首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 420 毫秒
1.
In Germany, sugar beet is often rotated with 2 years of cereal. Extensive fallow periods between cereal harvest and autumn primary tillage allow for a weed flora to develop. Broad‐leaved weeds could potentially be alternate hosts for the common nematode Heterodera schachtii, one of the most important pests of sugar beet. Between 2009 and 2012, annual weeds developing in cereal stubble fields during July to mid‐October in the season prior to sugar beet were surveyed, including known hosts of H. schachtii. Yearly weather patterns and agronomic practices possibly impacted weed species composition and weed population densities. During September, Chenopodium album, Cirsium arvense, Convolvulus arvensis, Mercurialis annua, Polygonum spp., Solanum nigrum and Sonchus spp. occurred at the highest frequencies. Weed hosts of H. schachtii were present, but densities, frequencies and uniformity were limited. In 2010 and 2011, staining for nematodes in roots revealed juvenile penetration of some weeds but few adult stages. No indication of nematode reproduction of H. schachtii was found on these weed hosts. A fairly stable weed flora was detected on stubble fields that could provide some carry over for weed species. An elevated risk for nematode population density build‐up on these weeds was not found and management of these weeds at the observed densities during the stubble period for nematological reasons appeared unnecessary.  相似文献   

2.
Sustainable cropping systems based on low inputs have received much attention, even if they may lead to the establishment of a competitive weed flora. This study, conducted from 2011 to 2014 in a Mediterranean environment, evaluated the changes in weed community composition in two cropping systems [conventional (CONV ) and organic (ORG )] with different soil tillage [inversion tillage (IT ) and non‐inversion tillage (NoIT )] in a wheat–tomato–chickpea rotation that began in 2000. The treatments were replicated three times according to a randomised complete block design. The organic system was managed according to EU regulations. Inversion tillage consisted of mouldboard ploughing to a depth of 30 cm, while NoIT consisted of subsoiling to a depth of 20 cm. Weed control was based on herbicide application in CONV and mechanical weeding in ORG . The organic non‐inversion system showed the highest weed biomass (134, 128 and 195 g dry matter (DM ) m?2 in wheat, tomato and chickpea, respectively) and weed density (66, 77 and 76 plants m?2 in wheat, tomato and chickpea, respectively), as well as community richness. However, ORG always increased weed diversity, even if annual dicotyledon species were abundant in ORG ‐IT and perennial dicotyledon species in ORG ‐NoIT . The conventional system enhanced the relative frequency of both annual (CONV ‐IT ) and perennial (CONV ‐NoIT ) grasses. There was a negative correlation between density of perennial weeds and crop yield (r 2 = 0.24, <  0.001). Therefore, in the Mediterranean environment, combining organic practices with non‐inversion tillage could lead to the establishment of perennial weeds that are difficult to control, thus requiring specific weed management practices.  相似文献   

3.
The effects of herbicide dose on rice‐weed competition were investigated to develop a combined model, which can be utilised to estimate an optimum herbicide dose for a given weed density in paddy rice cultivation. Field studies were conducted in Suwon for rice‐Echinochloa crus‐galli competition and Iksan for rice‐Eleocharis kuroguwai during 2007. The competitive effect of the weeds E. crus‐galli and E. kuroguwai decreased with increasing doses of flucetosulfuron and azimsulfuron, respectively, in the same manner as the standard dose–response curve. The combination of the rectangular hyperbolic model and the standard dose–response curve adequately described the complex effects of herbicide dose and weed competition on rice yield. Parameter estimates were used with the model to predict rice yield and estimate the doses of flucetosulfuron and azimsulfuron required to restrict rice yield loss caused by E. crus‐galli and E. kuroguwai, respectively, to an acceptable level. For a rice yield of 5.0 t ha?1, the model recommended flucetosulfuron doses of 8.7, 13.4 and 20.1 g a.i. ha?1 when infested with E. crus‐galli at 12, 24 and 48 plants m?2 respectively. For a rice yield of 5.2 t ha?1, the model recommended azimsulfuron doses of 3.9, 7.5 and 12.6 g a.i. ha?1 when infested with E. kuroguwai at 24, 48 and 96 plants m?2 respectively. The theoretical outputs of the combined model appear robust and indicate there are opportunities for reduced herbicide use in the field. These now require evaluation under field conditions.  相似文献   

4.
This study reviews 52 field experiments, mostly from the UK, studying the effects of cultivation techniques, sowing date, crop density and cultivar choice on Alopecurus myosuroides infestations in cereal crops. Where possible, a statistical meta‐analysis has been used to calculate average responses to the various cultural practices and to estimate their variability. In 25 experiments, mouldboard ploughing prior to sowing winter cereals reduced A. myosuroides populations by an average of 69%, compared with non‐inversion tillage. Delaying drilling from September to the end of October decreased weed plant densities by approximately 50%. Sowing wheat in spring achieved an 88% reduction in A. myosuroides plant densities compared with autumn sowing. Increasing winter wheat crop density above 100 plants m?2 had no effect on weed plant numbers, but reduced the number of heads m?2 by 15% for every additional increase in 100 crop plants, up to the highest density tested (350 wheat plants m?2). Choosing more competitive cultivars could decrease A. myosuroides heads m?2 by 22%. With all cultural practices, outcomes were highly variable and effects inconsistent. Farmers are more likely to adopt cultural measures and so reduce their reliance on herbicides, if there were better predictions of likely outcomes at the individual field level.  相似文献   

5.
Glyphosate‐resistant Ambrosia trifida is a competitive and difficult‐to‐control annual broad‐leaved weed in several agronomic crops in the Midwestern United States and Ontario, Canada. The objectives of this study were to compare treatments for control of glyphosate‐resistant A. trifida with tillage followed by pre‐emergence (PRE) and/or post‐emergence (POST) herbicides in glyphosate‐resistant maize and to determine the impact of A. trifida escapes on maize yield. Field experiments were conducted in 2013 and 2014 in grower fields infested with glyphosate‐resistant A. trifida. Tillage prior to maize sowing resulted in 80–85% control compared with no tillage. Tillage followed by PRE application of saflufenacil plus dimethenamid‐P with or without atrazine resulted in 99% control compared with ≤86 and 96% control with PRE herbicides alone at 7 and 21 days after application respectively. Tillage or POST‐only herbicides resulted in 4–14 A. trifida plants m?2, whereas a PRE and POST programme had <3 plants m?2. Maize yield was greatest (13.1–14.2 tonnes ha?1) with tillage followed by PRE and POST herbicide programme. The relationship between maize yield and late‐season density of A. trifida escapes showed a 50% maize yield reduction irrespective of control measures when A. trifida density was 8.4 plants m?2. It was concluded that the combination of tillage with PRE and/or POST herbicides reduced A. trifida density and biomass accumulation early in the season and provided an integrated approach for effective management.  相似文献   

6.
Crop and density effects on weed beet growth and reproduction   总被引:1,自引:1,他引:1  
Weed beet populations growing in each crop of the arable rotation could be a relay for the gene flow from adjacent transgenic herbicide‐resistant sugarbeet. In this study, weed beet growth and reproduction were assessed under several conditions which could be found in the rotation: various weed beet densities (ranging from 1 to 120 plants m?2) and various crops (winter wheat, spring barley, spring pea, sugarbeet, maize, ryegrass). Measurements were carried out both on life‐cycle dynamics (bolting time, time to flowering onset, dynamics of flower opening) and on other quantitative data (survival rate, bolting rate and pollen, flower and seed production). Increasing weed beet density resulted in decreases in bolting rate and flower and seed production per plant. In cereals, weed beet establishment and reproduction were strongly reduced, compared with bare ground as a control situation. In pea, there was no effect on establishment, but the early harvest limited seed set. In the other crops, flower and seed production were reduced to a lesser extent. Parameters of the fitted equations on the bolting and flowering progress were modified by the weed beet density and by the crop. Our data may be used in a model predicting weed beet demographic evolution according to cropping system, and in assessing gene flow.  相似文献   

7.
Conyza spp. have become a major weed around the world, mainly because of weed resistance issues. The objective of this work was to test the hypothesis that the soyabean crop yield is dependent on the density of Conyza bonariensis and on the timing of weed establishment in relation to the crop sowing date. It was also theorised that these variables affect soyabean crop yield components and the economic threshold of C. bonariensis on soyabean. Field experiments were conducted during 2010 and 2011 using a randomised complete block design. In each experiment, several densities (0, 3, 6, 12, 24, 48, 96 and 192 plants m?2) of C. bonariensis were established in soyabean fields. Conyza bonariensis establishment dates varied considerably between the experiments [81, 38 and 0 days before soyabean sowing (DBSS)]. Conyza bonariensis plants were first cultivated in a glasshouse and then transplanted to the field at the three‐leaf growth stage. At the lower densities, each C. bonariensis plant decreased soyabean yield by 36%, 12% and 1.0%, when established at 81, 38 and 0 DBSS respectively. The economic thresholds based on sensitivity analysis were below 0.5 plant m?2 when C. bonariensis was introduced at 81 and 38 DBSS; in contrast, they were between 2 and 4 plants m?2 when the weed was established at the crop sowing time. The results emphasise the importance of proper C. bonariensis management prior to soyabean sowing and highlight the need for residual herbicides to avoid grain yield losses.  相似文献   

8.
Multiple herbicide‐resistant (MHR ) weed populations pose significant agronomic and economic threats and demand the development and implementation of ecologically based tactics for sustainable management. We investigated the influence of nitrogen fertiliser rate (56, 112, 168, or 224 kg N ha?1) and spring wheat seeding density (67.3 kg ha?1 or 101 kg ha?1) on the demography of one herbicide susceptible and two MHR Avena fatua populations under two cropping systems (continuous cropping and crop‐fallow rotation). To represent a wide range of environmental conditions, data were obtained in field conditions over 3 years (2013–2015). A stochastic density‐dependent population dynamics model was constructed using the demographic data to project A. fatua populations. Elasticity analysis was used to identify demographic processes with negative impacts on population growth. In both cropping systems, MHR seedbank densities were negatively impacted by increasing nitrogen fertilisation rate and wheat density. Overall, MHR seedbank densities were larger in the wheatfallow compared with the continuous wheat cropping system and seedbank densities stabilised near zero in the high nitrogen and high spring wheat seeding rate treatment. In both cropping systems, density‐dependent seed production was the most influential parameter impacting population growth rate. This study demonstrated that while the short‐term impact of weed management tactics can be investigated by field experiments, evaluation of long‐term consequences requires the use of population dynamics models. Demographic models, such as the one constructed here, will aid in selecting ecologically based weed management tactics, such as appropriate resource availability and modification to crop competitive ability to reduce the impact of MHR .  相似文献   

9.
Investigations were conducted during the 2003, 2004 and 2005 growing seasons in northern Greece to evaluate effects of tillage regime (mouldboard plough, chisel plough and rotary tiller), cropping sequence (continuous cotton, cotton–sugar beet rotation and continuous tobacco) and herbicide treatment on weed seedbank dynamics. Amaranthus spp. and Portulaca oleracea were the most abundant species, ranging from 76% to 89% of total weed seeds found in 0–15 and 15–30 cm soil depths during the 3 years. With the mouldboard plough, 48% and 52% of the weed seedbank was found in the 0–15 and 15–30 cm soil horizons, while approximately 60% was concentrated in the upper 15 cm soil horizon for chisel plough and rotary tillage. Mouldboard ploughing significantly buried more Echinochloa crus‐galli seeds in the 15–30 cm soil horizon compared with the other tillage regimes. Total seedbank (0–30 cm) of P. oleracea was significantly reduced in cotton–sugar beet rotation compared with cotton and tobacco monocultures, while the opposite occurred for E. crus‐galli. Total seed densities of most annual broad‐leaved weed species (Amaranthus spp., P. oleracea, Solanum nigrum) and E. crus‐galli were lower in herbicide treated than in untreated plots. The results suggest that in light textured soils, conventional tillage with herbicide use gradually reduces seed density of small seeded weed species in the top 15 cm over several years. In contrast, crop rotation with the early established sugar beet favours spring‐germinating grass weed species, but also prevents establishment of summer‐germinating weed species by the early developing crop canopy.  相似文献   

10.
Genetically-modified (GM) sugar beet varieties tolerant to non-selective herbicides would be useful for managing weed beet, an annual form of Beta vulgaris impossible to eliminate with herbicides in sugar beet. However, it is highly probable that the herbicide-tolerance transgene would be transmitted to the weed through pollen flow. It is therefore essential to study how weed beet. particularly Herbicide-Tolerant (HT) populations, develop in cropping systems and how to optimise crop succession and management for controlling these weeds. As multiple interactions and long-term effects make field experiments impractical, we carried out a simulation study with a deterministic and mechanistic model, G ene S ys- B eet , which quantifies weed beet dynamics and gene flow in cropping systems with interactions with climate, soil structure and hydro-thermal conditions. The sensitivity analysis consisted of 250 000 random combinations of input variables to rank cropping system components according to their effect on both total and GM weed beet infestations. Frequency of sugar beet crops, crop succession, manual and mechanical weeding and tillage were identified as the most important variables. Several cultivation techniques must be combined to efficiently control weed beet. Our recommendations are complex, but a delayed return of sugar beet in the rotation. Harvest should be followed as soon as possible by a shallow tilling; tillage should always be as shallow and as early as possible, except before sugar beet where mouldboard ploughing is advisable. If possible, sowing dates should be delayed. Sugar beet should be weeded mechanically and/or manually, aiming at late and efficient, rather than early or frequent operations. Herbicides should be applied whenever possible and target all weed beet stages and genotypes. Set-aside must be cut as frequently and as late as possible.  相似文献   

11.
Ovipositional preference and life history parameters of Lixus incanescens were studied on six sugar beet cultivars: Ardabili, Aras, Persia, Flores, Laetitia and Rosire. In both no-choice and free-choice tests, females of L. incanescens laid fewer eggs on Persia and Laetitia compared with Ardabili, Aras, Flores and Rosire. In performance experiments, the pre-imaginal stages developed slower and survived lower on Persia and Laetitia than on Ardabili, Aras and Flores. The intrinsic rate of natural increase and the population growth rate were lowest on Persia (rm = 0.126 day?1 and λ = 1.134 day?1) among the tested cultivars. Petiole diameter and length were positively correlated with pre-imaginal survival rate (r2 = 0.96 and r2 = 0.98, respectively); therefore, thinner and shorter petioles in Persia and Laetitia led to an increased pre-imaginal mortality. These results suggest that Persia and Laetitia express promising traits that can be an integral component of sugar beet breeding for resistance to L. incanescens.  相似文献   

12.
Herbicide resistance in Alopecurus myosuroides causes severe problems in Western European cropping systems. Costs of herbicide resistance were investigated in this study by analysing variable production costs and sales revenues. Three farms were selected for this study, with winter wheat as the dominating crop in all farms. Resistance in A. myosuroides populations was verified at all locations. Four farming approaches were simulated over a period of 20 years: (i) continuing the actual cropping system without increase of resistance, (ii) continuing the actual cropping system with increase of resistance, (iii) changing cropping practice to overcome resistance and (iv) changing cropping practice to prevent resistance. Contribution margins representing the proportion of sales revenue that is not consumed by variable costs were calculated for all approaches. Comparative static simulations showed that average contribution margins in a cropping system with more than 60% winter cereals and reduced tillage practice dropped from 807 € ha?1 a?1 without herbicide resistance to 307 € ha?1 a?1 with herbicide resistance. Alopecurus myosuroides population densities increased to more than 1000 plants m?2. Diverse crop rotations, including spring crops, clover–grass leys and intensive tillage, suppressed A. myosuroides populations, and average contribution margin was 630 € ha?1 a?1. Preventive methods with rotations of winter cereals and spring crops with less clover–grass leys resulted in an average contribution margin of 691 € ha?1 a?1. In conclusion, rotations of winter cereals and spring crops combined with inversion tillage and herbicides provide stable yields and can prevent weed population increase.  相似文献   

13.
Imperata cylindrica is a noxious weed that infests annual and perennial crops in most tropical regions. High crop densities may offer opportunities to reduce I. cylindrica competition in small‐scale farming systems. The competitive ability of maize relative to I. cylindrica was evaluated in an addition series experiment in the forest savannah transition zone in 2006 and 2007 at Ibadan, Nigeria. Maize and I. cylindrica were planted in eight monoculture densities (4, 8, 12, 16, 20, 32, 48 and 64 plants m?2) and in a 1:1 mixture at eight total densities (2:2, 4:4, 6:6, 8:8, 10:10, 16:16, 24:24 and 32:32 maize: I. cylindrica plants m?2) as in monoculture. Non‐linear regression models were used to relate crop and weed shoot biomass to their densities and total grain yield to maize density. In maize, intraspecific competition was more than interspecific competition; in I. cylindrica, interspecific competition was higher than intraspecific. As expected, total grain yield was lower in the mixture than in maize monoculture at all total densities. Average maize grain yield in maize monoculture differed from that in mixtures by 0.77 t ha?1 in 2006 and 0.57 t ha?1 in 2007. Niche differentiation indices were <1 in 2006 and >1 in 2007, indicating that both species competed for similar resources in 2006, but not in 2007. The greater competitive ability of maize over I. cylindrica may be associated with rapid growth and canopy development observed in the field.  相似文献   

14.
The susceptibility of intercrop species (Raphanus sativus, Brassica juncea, B. rapa, Sinapis alba and Phacelia tanacetifolia) to the sugar beet pathogen Rhizoctonia solani was investigated in vitro, in the greenhouse and in the field with artificial inoculation. Disease severity in subsequently cultivated sugar beet was monitored in the field. Differences in susceptibility between species were found to be consistent in all experimental systems. All intercrop species were susceptible to R. solani. Brassica rapa and R. sativus were less susceptible than P. tanacetifolia. Compared to fallow, the cultivation of B. rapa and R. sativus reduced disease severity in subsequently grown sugar beet (median ratings of up to 3·0 and 3·5, respectively, depending on environmental conditions). This resulted in higher white sugar yield compared to fallow (up to 210% and 157% for B. rapa and R. sativus, respectively). This study demonstrates that in vitro and greenhouse resistance tests are suitable systems to predict the effects of intercrop species susceptibility in the field on disease severity and white sugar yield in subsequently grown sugar beet. Intercrop breeding programmes might profit from fast and efficient screening tests to provide Rhizoctonia‐resistant intercrops as an additional control measure against R. solani in sugar beet.  相似文献   

15.
The development of acetolactate synthase (ALS) tolerant sugar beet provides new opportunities for weed control in sugar beet cultivation. The system consists of an ALS?inhibiting herbicide (foramsulfuron + thiencarbazone‐methyl) and a herbicide‐tolerant sugar beet variety. Previously, the use of ALS‐inhibitors in sugar beet was limited due to the susceptibility of the crop to active ingredients from this mode of action. The postulated benefits of cultivation of the ALS‐tolerant sugar beet are associated with potential risks. Up to now, with no relevant proportion of herbicide‐tolerant crops in Germany, ALS‐inhibitors are used in many different crops. An additional use in sugar beet cultivation could increase the selection pressure for ALS‐resistant weeds. To evaluate the impact of varying intensity of ALS‐inhibitor use on two weed species (Alopecurus myosuroides and Tripleurospermum perforatum) in a crop rotation, field trials were conducted in Germany in two locations from 2014 to 2017. Weed densities, genetic resistance background and crop yields were annually assessed. The results indicate that it is possible to control ALS‐resistant weeds with an adapted herbicide strategy in a crop rotation including herbicide‐tolerant sugar beet. According to the weed density and species, the herbicide strategy must be extended to graminicide treatment in sugar beet, and a residual herbicide must be used in winter wheat. The spread of resistant biotypes in our experiments could not be attributed to the integration of herbicide‐tolerant cultivars, although the application of ALS‐inhibitors promoted the development of resistant weed populations. Annual use of ALS‐inhibitors resulted in significant high weed densities and caused seriously yield losses. Genetic analysis of surviving weed plants confirmed the selection of ALS‐resistant biotypes.  相似文献   

16.
Crops in shifting cultivation fields often suffer from severe weed infestation when long fallow periods are replaced by short fallow periods. The soil seedbank as a source of weed infestation was studied in four fields that differed in their last fallow duration. The effect of burning was analysed by comparing adjacent pre‐burn and post‐burn samples (two sites). Surface vegetation was monitored from burning to harvest in the plots from which soil samples were taken to determine the fraction of the seedbank germinating (three sites). Seedbank size (1700–4000 seedlings m?2) varied depending on a single species, Mimosa diplotricha. Burning reduced emergence of most species, but stimulated emergence in others. Densities in the seedbank were not correlated with above‐ground abundances in the field, except for some species. Most species emerging after 50 days from the soil samples (40% of seedlings) were absent from the field after 190 days. Whilst the data from this study are derived from only four fields, the weed problems after short‐term fallowing appeared to be due to a larger fraction of the seedbank emerging, possibly due to shallow burial, and to a floristic shift towards adaption to burning, rather than the size of the seedbank per se.  相似文献   

17.
The vegetation cover during the non‐cropping season could have important implications for the maintenance and recovery of soil fertility, as well as for biodiversity conservation in croplands. In this study, five fertilization regimes (control: non‐fertilization; N: inorganic N fertilization; P: inorganic P fertilization; NPK: balanced fertilization with inorganic N, P and K; NPKM: balanced NPK plus farmyard manure) were conducted from 1981 in a double‐rice (Oryza sativa L.)‐cropping system in subtropical China. The effects of long‐term fertilization were investigated on the weed growth, diversity and community structure during the fallow period. The results showed that, relative to the control, both inorganic fertilization alone (N, P and NPK) and NPKM in the rice‐growing season significantly increased the weed density and biomass during the fallow period in the paddy field. There was no significant difference in the weed species richness (the number of species) among the treatments. Compared with the control, fertilization tended to reduce the weed diversity (Shannon's H′) and evenness (Shannon's E), especially in the N treatment. Long‐term fertilization resulted in a significant shift in weed community's composition during the fallow period. The weed community's structure was affected by soil nutrients in the order P > N > K.  相似文献   

18.
T K Das  D K Das 《Weed Research》2018,58(3):188-199
Variable dormancies result in periodicity in the germination of weeds and make weed control a repetitive practice. Under some conditions, repeated applications of selective herbicides can lead to the dominance of perennial weeds like Cyperus rotundus . Our hypothesis was that applying a chemical dormancy breaker (DB ) plus herbicide mixture would better control a mixture of weed species. Three experiments were designed to develop a cost‐effective DB treatment and to evaluate its dose with herbicides tank‐mixtures for effective weed management. KNO 3 and gibberellic acid GA 3 as dormancy breakers offered comparable effects, but KNO 3 was more economical than GA 3. KNO 3 at a 6% concentration was more effective in promoting weed germination than a 3% concentration in soyabean. A combination of KNO 3 (6%) and pre‐emergence pendimethalin 0.75 kg a.i. ha?1 + imazethapyr 0.10 kg a.i. ha?1 controlled annual weeds by 99% and reduced C. rotundus growth by 83%. This treatment gave significantly higher soyabean yield and net returns. Similarly, a tank‐mixture comprising of clodinafop 0.06 kg a.i. ha?1 + metsulfuron 0.006 kga.i. ha?1 was more effective against weeds than pre‐emergence tank‐mix application of pendimethalin 0.75 kg a.i. ha?1 + carfentrazone‐ethyl 0.02 kg a.i. ha?1 and isoproturon 0.75 kg a.i. ha?1. The use of pre‐emergence tank‐mixture of pendimethalin 0.75 kg a.i. ha?1 + imazethapyr 0.10 kg a.i. ha?1 should exhaust seed/tuber bank if repeated and reduce the application cost of herbicides by 50% and the dose, residue and cost of pendimethalin by 25%.  相似文献   

19.
Reduced tillage provides ecological and economic benefits to arable land on the Loess Plateau of China, where soil erosion has long been a serious problem and soil water availability is largely restricted. However, high abundances of weeds in reduced tillage systems cause significant yield losses. In this study, we explored the effects of no-tillage and stubble retention on the number and density of weeds and weed seeds in a 12-year maize-winter wheat-common vetch rotation on the Loess Plateau. Four treatments including conventional tillage, no-tillage, conventional tillage+stubble retention and no-tillage+stubble retention were designed and applied. We found that no-tillage increased the number of weed species and weed density in most of the crops, while stubble retention decreased weed density in maize and tended to suppress weeds in both no-tillage treatments(no-tillage and no-tillage+stubble retention). No-tillage led to an increase in the number of weed species in the weed seedbank and tended to increase seed density during the spring growth of winter wheat, but it decreased seed density during post-vetch fallow. Stubble retention tended to reduce seed density during the spring growth of winter wheat and post-vetch fallow. We concluded that no-tillage can promote weeds in the experimental crop rotation, while stubble retention suppresses weeds in untilled fields. The combined effects of stubble retention and no-tillage on weed suppression varied among the three crops. Based on these results, we recommend stubble retention in untilled legume-crop rotations on the Loess Plateau to improve the control of weeds.  相似文献   

20.
The effects of the photosystem II inhibitors metamitron and terbuthylazine on the shape of the Kautsky (chlorophyll fluorescence induction) curve were investigated in sugar beet grown in hydroponic culture. The objective of the study was to trace recovery processes following herbicide injury using Kautsky curve parameters. Metamitron is used for selective weed control in sugar beet because it is metabolized in this crop. In contrast, terbuthylazine is toxic to sugar beet. Two hours after treatment, various fluorescence induction curve parameters, such as maximum quantum efficiency (FV/Fm), the relative changes at the J step (Fvj) and area (the area between the Kautsky curve and maximum fluorescence, Fm), were affected by metamitron at concentration ranges of 70–280 mg active ingredient (a.i.) L?1 in plants treated at the four‐true‐leaf stage. Shortly after herbicide application, Fv/Fm was more affected by the hydrophilic metamitron [log(Kow) = 0.83] than by the lipophilic terbuthylazine [log(Kow) = 3.21], but these differences between compounds were alleviated as metamitron was metabolized and terbuthylazine was not. Terbuthylazine at 1 mg a.i. L?1 affected sugar beet at the four‐ and six‐true‐leaf stages to the same extent, whereas metamitron at a dose of 140 mg a.i. L?1 affected much more at four‐ than at the six‐true‐leaf stage. Sugar beet recovered from metamitron injury even at high doses (140 and 280 mg a.i. L?1). Fluorescence induction curve parameters were similarly affected by terbuthylazine and, although sugar beet recovered from terbuthylazine injury at low doses (<0.2 mg a.i. L?1), the Kautsky curve was irreversibly affected at higher doses (1–10 mg a.i. L?1), leading finally to plant death. Older plants were affected later, and recovered sooner, from both herbicides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号