首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Campylobacter spp. are the most common cause of bacterial gastroenteritis worldwide and have been isolated from a wide number of different hosts and environmental sources. Waterfowl is considered a natural reservoir for this zoonotic bacterium and may act as a potential infection source for human campylobacteriosis. In this study, faecal samples from 924 barnacle geese were tested for the presence of C. jejuni and C. coli. The resulting C. jejuni and C. coli populations were characterized by multilocus sequence typing (MLST), structure analysis by BAPS and phylogenetic analysis based on full genome sequences. The prevalences of C. jejuni in barnacle geese faeces were 11.5% and 23.1% in 2011 and 2012, respectively, and only 0.2% of the samples were positive for C. coli in both years. Furthermore, a possible adaption of the clonal complexes (CCs) ST‐702 and ST‐1034 to the barnacle geese reservoir was found, as these two CCs represented the majority of the typed isolates and were repeatedly isolated from different flocks at several time‐points. Further core genome phylogenetic analysis using ClonalFrame revealed a formation of a distinct monophyletic lineage by these two CCs, suggesting a certain degree of clonality of the C. jejuni population adapted to barnacle geese. Therefore, although STs also commonly found in humans patients (e.g. ST‐45) were among the barnacle geese C. jejuni isolates, this reservoir is probably an infrequent source for human campylobacteriosis.  相似文献   

2.
Giardia duodenalis is a relevant gastrointestinal protozoan pathogen of humans and animals. This species complex consists of eight genetically different assemblages. Assemblages A and B are pathogenic to humans and pets, thus confer zoonotic potential. The risk of zoonotic transmission has been controversially discussed. The aim of this monocentric cross‐sectional pilot study was to investigate G. duodenalis assemblages in humans and pets living in common households in Berlin/Brandenburg (Germany). Samples from dogs, cats and humans sharing the same households were screened for Giardia infection by antigen‐detecting assays. All human samples were additionally analysed by a Giardia‐specific qPCR. Cyst quantification and sequences of different gene loci (triosephosphate isomerase (tpi), glutamate dehydrogenase (gdh), β‐giardin (bg) and for dogs SSUrDNA) were analysed. A total of 38 households (31 households with dogs and seven with cats) with 69 human individuals participated in the study. Initial antigen‐detecting assays revealed Giardia‐positive results for 13 (39%) canine, one (14%) feline and one human sample. Reanalysis of the human samples by qPCR revealed two more positive specimens (4%). Two of these three samples were identified as assemblage B at all tested loci. Success rate of assemblage typing for pet samples was generally low and comprised mainly the SSUrDNA locus only. Overall, six of 13 Giardia‐positive canine samples were typable (2× A, 1× co‐infection: A and B, 1× C; 2× D). One pair of samples (dog and human) from the same household had a similar but not identical assemblage B sequence at tpi locus. Assemblage A was also detected in the dog specimen, which hampered sequence analysis. In conclusion, although exhibiting limitations due to the sample size, our study highlights the need for better and standardized typing tools to distinguish G. duodenalis strains with higher resolution in order to perform proper case–control studies for a realistic estimation of zoonotic risk.  相似文献   

3.
In this study, we investigated the multilocus sequence type (MLST) diversity and population genetics of Campylobacter jejuni isolates collected from the natural waters (n = 57), wild birds (n = 37) and zoo animals (n = 19) in southern Finland, the Helsinki area and the Helsinki Zoo, respectively. On average, we found C. jejuni in 20%, 10.4% or 11.5% of the samples collected from natural waters, wild birds and zoo animals, respectively. High ST diversity was detected in all three sources and 41.2% of the STs were novel, but the multi‐host adapted ST‐45 was the most common ST detected. The MLST data, supplemented with C. jejuni isolates from domestically acquired human infections (n = 454), poultry (n = 208) and bovines (n = 120), were utilized in a population structure study. The results indicate four groups of strains with varying ecological associations, demonstrating presence of genetically distinct lineages within each of the studied sources. We discovered that the greatest ST overlap occurs between human isolates and isolates from natural waters and poultry, which suggests that the latter two are the most important sources of C. jejuni among domestically acquired infections in Finland.  相似文献   

4.
Using different typing methods (MLST, spa‐, SCCmec‐ and agr‐typing), PFGE and DNA microarray‐based chip analysis, we characterized 20 MRSA strains isolated from livestock and veterinarians. PFGE analysis after macrorestriction with EagI provided seven different band patterns, which could be grouped into four clusters. One cluster consisted of all MRSA ST398 strains isolated from pigs, calves, mastitis milk and two veterinarians. One strain of ST398 from a veterinarian and the two strains of ST1 and ST8 formed the three other clusters. Antimicrobial susceptibility testing showed that 15 of 20 strains were resistant to ampicillin, cefoxitin, clindamycin, erythromycin, oxacillin, penicillin and tetracycline. All strains were susceptible to rifampin and vancomycin, 19 were susceptible to ciprofloxacin and 18 were susceptible to sulphamethoxazole/trimethoprim. Genes encoding different enterotoxins, leukotoxins and haemolysins were found in certain strains.  相似文献   

5.
An estimated 6 million pet dogs live in Canadian households with the potential to transmit zoonotic pathogens to humans. Dogs have been identified as carriers of Salmonella, Giardia and Campylobacter spp., particularly Campylobacter upsaliensis, but little is known about the prevalence and risk factors for these pathogens in pet dogs that visit dog parks. This study examined the prevalence of these organisms in the faeces of dogs visiting dog parks in three cities in south‐western Ontario, as well as risk factors for shedding Campylobacter spp. and C. upsaliensis. From May to August 2009, canine faecal samples were collected at ten dog parks in the cities of Guelph and Kitchener‐Waterloo, Ontario, Canada. Owners were asked to complete a questionnaire related to pet characteristics and management factors including age, diet and activities in which the dog participates. Faecal samples were collected from 251 dogs, and 189 questionnaires were completed. Salmonella, Giardia and Campylobacter spp. were present in 1.2%, 6.4% and 43.0% of faecal samples, respectively. Of the Campylobacter spp. detected, 86.1% were C. upsaliensis, 13% were C. jejuni and 0.9% were C. coli. Statistically significant sparing factors associated with the shedding of Campylobacter spp. included the feeding of a commercial dry diet and the dog's exposure to compost. Age of dog had a quadratic effect, with young dogs and senior dogs having an increased probability of shedding Campylobacter spp. compared with adult dogs. The only statistically significant risk factor for shedding C. upsaliensis was outdoor water access including lakes and ditches, while dogs >1 year old were at a lower risk than young dogs. Understanding the pet‐related risk factors for Campylobacter spp. and C. upsaliensis shedding in dogs may help in the development of awareness and management strategies to potentially reduce the risk of transmitting this pathogen from dogs to humans.  相似文献   

6.
7.
The aim of the study was to identify beta‐haemolytic streptococci in the vagina of bitches who had delivered healthy litters and bitches who had delivered litters in which neonatal deaths occurred. Fifty‐one bitches divided into two groups were used. Group 1 (G1) included 28 bitches that had delivered healthy litters and group 2 (G2) included 23 bitches that had delivered puppies who died in the neonatal period. Two vaginal samples were taken, one in proestrus and the other at the end of gestation (EG). Beta‐haemolytic Streptococcus (BS) was isolated from 16 bitches (57%) in G1 and from 21 bitches (91%) in G2. The bacteriological cultures, serological tests (Streptex®) and PCR assay allowed identification of Streptococcus canis and Streptococcus dysgalactiae in G1 and G2. Ultramicroscopic studies allowed the observation of M Protein and capsules in strains of S. dysgalactiae and S. canis in G1 and G2. The S. canis strains isolated from G2 showed thicker capsules than S. canis strains isolated from G1 (234 ± 24.2 vs 151.23 ± 28.93 nm; p < .001.). No differences were observed in capsule thickness between strains of S. dysgalactiae isolated from G1 and G2 (210 ± 13.54 vs 211.66 ± 19.67 nm; p > .70). All strains of beta‐haemolytic Streptococcus isolated were penicillin sensitive. Penicillin was administered from EG to 5 days post‐partum in 10 G2 females with isolation of BS (G2A). Saline solution was administered in eleven G2 females with isolation of BS (G2B). Ninety per cent of the puppies survived in G2A and 25% survived in G2B. Our results suggest BS is involved in canine neonatal deaths.  相似文献   

8.
Abstract

AIMS: To investigate the prevalence of Campylobacter spp. and C. jejuni in dog faecal material collected from dog walkways in the city of Palmerston North, New Zealand, and to characterise the C. jejuni isolates by multilocus sequence typing (MLST) and porA and flaA antigen gene typing.

METHODS: A total of 355 fresh samples of dogs faeces were collected from bins provided for the disposal of dog faeces in 10 walkways in Palmerston North, New Zealand, between August 2008–July 2009. Presumptive Campylobacter colonies, cultured on modified charcoal cefoperazone deoxycholate plates, were screened for genus Campylobacter and C. jejuni by PCR. The C. jejuni isolates were subsequently characterised by MLST and porA and flaA typing, and C. jejuni sequence types (ST) were assigned.

RESULTS: Of the 355 samples collected, 72 (20 (95% CI=16–25)%) were positive for Campylobacter spp. and 22 (6 (95% CI=4–9)%) were positive for C. jejuni. Of the 22 C. jejuni isolates, 19 were fully typed by MLST. Ten isolates were assigned to the clonal complex ST-45 and three to ST-52. The allelic combinations of ST-45/flaA 21/porA 44 (n=3), ST-45/flaA 22/porA 53 (n=3) and ST-52/ flaA 57/porA 905 (n=3) were most frequent.

CONCLUSIONS: The successful isolation of C. jejuni from canine faecal samples collected from faecal bins provides evidence that Campylobacter spp. may survive outside the host for at least several hours despite requiring fastidious growth conditions in culture. The results show that dogs carry C. jejuni genotypes (ST-45, ST-50, ST-52 and ST-696) that have been reported in human clinical cases.

CLINICAL RELEVANCE: Although these results do not provide any evidence either for the direction of infection or for dogs being a potential risk factor for human campylobacteriosis, dog owners are advised to practice good hygiene with respect to their pets to reduce potential exposure to infection.  相似文献   

9.
Community‐associated methicillin‐resistant Staphylococcus aureus (MRSA) is a serious public health concern and in Australia, one that disproportionately affects Aboriginal people. Paralleling MRSA in human medicine, methicillin‐resistant S. pseudintermedius (MRSP) is an increasingly prevalent pathogen in veterinary medicine. We aimed to characterize the carriage of MRSA and MRSP in dogs and cats from predominantly Aboriginal communities in a very remote region of New South Wales (NSW), Australia. Pets (303 dogs and 80 cats) were recruited from six communities in western NSW. Three swabs were collected from each animal (anterior nares, oropharynx and perineum) and from skin lesions or wounds (if present) and cultured on selective media for methicillin‐resistant staphylococci. Human host‐adapted community‐associated MRSA representing four multilocus sequence types (ST1‐IV, ST5‐IV, ST72‐IV, ST93‐IV) were isolated from eight dogs (prevalence 2.6%, 95% confidence interval 1.3%–5.1%). Two ST5‐IV isolates from a single dog were phenotypically trimethoprim‐resistant, harbouring trimethoprim‐resistant gene dfrG within the SCCmec type IVo mobile genetic element. MRSA was not isolated from any cats and MRSP was not isolated from any dogs or cats. This study estimated a high prevalence of human host‐adapted community‐associated MRSA carriage in dogs despite an absence of MRSP. This suggests MRSA carried by dogs in remote NSW originate from human hosts. The cycle of transmission between people, dogs and common environmental sources warrants further investigation. To our knowledge, this is the first report of trimethoprim‐resistant ST5‐IV in eastern Australia and the first report of trimethoprim‐resistant ST5‐IV from a dog.  相似文献   

10.
Clostridium difficile is an anaerobic, spore‐forming bacterium that causes intestinal infections. Although C. difficile is still predominantly considered as a nosocomial pathogen, there has been an increase in the number of community‐associated infections. Since C. difficile is ubiquitous and can be isolated from nearly any environment, one of the possibilities for community acquisition could be exposure to spores in the domestic environment. The aim of this study was to evaluate the presence of C. difficile spores on shoes, slippers and on dog paws and to explore the importance of these surfaces as vectors for the dissemination of C. difficile in a domestic environment. Overall, C. difficile was present in 14 (70%) of 20 households and in 31 of 90 (34%) collected samples. Shoes and slippers had the highest positivity rates, 19 of 44 (43%) and 6 of 21 (28%), respectively, followed by dog paws 6 of 25 (24%). Thirteen C. difficilePCR ribotypes were identified with half of the isolates belonging to ribotype 014/020, which is the predominant type circulating in human population and is also commonly found in the environment (e.g. soil and water) in Slovenia. In three households, identical PCR ribotypes were found on dog paws, shoes and slippers. To understand the fine‐scale genetic relatedness of these isolates, we sequenced the genomes. Low level of single nucleotide variant (SNV) differences between isolates from the same households, consistent with a recent transmission from a common source, were seen for isolates of PCR ribotype 014/020 but not for PCR ribotype 010. Our results suggest that shoe soles and dog paws could serve for the dissemination of C. difficile spores between households and environment and could contribute to community‐relevant sources for Cdifficile infection in humans.  相似文献   

11.
Coccidiosis is an intestinal parasitic infection and one of the most prevalent and economically damaging diseases of chickens. Furthermore, coccidia‐induced mucogenesis promotes secondary colonization by Clostridium perfringens, a major pathogen of chickens that causes necrotic enteritis. Our previous work found that supernatant of a culture of Bacillus amyloliquefaciens strain TOA5001 (BA) inhibited the growth of C. perfringens on Gifu anaerobic broth medium. Accordingly, we evaluated the effectiveness of dietary BA administration in inhibiting C. perfringens colonization of the intestine in broilers that were experimentally infected with coccidia. Ten healthy broilers from a BA‐supplemented (2 × 105 colony‐forming units/g of feed) broiler group and 10 from a non‐treated group were challenged with Eimeria tenella and E. maxima (5000 oocysts of each species/chick) at 28 days old. At 36 days old, five chicks from each group were slaughtered, whereas the remaining five in each group were killed at 49 days old. Dietary BA administration into Eimeria‐challenged birds reduced coccidial symptoms such as intestinal lesions. It also modified the cecal microbiota through suppressing C. perfringens and E. coli colonization, and inducing domination of Faecalibacterium prausnitzii, the Lactobacillus group and unknown Lachnospiraceae genera by bacterial DNA‐based metagenome analyses. B. amyloliquefaciens TOA5001 supplementation suppressed the symptoms of coccidiosis by modulating cecal microbiota in Eimeria‐challenged broilers.  相似文献   

12.
The backyard chicken (BYC) movement in the USA has increased human contact with poultry and subsequently, human contact with the pathogen Salmonella. However, to date, there have been few studies assessing prevalence of Salmonella in backyard flocks, despite the known public health risk this zoonotic bacterium poses. The objective of this study was to characterize human‐BYC interactions and assess the prevalence of Salmonella among BYC flocks. We interviewed 50 BYC owners using a structured questionnaire to determine flock and household characteristics that facilitate contact with BYC and that may be associated with Salmonella in the BYC environment. Composite faecal material, cloacal swabs and dust samples from 53 flocks housed on 50 residential properties in the Greater Boston, Massachusetts area were tested for Salmonella using standard culture techniques and confirmed using Matrix‐Assisted Laser Desorption/Ionization‐Time of Flight Mass Spectrometer. Microbroth dilution and whole genome sequencing were used to determine phenotypic and genotypic resistance profiles, respectively, and sequence results were used to determine multilocus sequencing type. No owners self‐reported a diagnosis of salmonellosis in the household. Over 75% of a subset of owners reported that they and their children consider BYC pets. This perception is evident in how owners reported interacting with their birds. Salmonella enterica subspecies enterica serotype Kentucky ST152 (serogroup C)—a strain not commonly associated with human infection—was confirmed in one flock, or 2% of tested flocks, and demonstrated resistance to tetracycline and streptomycin. We detected Salmonella at low prevalence in BYC. Further study of the health effects of exposure to zoonotic gastrointestinal pathogens such as Salmonella among families with BYC is warranted.  相似文献   

13.
Levels of fecal or intestinal lactobacilli, Escherichia coli and Clostridium perfringens, and the prevalence of clostridial alpha toxin gene and heat‐stable toxin (ST) gene of enterotoxigenic E. coli (ETEC) were monitored in weaned piglets before (day 0) and during (days 7, 14, and 21) the administration of Lactobacillus plantarum strain Lq80. Lactobacilli were enumerated in a culture‐dependent method. The remainders were determined by quantitative real‐time PCR. In this quantitative real‐time PCR method, the detection limit was proved to be as low as 103 cells/g feces or intestinal contents. Number of lactobacilli increased from day 0 to day 7 (P < 0.05), to day 14 (P < 0.05), and to day 21 (P = 0.07) in the Lq80‐administered group. L. plantarum contributed to as low as 10% of the lactobacillal population in the Lq80‐administered group. The number of E. coli and C. perfringens, and the prevalence of alpha toxin gene in feces or intestinal contents of the Lq80‐administered group decreased, at least in the first week of the postweaning period. Oral administration of L. plantarum strain Lq80 can stimulate the growth of indigenous lactobacilli and decrease ST‐producing ETEC and C. perfringens in the intestine of postweaning piglets.  相似文献   

14.
In May 2012, an outbreak of campylobacteriosis occurred in southern Sweden at a wedding reception affecting 44 persons. A total of 17 cases were notified (13 were culture positive for Campylobacter spp.). Epidemiological investigation suspected chicken liver pâté as the source of infection. The liver pâté had been deliberately undercooked, lightly fried to keep the right texture and mixed with spices. Campylobacter isolates from six cases as well as three Campylobacter isolates from chicken flocks previously raised by the producer delivering the liver were subtyped using pulsed‐field gel electrophoresis and whole‐genome sequencing. Indistinguishable PFGE profiles were identified among five human and one chicken C. jejuni isolates as well among the two C. coli isolates, one from a human case and one from a chicken. WGS supported the PFGE findings; the six C. jejuni isolates belonged to one cluster. All these six isolates were of MLST type ST 50 (ST‐CC 21). This study highlights the importance of a combination of strict biosecurity at the flock‐level as well as adequate cooking of chicken liver to prevent transmission of Campylobacter to humans.  相似文献   

15.
Hepatitis E virus (HEV) strains belonging to the Orthohepevirus genus are divided into four species (A–D). HEV strains included in the Orthohepevirus A species infect humans and several other mammals. Among them, the HEV‐3 and HEV‐4 genotypes are zoonotic and infect both humans and animals, of which, pigs and wild boar are the main reservoirs. Viruses belonging to the Orthohepevirus C species (HEV‐C) have been considered to infect rats of different species and carnivores. Recently, two studies reported the detection of HEV‐C1 (rat HEV) RNA in immunocompromised and immunocompetent patients, suggesting a possible transmission of rat HEV to humans. The role of rats and mice as reservoir of HEV and the potential zoonotic transmission is still poorly known and deserves further investigation. To this purpose, in this study, the presence of HEV RNA was investigated in the intestinal contents and liver samples from 47 Black rats (Rattus rattus) and 21 House mice (Mus musculus) captured in four pig farms in Northern Italy. The presence of both Orthohepevirus A and C was investigated by the real‐rime RT‐PCR specific for HEV‐1 to HEV‐4 genotypes of Orthohepevirus A species and by a broad spectrum hemi‐nested RT‐PCR capable of detecting different HEV species including rat HEV. The intestinal content from two Black rats resulted positive for HEV‐C1 RNA and for HEV‐3 RNA, respectively. None of the House mice was HEV RNA positive. Sequence analyses confirmed the detection of HEV‐C1, genotype G1 and HEV‐3 subtype e. The viral strain HEV‐3e detected in the rat was identical to swine HEV strains detected in the same farm. Liver samples were negative for the detection of either rat HEV or HEV‐3.  相似文献   

16.
The occurrence of multidrug‐resistant zoonotic bacteria in animals has been increasing worldwide. Working in close contact with livestock increases the risk of carriage of these bacteria. We investigated the occurrence of extended‐spectrum beta‐lactamase (ESBL) and plasmidic AmpC beta‐lactamase producing Enterobacteriaceae (ESBL/pAmpC‐PE) and livestock‐associated methicillin‐resistant Staphylococcus aureus (LA‐MRSA) in Finnish veterinarians (n = 320). In addition to microbiological samples, background information was collected. Bacterial whole genome sequencing was performed to deduce sequence types (STs), spa types and resistance genes of the isolates. In total, 3.0% (9/297) of the veterinarians carried ESBL producing Escherichia coli, with one ESBL producing E. coli isolate producing also AmpC. Seven different STs, sequences of several different plasmid groups as well as several different blaESBL/pAmpC genes existed in different combinations. No carbapenemase or colistin resistance genes were detected. MRSA was detected in 0.3% (1/320) of the samples. The strain belonged to LA‐MRSA clonal complex (CC) 398 (ST398, spa type 011, lacking Panton‐Valentine leukocidin genes). In conclusion, this study shows low carriage of multidrug‐resistant zoonotic bacteria in Finnish veterinarians. However, finding LA‐MRSA for the first time in a sample from a veterinarian in a country with prudent use of animal antimicrobials and regarding the recent rise of LA‐MRSA on Finnish pig farms, a strong recommendation to protect people working in close contact with animals carrying LA‐MRSA CC398 is given. Further studies are needed to explain why the prevalence of LA‐MRSA in veterinarians is lower in Finland than in other European countries.  相似文献   

17.
Salmonella Kentucky is among the most frequently isolated S. enterica serovars from food animals in the United States. Recent research on isolates recovered from these animals suggests there may be geographic and host specificity signatures associated with S. Kentucky strains. However, the sources and genomic features of human clinical S. Kentucky isolated in the United States remain poorly described. To investigate the characteristics of clinical S. Kentucky and the possible sources of these infections, the genomes of all S. Kentucky isolates recovered from human clinical cases in the State of Maryland between 2011 and 2015 (n = 12) were sequenced and compared to a database of 525 previously sequenced S. Kentucky genomes representing 12 sequence types (ST) collected from multiple sources on several continents. Of the 12 human clinical S. Kentucky isolates from Maryland, nine were ST198, two were ST152, and one was ST314. Forty‐one per cent of isolates were recovered from patients reporting recent international travel and 58% of isolates encoded genomic characteristics similar to those originating outside of the United States. Of the five isolates not associated with international travel, three encoded antibiotic resistance genes conferring resistance to tetracycline or aminoglycosides, while two others only encoded the cryptic aac(6′)‐Iaa gene. Five isolates recovered from individuals with international travel histories (ST198) and two for which travel was not recorded (ST198) encoded genes conferring resistance to between 4 and 7 classes of antibiotics. Seven ST198 genomes encoded the Salmonella Genomic Island 1 and substitutions in the gyrA and parC genes known to confer resistance to ciprofloxacin. Case report data on food consumption and travel were, for the most part, consistent with the inferred S. Kentucky phylogeny. Results of this study indicate that the majority of S. Kentucky infections in Maryland are caused by ST198 which may originate outside of North America.  相似文献   

18.
Campylobacter spp. are important causes of bacterial zoonosis, most often transmitted by contaminated poultry meat. From an epidemiological and risk assessment perspective, further knowledge should be obtained on Campylobacter prevalence and genotype distribution in primary production. Consequently, 15 Austrian broiler flocks were surveyed in summer for their thermophilic Campylobacter spp. contamination status. Chicken droppings, dust and drinking water samples were collected from each flock at three separate sampling periods. Isolates were confirmed by PCR and subtyped. We also compared three alternative methods (culture‐based enrichment in Bolton broth, culture‐independent real‐time PCR and a lateral‐flow test) for their applicability in chicken droppings. Twelve flocks were found to be positive for thermophilic Campylobacter spp. during the entire sampling period. Seven flocks (46.6%) were contaminated with both, C. jejuni and C. coli, five flocks harboured solely one species. We observed to a majority flock‐specific C. jejuni and C. coli genotypes, which dominated the respective flock. Flocks within a distance <2 km shared the same C. jejuni genotypes indicating a cross‐contamination event via the environment or personnel vectors. Multilocus sequence typing (MLST) of C. jejuni revealed that the majority of isolates were assigned to globally distributed clonal complexes or had a strong link to the human interface (CC ST‐446 and ST4373). The combination of techniques poses an advantage over risk assessment studies based on cultures alone, as, in the case of Campylobacter, occurrence of a high variety of genotypes might be present among a broiler flock. We suggest applying the lateral‐flow test under field conditions to identify ‘high‐shedding’ broiler flocks at the farm level. Consequently, poultry farmers and veterinarians could improve hygiene measurements and direct sanitation activities, especially during the thinning period. Ultimately, real‐time PCR could be applied to quantify Campylobacter spp. directly from chicken droppings and avoid non‐interpretable results achieved by culture‐dependent methods.  相似文献   

19.
In 2008, we identified vancomycin‐resistant enterococci (VRE) in Michigan swine, which was the first report of VRE in livestock from North America. Continued sampling in 2009 and 2010 was conducted to determine whether VRE persisted in Michigan. In 2009, swine faecal and feed samples (n = 56), county fair pig barn manure samples (n = 9) and pooled Michigan State Fair pig barn manure samples (n = 18) were screened for VRE. In 2010, swine faecal samples were collected from 26 county fairs (n = 73) and nine commercial swine farms in six states (n = 28). Recovered VRE isolates were molecularly evaluated by polymerase chain reaction, restriction fragment length polymorphism, pulsed‐field gel electrophoresis (PFGE), S1 nuclease digestion and multilocus sequence typing (MLST). Six VRE isolates were identified in 2009 from the State Fair, and another six (8.2%) were recovered from the five county fairs in 2010. All 12 isolates were highly related to the first‐reported VRE from Michigan swine: all were confirmed to be vancomycin‐resistant Enterococcus faecium (VREf) carrying vanA gene on Tn1546 (Type D), were negative for IS1251, hyl and esp gene, carried a 150–160 kb megaplasmid, and have closely similar PFGE patterns with >80% similarity. Classified as ST5, ST6 or ST185 by MLST, all belong to the clonal complex 5, a strain recognized to be circulating among European pigs. This study reveals that VREf are widespread in Michigan swine and persist in the historical absence of the use of agricultural glycopeptides.  相似文献   

20.
Routine necropsies of 27 asymptomatic juvenile chinchillas revealed a high prevalence of gastric ulcers with microscopic lymphoplasmacytic gastroenteritis and typhlocolitis. Polymerase chain reaction (PCR) analysis using Campylobacter genus‐specific partial 16S rRNA primers revealed the presence of Campylobacter spp. DNA in the faeces of 12 of 27 animals (44.4%). Species‐specific partial 16S rRNA PCR and sequencing confirmed that these animals were colonized with Campylobacter lanienae, a gram‐negative, microaerophilic bacterium that was first identified on routine faecal screening of slaughterhouse employees and subsequently isolated from faeces of livestock. Campylobacter lanienae was isolated from the faeces of six PCR‐positive animals and identified with species‐specific PCR and full 16S rRNA sequencing. Phylogenetic analysis showed that these isolates clustered with C. lanienae strain NCTC 13004. PCR analysis of DNA extracted from gastrointestinal tissues revealed the presence of Clanienae DNA in the caecum and colon of these chinchillas. Gastrointestinal lesions were scored and compared between C. lanienae‐positive and C. lanienae‐negative animals. There was no correlation between colonization status and lesion severity in the stomach, liver, duodenum, or colon. Possible routes of C. lanienae infection in chinchillas could include waterborne transmission and faecal–oral transmission from wild mice and rats or livestock. Based on these findings, the authors conclude that C. lanienae colonizes the lower bowel of chinchillas in the absence of clinical disease. This is the first report of C. lanienae in any rodent species. Campylobacter lanienae isolates from different mammalian species demonstrate heterogeneity by 16S rRNA sequence comparison. Analysis using rpoB suggests that isolates and clones currently identified as C. lanienae may represent multiple species or subspecies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号