首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Physicochemical changes of myosin during heating were investigated to elucidate the mechanism of heat-induced gelation of arrowtooth flounder (ATF) myosin at high ionic strength. Changes in dynamic properties indicated ATF myosin formed a gel in three different stages as shown by the first increase in G' (storage modulus) at 28 degrees C, followed by the decrease at 35 degrees C and the second increase at 42 degrees C. DSC thermogram showed the onset of myosin denaturation at 25 degrees C with two maximum transition temperatures at 30 and 36 degrees C. The decrease in alpha-helical content indicated ATF myosin began to unfold at 15 degrees C and the unfolding continued until it reached 65 degrees C. Turbidity measurement showed myosin began to aggregate at 23 degrees C and the aggregation was complete at 40 degrees C. Surface hydrophobicity increased consistently in the temperature range studied, 20-65 degrees C. Sulfhydryl contents decreased significantly at 20-30 degrees C due to the formation of disulfide linkages but remained constant at temperatures >30 degrees C. ATF myosin was shown to be extremely sensitive to heat, resulting in denaturation at lower temperature than other fish myosin. Denaturation was initiated by unfolding of the alpha-helical region in myosin followed by exposure of hydrophobic and sulfhydryl residues, which are subsequently involved in aggregation and gelation processes.  相似文献   

2.
Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) were used to study changes in the conformation of globulin from common buckwheat (Fagopyrum esculentum Moench) (BWG) under various environmental conditions. The IR spectrum of the native BWG showed several major bands from 1691 to 1636 cm(-1) in the amide I' region, and the secondary structure composition was estimated as 34.5% beta-sheets, 20.0% beta-turns, 16.0% alpha-helices, and 14.4% random coils. Highly acidic and alkaline pH conditions induced decreases in beta-sheet and alpha-helical contents, as well as in denaturation temperature (Td) and enthalpy of denaturation (DeltaH), as shown in the DSC thermograms. Addition of chaotropic salts (1.0 M) caused progressive decreases in ordered structures and thermal stability following the lyotropic series of anions. The presence of several protein structure perturbants also led to changes in IR band intensities and DSC thermal stabilities, suggesting protein unfolding. Intermolecular antiparallel beta-sheet (1620 and 1681 cm(-1)) band intensities started to increase when BWG was heated to 90 degrees C, suggesting the initiation of protein aggregation. Increasing the time of the preheat treatment (at 100 degrees C) caused progressive increases in Td and pronounced decreases in DeltaH, suggesting partial denaturation and reassociation of protein molecules.  相似文献   

3.
The 7S/11S glycinin equilibrium as found in Lakemond et al. (J. Agric. Food Chem. 2000, 48, xxxx-xxxx) at ambient temperatures influences heat denaturation. It is found that the 7S form of glycinin denatures at a lower temperature than the 11S form, as demonstrated by a combination of calorimetric (DSC) and circular dichroism (CD) experiments. At pH 7.6, at which glycinin is mainly present in the 11S form, the disulfide bridge linking the acidic and the basic polypeptides is broken during heat denaturation. At pH 3.8, at which glycinin has dissociated partly into the 7S form, and at pH 5.2 this disruption does not take place, as demonstrated by solubility and gel electrophoretic experiments. A larger exposure of the acidic polypeptides (Lakemond et al., 2000) possibly correlates with a higher endothermic transition temperature and with the appearance of an exothermic transition as observed with DSC. Denaturation/aggregation (studied by DSC) and changes in secondary structure (studied by far-UV CD) take place simultaneously. Generally, changes in tertiary structure (studied by near-UV CD) occur at lower temperatures than changes in secondary structure.  相似文献   

4.
The influence of pH and ionic strength on gel formation and gel properties of soy protein isolate (SPI) in relation to denaturation and protein aggregation/precipitation was studied. Denaturation proved to be a prerequisite for gel formation under all conditions of pH and ionic strength studied. Gels exhibited a low stiffness at pH >6 and a high stiffness at pH <6. This might be caused by variations in the association/dissociation behavior of the soy proteins on heating as a function of pH, as indicated by the different protein compositions of the dissolved protein after heating. At pH 3-5 all protein seems to participate in the network, whereas at pH >5 less protein and especially fewer acidic polypeptides take part in the network, coinciding with less stiff gels. At pH 7.6, extensive rearrangements in the network structure took place during prolonged heating, whereas at pH 3.8 rearrangements did not occur.  相似文献   

5.
The soluble potato proteins are mainly composed of patatin and protease inhibitors. Using DSC and both far-UV and near-UV CD spectroscopy, it was shown that potato proteins unfold between 55 and 75 degrees C. Increasing the ionic strength from 15 to 200 mM generally caused an increase in denaturation temperature. It was concluded that either the dimeric protein patatin unfolds in its monomeric state or its monomers are loosely associated and unfold independently. Thermal unfolding of the protease inhibitors was correlated with a decrease in protease inhibitor activities and resulted in an ionic strength dependent loss of protein solubility. Potato proteins were soluble at neutral and strongly acidic pH values. The tertiary structure of patatin was irreversibly altered by precipitation at pH 5. At mildly acidic pH the overall potato protein solubility was dependent on ionic strength and the presence of unfolded patatin.  相似文献   

6.
The effect of pH in the range 6.0-8.0 on the denaturation and aggregation of beta-lactoglobulin (beta-lg) was investigated. Results were interpreted in terms of the reaction scheme for the denaturation and aggregation of beta-lg proposed by Roefs and De Kruif (Eur. J. Biochem. 1994, 226, 883-889). The rate of conversion of native beta-lg increased strongly at higher pH values, whereas the molecular mass of the aggregates decreased strongly. In the pH range 6.4-8.0 aggregates were formed mainly by intermolecular disulfide bonds, but even at pH 6.0, thiol/disulfide exchange reactions were involved, although to a lesser extent. The time course of the exposure of the thiol group in native beta-lg upon heating and the subsequent disappearance of this group through the formation of disulfide-linked aggregates was investigated by reaction with 5,5'-dithiobis(2-nitrobenzoic acid) and varied strongly with pH. These observations could be used, in combination with the reaction steps of the reaction scheme, to describe qualitatively the strongly pH-dependent isothermal calorimetry curves, measured at 65 degrees C.  相似文献   

7.
Addition of papain decreased the onset temperature and the rate at which G' developed during heat-induced gelation of arrowtooth flounder myosin. Frequency sweep results revealed that G' markedly decreased in proportion to the amount of papain added. However, use of E-64, a cysteine proteinase inhibitor, reversed the effects of papain and protected myosin heavy chain from degradation. DSC thermograms indicated papain significantly decreased the enthalpy required to induce myosin denaturation without significant changes in onset and maximum transition temperatures. Thermal denaturation kinetics indicated decreases in both the activation energy and the rate of myosin denaturation. CD studies revealed a rapid decrease in alpha-helical content, indicating the initial degradation of myosin molecules mostly occurred in the tail region. These results suggested that proteolysis affected thermal properties and reactivity of myosin during heating. Although myosin gel could be formed, structural disruption resulted in lower gelling ability and rigidity of the formed gel.  相似文献   

8.
Ovalbumin (OVA) was phosphorylated by dry-heating in the presence of pyrophosphate at pH 4.0 and 85 degrees C for 1 and 5 days, and the physicochemical and structural properties of phosphorylated OVA were investigated. The phosphorus content of OVA increased to 1.01% by phosphorylation, and the electrophoretic mobility of PP-OVA also increased. Although the solubility of dry-heated OVA decreased, the decrease was slightly depressed by phosphorylation. The circular dichroism spectra showed that the change of the secondary structure in the OVA molecule, as measured by alpha-helix content, was mild by phosphorylation. The exchange reaction between the sulfhydryl and disulfide groups was enhanced and the surface hydrophobicity of OVA increased by phosphorylation. The tryptophan fluorescence intensity of OVA decreased by phosphorylation, suggesting that the conformational change occurred in the OVA molecule by phosphorylation. Although the differential scanning calorimetry thermograms of OVA showed a lowering of the denaturation temperature from 78.3 to 70.1 degrees C by phosphorylation, the stability of OVA against heat-induced insolubility at pH 7.0 was improved. The results indicated molten (partially unfolded) conformations of OVA formed by dry-heating in the presence of pyrophosphate.  相似文献   

9.
The denaturation and aggregation of reagent-grade (Sigmaalpha-La), ion-exchange chromatography purified (IEXalpha-La), and a commercial-grade (Calpha-La) alpha-lactalbumin were studied with differential scanning calorimetry (DSC), polyacrylamide gel electrophoresis, and turbidity measurement. All three preparations had similar thermal denaturation temperatures with an average of 63.7 degrees C. Heating pure preparations of alpha-lactalbumin produced three non-native monomer species and three distinct dimer species. This phenomenon was not observed in Calpha-La. Turbidity development at 95 degrees C (tau95 degrees C) indicated that pure preparations rapidly aggregate at pH 7.0, and evidence suggests that hydrophobic interactions drove this phenomenon. The Calpha-La required 4 times the phosphate or excess Ca2+ concentrations to develop a similar tau95 degrees C to the pure preparations and displayed a complex pH-dependent tau95 degrees C behavior. Turbidity development dramatically decreased when the heating temperature was below 95 degrees C. A mechanism is provided, and the interrelationship between specific electrostatic interactions and hydrophobic attraction, in relation to the formation of disulfide-bonded products, is discussed.  相似文献   

10.
Changes in the conformation of catfish (Ictalurus punctatus) myosin due to (i) anions, (ii) acid pH, and (iii) salt addition were determined using tryptophan fluorescence, hydrophobicity measurements, differential scanning calorimetry, and circular dichroism. The relationship between conformation and storage modulus (G') of acid-treated myosin was studied. Three acids, HCl, H2SO4, and H3PO4, were used for unfolding myosin at three acidic pH conditions, 1.5, 2.0, and 2.5. Unfolded myosin was refolded to pH 7.3. Denaturation and unfolding of myosin was significantly (p < 0.05) lower when salt (0.6 M NaCl) was present during acid unfolding than in the absence of salt. When salt was added before unfolding, the alpha-helix content of myosin treated at pH 1.5 was significantly lower than that treated at pH 2.5. When salt was added after refolding, the alpha-helix content of myosin was unaffected by different pH treatments. The G' of myosin increased with an increase in myosin denaturation. The G' of myosin was significantly (p < 0.05) higher when salt was added to myosin after refolding than before acid unfolding. Among the different anion treatments, the G' of acid-treated myosin decreased in the order Cl- approximately SO42- > PO43-. Among the different pH treatments, the G' of myosin treated at pH 1.5 was significantly (p < 0.05) higher than myosin treated at pH 2.5. The conditions that would result in maximum myosin denaturation and maximum G' were unfolding of myosin at pH 1.5 using Cl- (from HCl) followed by refolding at pH 7.3 and subsequent addition of 0.6 M NaCl.  相似文献   

11.
The structure and solubility of helianthinin, the most abundant protein of sunflower seeds, was investigated as a function of pH and temperature. Dissociation of the 11S form (hexamer) into the 7S form (trimer) gradually increased with increasing pH from 5.8 to 9.0. High ionic strength (I = 250 mM) stabilizes the 11S form at pH > 7.0. Heating and low pH resulted in dissociation into the monomeric constituents (2-3S). Next, the 7S and 11S forms of helianthinin were isolated and shown to differ in their secondary and tertiary structure, and to have denaturation temperatures (T(d)) of 65 and 90 degrees C, respectively. Furthermore, the existence of two populations of the monomeric form of helianthinin with denaturation temperatures of 65 and 90 degrees C was described. This leads to the hypothesis that helianthinin can adopt two different conformational states: one with T(d) = 65 degrees C and a second with T(d) = 90 degrees C.  相似文献   

12.
Helianthinin, the main storage protein of sunflowers, has low water solubility and does not form a gel when heated; this behavior is different from other 11S globulins and limits its food applications. To understand this particular behavior, changes on helianthinin association-dissociation state induced by modifications in pH and ionic strength were analyzed. The influence of these different medium conditions on its thermal stability and tendency to form aggregates was also studied. Helianthinin behavior at different pH values and ionic strengths is similar to other 11S globulins except that it remains in a trimeric form at pH 11. Helianthinin thermal stability is higher than other 11S globulins but is lower than oat 11S globulin. Alkaline pH produces a 10 degrees C decrease of its denaturation temperature and also of the cooperativity of denaturation process, but it does not affect the denaturation activation energy. The decrease in thermal stability with the pH increase is also manifested by its tendency to form aggregates by SH/SS interchange reactions. When thermal treatments at alkaline pH are performed, all helianthinin subunits form aggregates, characterized by a higher proportion of beta-polypeptides than alpha-polypeptides, which is an indication that aggregation is accompanied by dissociation. Treatments at 80 degrees C are sufficient to induce aggregation but not to produce denaturation, and in these conditions hexameric forms remain after the treatment.  相似文献   

13.
The disruption of casein micelles at alkaline pH was investigated using turbidity measurements. The rate and extent of disruption of casein micelles at alkaline pH (8.0-11.0) increased with pH. Furthermore, the extent of alkaline disruption increased with increasing temperature (5-40 degrees C). Preheating milk for 10 min at 90 degrees C did not influence the extent of alkaline disruption of casein micelles, suggesting that whey proteins do not influence the alkaline disruption process. Levels of ionic calcium and serum calcium and phosphate decreased in a logarithmic fashion with increasing pH, indicating precipitation of calcium phosphate onto the casein micelles. A mechanism for alkaline disruption of casein micelles is proposed, in which increasing the milk pH improves the solvent quality for the caseins, thereby leading to the disruption of casein micelles into their constituent nanoclusters; increases in the net-negative charge on the caseins on increasing pH may contribute to micellar dissociation.  相似文献   

14.
Structural and functional properties of two amaranth protein isolates as a function of pH were studied. Isolates, A9 and A11, were obtained by alkaline extraction at pH 9 and 11, respectively. Gel filtration chromatograms of A9 and A11 showed similar profiles. The A11 isolate contained mainly albumins and globulins, and a small proportion of globulin‐P aggregates, suggesting the presence of species with a higher degree of denaturation compared to A9. Differential scanning calorimetry (DSC) showed that A9 was characterized by two thermal transitions (65.8 and 98°C); A11 exhibited only a small endotherm (66.6°C) and a second, less defined one. DSC analysis of A9 at pH 2–4 did not show endotherms, but at pH 5, some protein structures were observed. A11 showed a greater degree of denaturation. FPLC results showed that the proteins in A9 are more folded and their conformation is closer to the native state than those in A11, which are more unfolded due to pH‐mediated denaturation, mainly in acid media. The surface hydrophobicity of the isolates in acid media was lower than in alkaline media. The fluorescence emission spectra of the isolates showed differences in acidic pH conditions. As expected, the highest solubility was at alkaline pH. The water‐holding capacity was similar for both isolates. The water‐imbibing capacity and speed of foaming was higher for A11 than for A9. In summary, intense pH treatment of amaranth isolates generated partial or total protein denaturation and differences in the functional properties.  相似文献   

15.
The kinetics of beta-lactoglobulin (beta-LG) denaturation in pressure-treated reconstituted skim milk samples over a wide pressurization range (100-600 MPa) and at various temperatures (10-40 degrees C) was studied. Denaturation was extremely dependent on the pressure and duration of treatment. At 100 MPa, no denaturation was observed regardless of the temperature or the holding time. At higher pressures, the level of denaturation increased with an increasing holding time at a constant pressure or with increasing pressure at a constant holding time. At 200 MPa, there was only a small effect of changing the temperature at pressurization. However, at higher pressures, increasing the temperature from 10 to 40 degrees C markedly increased the rate of denaturation. The two major genetic variants of beta-LG (A and B) behaved similarly to pressure treatment, although the B variant appeared to denature slightly faster than the A variant at low pressures (< or =400 MPa). The denaturation could be described as a second-order process for both beta-LG variants. There was a marked change in pressure dependence at about 300 MPa, which resulted in markedly different activation volumes in the two pressure ranges. Evaluation of the kinetic and thermodynamic parameters suggested that there may have been a transition from an aggregation-limited reaction to an unfolding-limited reaction as the pressure was increased.  相似文献   

16.
Thermal, rheological, and microstructural properties of myosin (1 and 2% protein) were compared to mixtures of 1% myosin and 1% heat-denatured beta-lactoglobulin aggregates (myosin/HDLG) and 1% myosin and 1% native beta-lactoglobulin (myosin/beta-LG) in 0.6 M NaCl and 0.05 M sodium phosphate buffer, pH 6.0, 6.5, and 7.0 during heating to 71 degrees C. Thermal denaturation patterns of myosin and myosin/HDLG were similar except for the appearance of an endothermic peak at 54-56 degrees C in the mixed system. At pH 7.0, 2% myosin began to gel at 48 degrees C and had a storage modulus (G') of 500 Pa upon cooling. Myosin/HDLG (2% total protein) had a gel point of 48 degrees C and a G' of 650 Pa, whereas myosin/beta-LG had a gel point of 49 degrees C but the G' was lower (180 Pa). As the pH was decreased, the gel points of myosin and myosin/HDLG decreased and the G' after cooling increased. The HDLG was incorporated within the myosin gel network, whereas beta-LG remained soluble.  相似文献   

17.
When turkey breast muscle and isolated myofibrillar protein and myosin of cod or turkey (pH approximately 7) were subjected to pressures up to 800 MPa for 20 min, DSC and electrophoresis (SDS-PAGE) indicated that high pressure-induced denaturation of myosin led to the formation of structures that contained hydrogen bonds and were additionally stabilized by disulfide bonds. Disulfide bonds were also important in heat-induced myosin gels. Hardness of whole cod muscle, estimated by texture profile analysis, showed pressure-treated samples (400 MPa) to be harder than cooked (50 degrees C) or cooked and then pressure-treated or pressure-treated and then cooked samples, supporting the suggestion that pressure induces the formation of heat labile hydrogen-bonded structures while heat treatment gives rise to structures that are primarily stabilized by disulfide bonds and hydrophobic interactions. As expected, turkey myosin is more stable than that of cod; however, it seems their pressure-induced gelation mechanisms are similar.  相似文献   

18.
The influence of sucrose (0--40 wt %) on the thermal denaturation and gelation of bovine serum albumin (BSA) in aqueous solution has been studied. The effect of sucrose on heat denaturation of 1 wt % BSA solutions (pH 6.9) was measured using ultrasensitive differential scanning calorimetry. The unfolding process was irreversible and could be characterized by a denaturation temperature (T(m)), activation energy (E(A)), and pre-exponential factor (A). As the sucrose concentration increased from 0 to 40 wt %, T(m) increased from 72.9 to 79.2 degrees C, E(A) decreased from 314 to 289 kJ mol(-1), and ln(A/s(-1)) decreased from 104 to 94. The rise in T(m) was attributed to the increased thermal stability of the globular state of BSA relative to its native state because of differences in their preferential interactions with sucrose. The change in preferential interaction coefficient (Delta Gamma(3,2)) associated with the native-to-denatured transition was estimated. The dynamic shear rheology of 2 wt % BSA solutions (pH 6.9, 100 mM NaCl) was monitored as they were heated from 30 to 90 degrees C, held at 90 degrees C for either 15 or 120 min, and then cooled to 30 degrees C. Sucrose increased the gelation temperature due to thermal stabilization of the native state of the protein. The complex shear modulus (G) of cooled gels decreased with sucrose concentration when they were held at 90 degrees C for 15 min because the fraction of irreversibly denatured protein decreased. On the other hand, G of cooled gels increased with sucrose concentration when they were held at 90 degrees C for 120 min because a greater fraction of irreversibly denatured protein was formed and the strength of the protein-protein interactions increased.  相似文献   

19.
This study demonstrated that the novel isoelectric solubilization/precipitation can be applied to recover functional muscle protein in a continuous mode from whole Antarctic krill. Protein recovered from whole krill had a much lower ash content than whole krill, suggesting good removal of inedible impurities (shell, appendages, etc.). Lipids were retained to a higher degree with krill protein solubilized at acidic rather than basic pH. The viscoelastic modulus (G') showed that recovered krill protein failed to form heat-induced gel unless beef plasma protein (BPP) was added. Therefore, protease inhibitors are suggested for development of krill-derived products. Even with BPP, the G' decreased between 45 and 55 degrees C. However, krill protein solubilized at acidic pH had a higher decrease of the G' than the protein solubilized at basic pH, likely due to krill endogenous cathepsin L. Krill protein-based gels developed from protein solubilized at basic pH, especially pH 12.0, had better texture (torsion and Kramer tests and texture profile analysis) than acidic counterparts, possibly due to higher proteolysis and denaturation at acidic pH. Gels made from protein solubilized at acidic pH were brighter and whiter likely due to a higher lipid content.  相似文献   

20.
Proteins isolated from blue-green algae Spirulina platensis strain Pacifica were characterized by visible absorption, differential scanning calorimetry (DSC), viscometry, and dynamic oscillatory rheological measurements. Unique thermal unfolding, denaturation, aggregation, and gelation of the algal protein isolate are presented. DSC analysis showed that thermal transitions occur at about 67 and 109 degrees C at neutral pH. Calcium chloride stabilized the quaternary structure against denaturation and shifted the transitions at higher temperatures. Viscometric studies of Spirulina protein isolate as a function of temperature showed that the onset of the viscosity increase is closely related to the dissociation-denaturation process. Lower viscosities were observed for the protein solutions dissolved at pH 9 due to an increased protein solubility. Solutions of Spirulina protein isolate form elastic gels during heating to 90 degrees C. Subsequent cooling at ambient temperatures caused a further pronounced increase in the elastic moduli and network elasticity. Spirulina protein isolate has good gelling properties with fairly low minimum critical gelling concentrations of about 1.5 and 2.5 wt % in 0.1 M Tris buffer, pH 7, and with 0.02 M CaCl(2) in the same buffer, respectively. It is suggested that mainly the interactions of exposed hydrophobic regions generate the molecular association, initial aggregation, and gelation of the protein isolate during the thermal treatment. Hydrogen bonds reinforce the network rigidity of the protein on cooling and further stabilize the structure of Spirulina protein gels but alone are not sufficient to form a network structure. Intermolecular sulfhydryl and disulfide bonds were found to play a minor role for the network strength of Spirulina protein gels but affect the elasticity of the structures formed. Both time and temperature at isothermal heat-induced gelation within 40-80 degrees C affect substantially the network formation and the development of elastic modulus of Spirulina protein gels. This is also attributed to the strong temperature dependence of hydrophobic interactions. The aggregation, denaturation, and gelation properties of Spirulina algal protein isolate are likely to be controlled from protein-protein complexes rather than individual protein molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号