease in egg production in chicken layers and breeders. In the present study, 46-wk-old specific-pathogen-free chicken layers were infected by the IN, IC, or IO routes with one of two LPAI viruses: a poultry origin virus, A/chicken/CA/1255/02 (H6N2), and a live bird market isolate, A/chicken/NJ/12220/97 (H9N2). Only hens IN inoculated with the H6N2 virus presented mild clinical signs consisting of depression and anorexia. However, a decrease in number of eggs laid was observed in all virus-inoculated groups when compared to control hens. Evidence of infection was found in all chickens inoculated with the H6N2 virus by any of the three routes and the virus transmitted to contact hens. On the other hand, only one or two hens from each of the groups inoculated with the H9N2 virus shed detectable levels of virus, or seroconverted and did not transmit the virus to contacts, regardless of the route of inoculation. In conclusion, LPAI viruses can also infect chickens through other routes besides the IN route, which is considered the natural route of exposure. However, as seen with the H9N2 virus, the infectivity of the virus did not increase when given by these alternate routes.  相似文献   

7.
Despite extensive vaccination, H9N2 subtype influenza A viruses (IAVs) have prevailed in chicken populations in China. H9N2 IAVs have been a major cause of respiratory disease and reduced egg production, resulting in great economic losses to the Chinese poultry industry. In attempt to find reasons for lack of adequate protection by commercial vaccines, 41 H9N2 viruses isolated from chicken flocks in various regions of China through surveillance between 1998 and 2007 were systemically analyzed using molecular and serological methods in comparison to IAV Ck/Shandong/6/96 and Ck/Shanghai/F/98 that have been used in a majority of commercial vaccines for H9N2 in China since 1998. The analyses showed that the field isolates were predominantly of Beijing/94 lineage and underwent rapid genetic and antigenic changes, forming several antigenic groups. Comparisons between the field isolates and vaccine strains revealed that a majority of the field isolates examined were antigenically distinct from the vaccine strains to some extent. Therefore, the rapid antigenic evolution of H9N2 IAV and resulting antigenic difference from the earlier vaccine strains appears to be a key factor for suboptimal control of H9N2 IAV in China, emphasizing that the vaccine strain should be updated in a timely manner through surveillance and accompanying laboratory evaluation of contemporary viruses for antigenic similarity with existing vaccine strains.  相似文献   

8.
Two low-pathogenicity (LP) and two high-pathogenicity (HP) avian influenza (AI) viruses were inoculated into chickens by the intranasal route to determine the presence of the AI virus in breast and thigh meat as well as any potential role that meat could fill as a transmission vehicle. The LPAI viruses caused localized virus infections in respiratory and gastrointestinal (GI) tracts. Virus was not detected in blood, bone marrow, or breast and thigh meat, and feeding breast and thigh meat from virus-infected birds did not transmit the virus. In contrast to the two LPAI viruses, A/chicken/Pennsylvania/1370/1983 (H5N2) HPAI virus caused respiratory and GI tract infections with systemic spread, and virus was detected in blood, bone marrow, and breast and thigh meat. Feeding breast or thigh meat from HPAI (H5N2) virus-infected chickens to other chickens did not transmit the infection. However, A/lchicken/Korea/ES/2003 (H5N1) HPAI virus produced high titers of virus in the breast meat, and feeding breast meat from these infected chickens to other chickens resulted in Al virus infection and death. Usage of either recombinant fowlpox vaccine with H5 AI gene insert or inactivated Al whole-virus vaccines prevented HPAI virus in breast meat. These data indicate that the potential for LPAI virus appearing in meat of infected chickens is negligible, while the potential for having HPAI virus in meat from infected chickens is high, but proper usage of vaccines can prevent HPAI virus from being present in meat.  相似文献   

9.
从发病蛋鸡群分离到H9N2亚型禽流感病毒TJ1株,对其进行了系统的生物学特性鉴定.结果表明,分离毒TJ1株具有血凝性,且凝集不被新城疫和产蛋下降综合征抗血清抑制,而被H9亚型禽流感病毒标准阳性血清抑制,禽流感琼扩试验结果为阳性,在电镜下呈典型的流感病毒粒子形态,证明该毒株为A型流感病毒;通过致病力试验,分离毒TJ1株对6周龄SPF鸡无致病性,为低致病性毒株;用其制备成油乳剂灭活疫苗免疫雏鸡,能很快产生对H9特异的血凝抑制抗体,于免疫后3周攻毒,可以保护雏鸡抵御同病毒攻击的感染,表明分离毒TJ1株具有良好的免疫原性.  相似文献   

10.
Vaccines against mildly pathogenic avian influenza (AI) have been used in turkeys within the United States as part of a comprehensive control strategy. Recently, AI vaccines have been used in control programs against highly pathogenic (HP) AI of chickens in Pakistan and Mexico. A recombinant fowl pox-AI hemagglutinin subtype (H) 5 gene insert vaccine has been shown to protect specific-pathogen-free chickens from HP H5 AI virus (AIV) challenge and has been licensed by the USDA for emergency use. The ability of the recombinant fowl pox vaccine to protect chickens preimmunized against fowl pox is unknown. In the current study, broiler breeders (BB) and white leghorn (WL) pullets vaccinated with a control fowl poxvirus vaccine (FP-C) and/or a recombinant fowl poxvirus vaccine containing an H5 hemagglutinin gene insert (FP-HA) were challenged with a HP H5N2 AIV isolated from chickens in Mexico. When used alone, the FP-HA vaccine protected BB and WL chickens from lethal challenge, but when given as a secondary vaccine after a primary FP-C immunization, protection against a HP AIV challenge was inconsistent. Both vaccines protected against virulent fowl pox challenge. This lack of consistent protection against HPAI may limit use to chickens without previous fowl pox vaccinations. In addition, prior exposure to field fowl poxvirus could be expected to limit protection induced by this vaccine.  相似文献   

11.
BackgroundSince 2003, the H5 highly pathogenic avian influenza (HPAI) subtype has caused massive economic losses in the poultry industry in South Korea. The role of inland water bodies in avian influenza (AI) outbreaks has not been investigated. Identifying water bodies that facilitate risk pathways leading to the incursion of the HPAI virus (HPAIV) into poultry farms is essential for implementing specific precautionary measures to prevent viral transmission.ObjectivesThis matched case-control study (1:4) examined whether inland waters were associated with a higher risk of AI outbreaks in the neighboring poultry farms.MethodsRivers, irrigation canals, lakes, and ponds were considered inland water bodies. The cases and controls were chosen based on the matching criteria. The nearest possible farms located within a radius of 3 km of the case farms were chosen as the control farms. The poultry farms were selected randomly, and two HPAI epidemics (H5N8 [2014–2016] and H5N6 [2016–2017]) were studied. Conditional logistic regression analysis was applied.ResultsStatistical analysis revealed that inland waters near poultry farms were significant risk factors for AI outbreaks. The study speculated that freely wandering wild waterfowl and small animals contaminate areas surrounding poultry farms.ConclusionsPet birds and animals raised alongside poultry birds on farm premises may wander easily to nearby waters, potentially increasing the risk of AI infection in poultry farms. Mechanical transmission of the AI virus occurs when poultry farm workers or visitors come into contact with infected water bodies or their surroundings. To prevent AI outbreaks in the future, poultry farms should adopt strict precautions to avoid contact with nearby water bodies and their surroundings.  相似文献   

12.
Between November 2005 and March 2006, a total of 253 poultry flocks in the Gyeonggi-do of Korea were examined for seroprevalence against avian influenza (AI) using a hemagglutination inhibition (HI) test and an agar gel precipitation test. No low pathogenic avian influenza (LPAI) virus was isolated from 47 seropositive flocks that lacked clinical signs during sampling. The unadjusted percentage of seroprevalence rates of layer and broiler flocks were not significantly different, i.e., 26% (25/96) and 23% (22/97), respectively. The HI titer of the layers (mean = 89) was higher than the broilers (mean = 36; p < 0.001). A cross-sectional study was conducted for the seroprevalence of LPAI in the layers. Of 7 risk factors, farms employing one or more workers had a higher seropositive prevalence as compared to farms without hired employees (adjusted prevalence OR = 11.5, p = 0.031). Layer flocks older than 400 d had higher seropositivity than flocks younger than 300 d (OR = 4.9, p = 0.017). The farmers recognized at least one of the clinical signs in seropositive flocks, such as decreased egg production, respiratory syndromes, and increased mortality (OR = 2.3, p = 0.082). In a matched case-control study, 20 pairs of case and control flocks matched for type of flock, hired employees, age, and flock size were compared. Frequent cleansing with disinfectants was associated with a decreased risk of seropositivity (OR = 0.2, p = 0.022). Although there was a low statistical association, using a foot disinfectant when entering the building led to a decreased rate of seropositivity (OR = 0.3, p = 0.105).  相似文献   

13.
The impact of low pathogenicity avian influenza (LPAI) has been confirmed mainly in farms. Unlike apparent losses caused by the high pathogenicity avian influenza (HPAI), the LPAI impact has been hardly evaluated due to underestimating its spread and damage. In 2019, a questionnaire study was conducted in southern Vietnam to identify the specific risk factors of LPAI virus (LPAIV) circulation and to find associations between husbandry activities and LPAI prevalence. A multilevel regression analysis indicated that keeping Muscovy ducks during farming contributed to LPAIV positivity [Odds ratio=208.2 (95% confidence interval: 13.4–1.1 × 104)]. In cluster analysis, farmers willing to report avian influenza (AI) events and who agreed with the local AI control policy had a slightly lower risk for LPAIV infection although there was no significance in the correlation between farmer characteristics and LPAI occurrence. These findings indicated that keeping Muscovy ducks without appropriate countermeasures might increase the risk of LPAIV infection. Furthermore, specific control measures at the local level are effective for LPAIV circulation, and the improvement of knowledge about biosecurity and attitude contributes to reducing LPAI damage.  相似文献   

14.
Inactivated and fowlpox virus (FP)-vectored vaccines have been used to control H5 avian influenza (AI) in poultry. In H5 AI endemic countries, breeder flocks are vaccinated and therefore, maternally-derived antibodies (MDA) are transferred to their progeny. Results of three immunogenicity and one efficacy studies performed in birds with or without MDA indicated that the immunogenicity of an inactivated vaccine based on a H5N9 AI isolate (inH5N9) was severely impaired in chicks hatched from inH5N9-vaccinated breeders. This MDA interference was lower when breeders received only one administration of the same vaccine and could be overcome by priming the chicks at day-of-age with a live recombinant FP-vectored vaccine with H5 avian influenza gene insert (FP-AI). The interference of anti-FP MDA was of lower intensity than the interference of anti-AI MDA. The highest interference observed on the prime-boost immunogenicity was in chicks hatched from breeders vaccinated with the same prime-boost scheme. The level of protection against an antigenic variant H5N1 highly pathogenic AI isolate from Indonesia against which the FP-AI or inH5N9 alone was poorly protective could be circumvented by the prime-boost regimen in birds with either FP or AI MDA. Thus, the immunogenicity of vaccines in young chicks with MDA depends on the vaccination scheme and the type of vaccine used in their parent flocks. The heterologous prime-boost in birds with MDA may at least partially overcome MDA interference on inactivated vaccine.  相似文献   

15.
Low-pathogenicity avian influenza (LPAI) subtype H7N3 was diagnosed on a two-age broiler breeder farm in Abbotsford, British Columbia (BC), in early February 2004. The presenting complaint in the older index flock was feed refusal, with 0.5% mortality over 72 hr that resolved over the following week Ten days after the initial complaint in the index flock, a younger flock in an adjacent barn experienced an abrupt spike in mortality (25% in 48 hr). The gross lesions of tracheal hyperemia and hilar pulmonary consolidation were subtle and nonspecific, and the diagnosis of avian influenza required laboratory confirmation. Two different viruses were isolated from the index farm: a LPAI (H7N3) was isolated from the older flock and a high-pathogenicity avian influenza (HPAI) (H7N3), which had an additional 21 base insertion at the hemagglutinin-cleavage site, was isolated from the younger flock. The presence of this insertion sequence and the similarity of adjacent sequences indicate that the LPAI had mutated into HPAI at some point between the first and second barn. Despite enhanced on-farm biosecurity measures, the virus was not contained on the index farm and eventually spread to over 40 commercial poultry facilities before massive depopulation efforts enabled its eradication.  相似文献   

16.
Chickens were infected under experimental conditions with Mycoplasma gallisepticum and low pathogenic avian influenza (LPAI) strain A/mallard/Hungary/19616/07 (H3N8). Two groups of chickens were aerosol challenged with M. gallisepticum strain 1226. Seven days later, one of these groups and one mycoplasma-free group was challenged with LPAI H3N8 virus; one group without challenge remained as negative control. Eight days later, the birds were euthanized and examined for gross pathologic and histologic lesions. The body weight was measured, and the presence of antimycoplasma and antiviral antibodies was tested before the mycoplasma challenge, before the virus challenge, and at the end of the study to confirm both infections. Chickens in the mycoplasma-infected group developed antibodies against M. gallisepticum but not against the influenza virus. Chickens of the group infected with the influenza virus became serologically positive only against the virus, while the birds in the coinfected group developed antibodies against both agents. The LPAI H3N8 virus strain did not cause decrease in body weight and clinical signs, and macroscopic pathological lesions were not present in the chickens. The M. gallisepticum infection caused respiratory signs, airsacculitis, and peritonitis characteristic of mycoplasma infection. However, the clinical signs and pathologic lesions and the reduction in weight gain were much more significant in the group challenged with both M. gallisepticum and LPAI H3N8 virus than in the group challenged with M. gallisepticum alone.  相似文献   

17.
Tetanus toxoid (TT) was assessed as a positive marker for avian influenza (AI) virus vaccination in chickens, in a vaccination and challenge study. Chickens were vaccinated twice with inactivated AI H5N2 virus vaccine, and then challenged three weeks later with highly pathogenic AI H5N1 virus. Vaccinated chickens were compared with other groups that were either sham-vaccinated or vaccinated with virus with the TT marker. All sham-vaccinated chickens died by 36 hours postinfection, whereas all vaccinated chickens, with or without the TT marker, were protected from morbidity and mortality following exposure to the challenge virus. Serological testing for H5-specific antibodies identified anamnestic responses to H5 in some of the vaccinated birds, indicating active virus infection.  相似文献   

18.
In the light of experience gained with avian influenza (AI) outbreaks in Europe and elsewhere in the world, the European Union (EU) legislation has recently been updated. The strategy to control the introduction and spread of AI relies on rapid disease detection, killing of infected birds, movement restrictions for live birds and their products, cleaning and disinfection and vaccination. Measures are not only to be implemented in case of outbreaks of highly pathogenic AI (HPAI), but are now also directed against occurrence of low pathogenic AI of H5 and H7 (LPAI) subtypes in poultry, albeit in a modified manner proportionate to the risk posed by these pathotypes. Enhanced surveillance in poultry holdings and wild birds, as well as preventive vaccination, has also been introduced. EU Measures are flexible and largely based on risk assessment of the local epidemiological situation. The occurrence of HPAI H5N1 of the Asian lineage in the EU and its unprecedented spread by wild migratory birds necessitated the adoption of additional control measures. Although HPAI H5N1 has affected wild birds and poultry holdings in several EU Member States, EU legislation and its implementation in Member States has so far successfully limited the impact of the disease on animal and human health.  相似文献   

19.
Influenza A viruses have been isolated from humans, from several other mammalian species and a wide variety of avian species, among which, wild aquatic birds represent the natural hosts of influenza viruses. The majority of the possible combinations of the 15 haemagglutinin (HA) and nine neuraminidase (NA) subtypes recognized have been identified in isolates from domestic and wild birds. Infection of birds can cause a wide range of clinical signs, which may vary according to the host, the virus strain, the host's immune status, the presence of any secondary exacerbating microorganisms and environmental factors. Most infections are inapparent, especially in waterfowl and other wild birds. In contrast, infections caused by viruses of H5 and H7 subtypes can be responsible for devastating epidemics in poultry. Despite the warnings to the poultry industry about these viruses, in 1997 an avian H5N1 influenza virus was directly transmitted from birds to humans in Hong Kong and resulted in 18 confirmed infections, thus strengthening the pandemic threat posed by avian influenza (AI). Indeed, reassortant viruses, harbouring a combination of avian and human viral genomes, have been responsible for major pandemics of human influenza. These considerations warrant the need to continue and broaden efforts in the surveillance of AI. Control programmes have varied from no intervention, as in the case of the occurrence of low pathogenic (LP) AI (LPAI) viruses, to extreme, expensive total quarantine-slaughter programmes carried out to eradicate highly pathogenic (HP) AI (HPAI) viruses. The adoption of a vaccination policy, targeted either to control or to prevent infection in poultry, is generally banned or discouraged. Nevertheless, the need to boost eradication efforts in order to limit further spread of infection and avoid heavy economic losses, and advances in modern vaccine technologies, have prompted a re-evaluation of the potential use of vaccination in poultry as an additional tool in comprehensive disease control strategies. This review presents a synthesis of the most recent research on AI that has contributed to a better understanding of the ecology of the virus and to the development of safe and efficacious vaccines for poultry.  相似文献   

20.
为了解广西玉林市2020年规模禽场禽流感病毒感染状况,采用荧光RT-PCR方法,对广西玉林市7个县(市、区)42个规模化禽场采集的1260份禽喉/泄殖腔棉拭子样品进行了通用型禽流感病毒核酸检测(荧光PCR),并对检测为阳性的样本进行H5、H7亚型(双重荧光PCR)和H9亚型(荧光PCR)分型鉴定.结果显示:在42个规模...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号