首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 15 毫秒
1.
The sequences of 27 chicken interferon-alpha (ChIFN-α) genes were obtained from GenBank. The gene sequences were compared and homology between them was determined by using a bio-software. On the basis of these results, a new rChIFN-α peptide sequence with 194 amino acids was assembled. Thereafter, on the basis of the new amino acid sequences and by using the most frequently occurring codes of Pichia pastoris, and a 582 bp gene sequence was formed. In order to amplify this non-templated gene, 16 primers were designed, and their gene sequences were synthesized, and amplified. This amplified gene sequence was cloned into the expression vector pPICZα-A to construct a recombination plasmid named pPICZ-rChIFN-α. Then, the recombination plasmid was induced to express the rChIFN-α protein. The results demonstrated that the recombinant plasmid pPICZ-rChIFN-α was successfully expressed in P. pastoris. Furthermore, rChIFN-α had a considerable antiviral activity against both Newcastle disease virus (NDV) and vesicular stomatitis virus (VSV). Therefore, this method of gene engineering could give direction to research on the key amino acids in the interferon or analogous proteins and enable the construction of proteins with high antiviral activity, which can be used both for research and industrial purposes.  相似文献   

2.
Newcastle disease (ND) is a highly contagious disease of chickens causing significant economic losses worldwide. Due to limitations in the efficacy against currently circulating ND viruses, existing vaccination strategies require improvements, and incorporating immunomodulatory cytokines with existing vaccines might be a novel approach. Here, we investigated the systemic and mucosal immunomodulatory properties of oral co-administration of chicken interleukin-18 (chIL-18) and chicken interferon-α (chIFN-α) using attenuated Salmonella enterica serovar Typhimurium on an inactivated ND vaccine. Our results demonstrate that oral administration of S. enterica serovar Typhimurium expressing chIL-18 or chIFN-α provided enhanced systemic and mucosal immune responses, as determined by serum hemagglutination inhibition antibody and NDV Ag-specific IgG as well as NDV Ag-specific IgA in lung and duodenal lavages of chickens immunized with inactivated ND vaccine via the intramuscular or intranasal route. Notably, combined oral administration of S. enterica serovar Typhimurium expressing chIL-18 and chIFN-α significantly enhanced systemic and mucosal immunity in ND-vaccinated chickens, compared to single administration of S. enterica serovar Typhimurium expressing chIL-18 or chIFN-α. In addition, oral co-administration of S. enterica serovar Typhimurium expressing chIL-18 and chIFN-α provided enhanced NDV Ag-specific proliferation of peripheral blood mononuclear cells and Th1-biased cell-mediated immunity, compared to single administration of either construct. Therefore, our results provide valuable insight into the modulation of systemic and mucosal immunity by incorporation of immunomodulatory chIL-18 and chIFN-α using Salmonella vaccines into existing ND vaccines.  相似文献   

3.
4.
The enhanced effect of cytokine combinations has been assessed empirically, based on their immunobiological mechanisms. However, far less is known of the enhanced protection of practical cytokine combinations against viral infection in the livestock industry, due to cost and production issues associated with mass administration. This study demonstrates the enhanced protection of oral co-administration of swine interferon-α (swIFN-α) and interleukin-18 (swIL-18) against infection with transmissible gastroenteritis virus (TGEV) in piglets using attenuated Salmonella enterica serovar Typhimurium as carrier of cytokine proteins. A single oral co-administration of S. enterica serovar Typhimurium expressing swIFN-α and swIL-18 induced enhanced alleviation of the severity of diarrhea caused by TGEV infection, compared to piglets administered S. enterica serovar Typhimurium expressing swIFN-α or swIL-18 alone. This enhancement was further observed by the reduction of TGEV shedding and replication, and the expression of IFN-stimulated gene products in the intestinal tract. The results suggest that the combined administration of the swIFN-α and swIL-18 cytokines using attenuated S. enterica serovar Typhimurium as an oral carrier provides enhanced protection against intestinal tract infection with TGEV.  相似文献   

5.
The combined use of cytokines has shown synergistic and/or additive effects in controlling several viral infections of livestock animals. However, little is known concerning the practical use of chicken cytokine combinations to control avian diseases. Here, we investigated the antiviral efficacy of oral co-administration of chicken interferon-α (chIFN-α) and chicken interleukin-18 (chIL-18) using attenuated Salmonella enterica serovar Typhimurium in chickens infected with avian influenza virus (AIV) H9N2. Our results demonstrate that oral co-administration of S. enterica serovar Typhimurium expressing chIFN-α and chIL-18 produced a greater alleviation of clinical signs caused by respiratory infection with AIV H9N2 in chickens, when compared to administration of S. enterica serovar Typhimurium expressing either chIFN-α or chIL-18 alone. Mortality, clinical symptom severity, and feed and water intake were used to access treatment effectiveness. This enhancement of antiviral immunity was further confirmed by evidence of reduced rectal shedding and decreased replication of AIV H9N2 in several different tissues of challenged chickens including trachea, lung, cecal tonsil, and brain. Furthermore, oral co-administration of chIFN-α and chIL-18 more efficiently modulated the immune responses of chickens against AIV H9N2 by enhancing both humoral and Th1-biased cell-mediated immunity, compared to single administration of either construct. Therefore, our results suggest that the combined administration of two chicken cytokines, chIFN-α and chIL-18, using attenuated S. enterica serovar Typhimurium as an oral carrier, provides an effective means for controlling respiratory disease caused by AIV H9N2 infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号