首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ObjectiveTo determine the induction doses, then minimum infusion rates of alfaxalone for total intravenous anaesthesia (TIVA), and subsequent, cardiopulmonary effects, recovery characteristics and alfaxalone plasma concentrations in cats undergoing ovariohysterectomy after premedication with butorphanol-acepromazine or butorphanol-medetomidine.Study designProspective randomized blinded clinical study.AnimalsTwenty-eight healthy cats.MethodsCats undergoing ovariohysterectomy were assigned into two groups: together with butorphanol [0.2 mg kg?1 intramuscularly (IM)], group AA (n = 14) received acepromazine (0.1 mg kg?1 IM) and group MA (n = 14) medetomidine (20 μg kg?1 IM). Anaesthesia was induced with alfaxalone to effect [0.2 mg kg?1 intravenously (IV) every 20 seconds], initially maintained with 8 mg kg?1 hour?1 alfaxalone IV and infusion adjusted (±0.5 mg kg?1 hour?1) every five minutes according to alterations in heart rate (HR), respiratory rate (fR), Doppler blood pressure (DBP) and presence of palpebral reflex. Additional alfaxalone boli were administered IV if cats moved/swallowed (0.5 mg kg?1) or if fR >40 breaths minute?1 (0.25 mg kg?1). Venous blood samples were obtained to determine plasma alfaxalone concentrations. Meloxicam (0.2 mg kg?1 IV) was administered postoperatively. Data were analysed using linear mixed models, Chi-squared, Fishers exact and t-tests.ResultsAlfaxalone anaesthesia induction dose (mean ± SD), was lower in group MA (1.87 ± 0.5; group AA: 2.57 ± 0.41 mg kg?1). No cats became apnoeic. Intraoperative bolus requirements and TIVA rates (group AA: 11.62 ± 1.37, group MA: 10.76 ± 0.96 mg kg?1 hour?1) did not differ significantly between groups. Plasma concentrations ranged between 0.69 and 10.76 μg mL?1. In group MA, fR, end-tidal carbon dioxide, temperature and DBP were significantly higher and HR lower.Conclusion and clinical relevanceAlfaxalone TIVA in cats after medetomidine or acepromazine sedation provided suitable anaesthesia with no need for ventilatory support. After these premedications, the authors recommend initial alfaxalone TIVA rates of 10 mg kg?1 hour?1.  相似文献   

2.
3.
ObjectiveInvestigate physiological and sedative/anaesthetic effects of xylazine, medetomidine or dexmedetomidine combined with ketamine in free-ranging Bennett's wallabies.Study designProspective clinical trial.AnimalsTwenty-six adult free-ranging Bennett's wallabies.MethodsAnimals were darted intramuscularly with one of three treatments: xylazine and ketamine, 2.0 and 15.0 mg kg?1, respectively (XK): medetomidine and ketamine 0.1 and 5.0 mg kg?1 (MK) and dexmedetomidine and ketamine 0.05 and 5.0 mg kg?1 (DMK). Body weights were estimated. If the animal was still laterally recumbent after 45 minutes of anaesthesia, then an alpha-2 adrenoceptor antagonist, atipamezole, was administered (XK: 0.4 mg kg?1, MK: 5 mg kg?1, DMK: 2.5 mg kg?1). Heart rate (HR) and respiratory rate (fR) were recorded at 5-minute intervals and temperature at 10-minute intervals. Venous blood was taken 30 minutes after initial injection. Statistical analysis utilized anova. p < 0.05 was considered significant.ResultsAnimals became recumbent rapidly in all groups. XK animals had muscle twitches, responded to external stimuli, and three animals required additional dosing; this was not observed in the MK and DMK groups. HR (mean ± SD beats minute?1) in XK (81 ± 4) was significantly higher than MK (74 ± 2) and DMK (67 ± 4). There were no differences in fR, temperature, blood-gas and biochemical values between groups. More animals in MK (9/10) and DMK (5/6) needed antagonism of anaesthesia compared with XK (1/10). There were no adverse effects after anaesthesia.Conclusion and clinical relevanceCardio-respiratory effects were similar in all groups. There were fewer muscle twitches and reactions to external stimuli in MK and DMK. Duration of anaesthesia was shorter in XK; most animals in MK and DMK needed atipamezole to assist recovery. All three treatments provided satisfactory sedation/anaesthesia and are suitable for use in Bennett's wallabies.  相似文献   

4.
ObjectiveTo characterise four different intramuscular (IM) anaesthetic protocols, two with alfaxalone and two with alfaxalone in combination with medetomidine in terrestrial tortoises.Study designBlinded, randomized, cross‐over experimental study.AnimalsNine healthy adult male Horsfield's tortoises (Agrionemys horsfieldii).MethodsEach tortoise was randomly assigned to one of four different protocols: 1) 10 mg kg?1 alfaxalone; 2) 10 mg kg?1 alfaxalone + 0.10 mg kg?1 medetomidine; 3) 20 mg kg?1 alfaxalone; and 4) 20 mg kg?1 alfaxalone + 0.05 mg kg?1 medetomidine. During the experiment, the following variables were recorded: heart rate; respiratory rate; peripheral nociceptive responses; muscle strength; ability to intubate; palpebral, corneal and tap reflexes; and cloacal temperature.ResultsProtocols 1 and 2 resulted in moderate sedation with no analgesia, and moderate to deep sedation with minimal analgesia, respectively. Protocols 3 and 4 resulted in deep sedation or anaesthesia with variable analgesic effect; these two protocols had the longest total anaesthetic time and allowed intubation in 6/9 and 8/9 tortoises respectively. The total anaesthesia/sedation time produced by alfaxalone was significantly increased (p <0.05) by the addition of medetomidine. There were no significant differences regarding time to plateau phase and duration of plateau phase. Baseline heart rate of 53 ± 6 beats minute?1 decreased significantly (p <0.05) with all protocols, and was lower (p <0.05) in protocols 3 and 4. Heart rate increased after atipamezole administration, but the increase was transient. In two tortoises, extreme bradycardia with no cardiac activity for 10 minutes was observed with protocols 3 and 4.Conclusion and clinical relevanceAlfaxalone 10 and 20 mg kg?1 IM can be used for sedation for non‐painful procedures. Alfaxalone in combination with medetomidine can be used for deeper sedation or anaesthesia, but the observed respiratory and cardiovascular depression may limit its use.  相似文献   

5.
ObjectivesTo compare the anaesthetic, analgesic and cardiorespiratory effects of intramuscular (IM) medetomidine and ketamine administered alone or combined with morphine or tramadol, for orchiectomy in cats.Study designRandomised, blinded, prospective clinical study.AnimalsThirty client-owned cats.Materials and methodsCats (n = 10 in each group) received a combination of medetomidine (60 μgkg?1) and ketamine (10 mg kg?1) alone (MedK); combined with morphine (0.2 mg kg?1) (MedKM), or combined with tramadol (2 mg kg?1) (MedKT) IM. Time of induction, surgical and recovery events were recorded, and physiological parameters measured and recorded. Analgesia was evaluated with a visual analogue scale, a composite scoring system and the von Frey mechanical threshold device, every hour from three to eight hours post-drug administration injection. Data were analyzed with a linear mixed model, Kruskal–Wallis or Chi-square tests (p < 0.05).ResultsMedian (IQR) induction and recovery times (minutes) were not significantly (p = 0.125) different between groups: 5.6 (2.7–8.0), 7.4 (5.1–9.6) and 8.0 (5.8–14.9) for induction and 128.5 (95.1–142.8), 166.4 (123.1–210.0) and 142.9 (123.4–180.2) for recovery, with MedK, MedKT and MedKM, respectively. Two cats (MedKM) required alfaxalone for endotracheal intubation. In all groups, three or four cats required additional isoflurane for surgery. Arterial oxygen tension overall (mean ± SD: 66 ± 2 mmHg) was low. Surgery resulted in increased systolic arterial blood pressure (p < 0.001), haemoglobin saturation (p < 0.001), respiratory (p = 0.003) and heart rates (p = 0.002). Pain scores did not differ significantly between groups. Von Frey responses decreased over time; changes over time varied by treatment (p < 0.001), MedK returning to baseline values more rapidly than MedKM and MedKT. No cat required rescue analgesics.Conclusion and clinical relevanceAll three protocols can provide adequate anaesthesia and analgesia for orchiectomy in cats. However, rescue intervention to maintain surgical anaesthesia may be required in some cats. Oxygen supplementation is advised.  相似文献   

6.
ObjectiveTo compare the effects of propofol and alfaxalone on respiration in cats.Study designRandomized, ‘blinded’, prospective clinical trial.AnimalsTwenty cats undergoing ovariohysterectomy.MethodsAfter premedication with medetomidine 0.01 mg kg−1 intramuscularly and meloxicam 0.3 mg kg−1 subcutaneously, the cats were assigned randomly into two groups: group A (n = 10) were administered alfaxalone 5 mg kg−1 minute−1 followed by 10 mg kg−1 hour−1 intravenously (IV) and group P (n = 10) were administered propofol 6 mg kg−1 minute−1 followed by 12 mg kg−1hour−1 IV for induction and maintenance of anaesthesia, respectively. After endotracheal intubation, the tube was connected to a non-rebreathing system delivering 100% oxygen. The anaesthetic maintenance drug rate was adjusted (± 0.5 mg kg−1 hour−1) every 5 minutes according to a scoring sheet based on physiologic variables and clinical signs. If apnoea > 30 seconds, end-tidal carbon dioxide (Pe′CO2) > 7.3 kPa (55 mmHg) or arterial haemoglobin oxygen saturation (SpO2) < 90% occurred, manual ventilation was provided. Methadone was administered postoperatively. Data were analyzed using independent-samples t-tests, Fisher's exact test, linear mixed-effects models and binomial test.ResultsManual ventilation was required in two and eight of the cats in group A and P, respectively (p = 0.02). Two cats in both groups showed apnoea. Pe′CO2 > 7.3 kPa was recorded in zero versus four and SpO2 < 90% in zero versus six cats in groups A and P respectively. Induction and maintenance dose rates (mean ± SD) were 11.6 ± 0.3 mg kg−1 and 10.7 ± 0.8 mg kg−1 hour−1 for alfaxalone and 11.7 ± 2.7 mg kg−1 and 12.4 ± 0.5 mg kg−1 hour−1 for propofol.Conclusion and clinical relevanceAlfaxalone had less adverse influence on respiration than propofol in cats premedicated with medetomidine. Alfaxalone might be better than propofol for induction and maintenance of anaesthesia when artificial ventilation cannot be provided.  相似文献   

7.
ObjectiveTo compare anaesthesia induced with either alfaxalone or ketamine in horses following premedication with xylazine and guaifenesin.Study designRandomized blinded cross-over experimental study.AnimalsSix adult horses, five Standardbreds and one Thoroughbred; two mares and four geldings.MethodsEach horse received, on separate occasions, induction of anaesthesia with either ketamine 2.2 mg kg?1 or alfaxalone 1 mg kg?1. Premedication was with xylazine 0.5 mg kg?1 and guaifenesin 35 mg kg?1. Incidence of tremors/shaking after induction, recovery and ataxia on recovery were scored. Time to recovery was recorded. Partial pressure of arterial blood oxygen (PaO2) and carbon dioxide (PaO2), arterial blood pressures, heart rate (HR) and respiratory rates were recorded before premedication and at intervals during anaesthesia. Data were analyzed using Wilcoxon matched pairs signed rank test and are expressed as median (range).ResultsThere was no difference in the quality of recovery or in ataxia scores. Horses receiving alfaxalone exhibited a higher incidence of tremors/shaking on induction compared with those receiving ketamine (five and one of six horses respectively). Horses recovered to standing similarly [28 (24–47) minutes for alfaxalone; 22 (18–35) for ketamine] but took longer to recover adequately to return to the paddock after alfaxalone [44 (38–67) minutes] compared with ketamine [35 (30–47)]. There was no statistical difference between treatments in effect on HR, PaO2 or PaCO2 although for both regimens, PaO2 decreased with respect to before premedication values. There was no difference between treatments in effect on blood pressure.Conclusions and clinical relevanceBoth alfaxalone and ketamine were effective at inducing anaesthesia, although at induction there were more muscle tremors after alfaxalone. As there were no differences between treatments in relation to cardiopulmonary responses or quality of recovery, and only minor differences in recovery times, both agents appear suitable for this purpose following the premedication regimen used in this study.  相似文献   

8.
ObjectiveTo evaluate medetomidine as a continuous rate infusion (CRI) in horses in which anaesthesia is maintained with isoflurane and CRIs of ketamine and lidocaine.Study designProspective, randomized, blinded clinical trial.AnimalsForty horses undergoing elective surgery.MethodsAfter sedation and induction, anaesthesia was maintained with isoflurane. Mechanical ventilation was employed. All horses received lidocaine (1.5 mg kg?1 initially, then 2 mg kg?1 hour?1) and ketamine (2 mg kg?1 hour?1), both CRIs reducing to 1.5 mg kg?1 hour?1 after 50 minutes. Horses in group MILK received a medetomidine CRI of 3.6 μg kg?1 hour?1, reducing after 50 minutes to 2.75 μg kg?1 hour?1, and horses in group ILK an equal volume of saline. Mean arterial pressure (MAP) was maintained above 70 mmHg using dobutamine. End-tidal concentration of isoflurane (FE′ISO) was adjusted as necessary to maintain surgical anaesthesia. Group ILK received medetomidine (3 μg kg?1) at the end of the procedure. Recovery was evaluated. Differences between groups were analysed using Mann-Whitney, Chi-Square and anova tests as relevant. Significance was taken as p < 0.05.ResultsFE′ISO required to maintain surgical anaesthesia in group MILK decreased with time, becoming significantly less than that in group ILK by 45 minutes. After 60 minutes, median (IQR) FE′ISO in MILK was 0.65 (0.4–1.0) %, and in ILK was 1 (0.62–1.2) %. Physiological parameters did not differ between groups, but group MILK required less dobutamine to support MAP. Total recovery times were similar and recovery quality good in both groups.Conclusion and clinical relevanceA CRI of medetomidine given to horses which were also receiving CRIs of lidocaine and ketamine reduced the concentration of isoflurane necessary to maintain satisfactory anaesthesia for surgery, and reduced the dobutamine required to maintain MAP. No further sedation was required to provide a calm recovery.  相似文献   

9.
ObjectiveTo evaluate the anaesthetic and cardiorespiratory effects of four anaesthetic protocols in red foxes (Vulpes vulpes).Study designProspective, blinded and randomized complete block design.AnimalsTen adult captive red foxes.MethodsFoxes were anaesthetized by intramuscular (IM) injection using four protocols in random order: medetomidine 40 μg kg?1, midazolam 0.3 mg kg?1 and butorphanol 0.1 mg kg?1 (MMiB), medetomidine 40 μg kg?1 and ketamine 4 mg kg?1 (MK40/4), medetomidine 60 μg kg?1 and ketamine 4 mg kg?1 (MK60/4), medetomidine 40 μg kg?1 and tiletamine/zolazepam 2 mg kg?1 (MTZ). Time to lateral recumbency, induction time and time to recovery following IM administration of atipamezole 0.2 mg kg?1 were recorded. Heart rate (HR), respiratory rate (fR) and rhythm, blood pressure, rectal temperature, end-tidal CO2 tension (Pe′Co2), functional oxygen saturation and presence/absence of interdigital, palpebral and ear reflexes were recorded every 10 minutes, and following administration of atipamezole. Data were analysed using two-way repeated-measures anova with Bonferroni post tests; p < 0.05 was considered significant.ResultsAll protocols produced profound sedation with good muscle relaxation. Only the MMiB protocol diverged significantly from the others. Induction of anaesthesia and recovery time following atipamezole were significantly longer, and fR and initial HR significantly lower with MMiB than with the other protocols. With all protocols, mean arterial blood pressure (MAP) was initially relatively high (140–156 mmHg), and decreased significantly over time. With all protocols, the administration of atipamezole resulted in a rapid, significant decrease in MAP and an increase in HR.Conclusions and clinical relevanceAll four protocols provided anaesthetic conditions suitable for minor procedures and allowed endotracheal intubation. The cyclohexanone protocols provided quicker and more reliable inductions and recoveries than the MMiB protocol.  相似文献   

10.
ObjectiveTo quantify induction time, reliability, physiological effects, recovery quality and dart volume of a novel formulation of alfaxalone (40 mg mL?1) used in combination with medetomidine and azaperone for the capture and handling of wild bighorn sheep.Study designProspective clinical study.AnimalsA total of 23 wild bighorn sheep (Ovis canadensis) in Sheep River Provincial Park, AB, Canada.MethodsFree-ranging bighorn sheep were immobilized using medetomidine, azaperone and alfaxalone delivered with a remote delivery system. Arterial blood was collected for measurement of blood gases, physiologic variables (temperature, heart and respiratory rates) were recorded and induction and recovery length and quality were scored.ResultsData from 20 animals were included. Administered dose rates were alfaxalone (0.99 ± 0.20 mg kg?1; 40 mg mL?1), azaperone (0.2 ± 0.04 mg kg?1; 10 mg mL?1) and medetomidine (0.16 ± 0.03 mg kg?1; 30 mg mL?1). The mean drug volume injected was 1.51 mL. The median (range) induction time was 7.7 (5.8–9.7) minutes, and recovery was qualitatively smooth.Conclusions and clinical relevanceAn increased concentration formulation of alfaxalone was administered in combination with medetomidine and azaperone, and resulted in appropriate anesthesia for the capture and handling of bighorn sheep. The dart volume was small, with potential for reducing capture-related morbidity.  相似文献   

11.
ObjectiveTo determine the pharmacokinetics and pharmacodynamics of the neurosteroidal anaesthetic, alfaxalone, in horses after a single intravenous (IV) injection of alfaxalone, following premedication with acepromazine, xylazine and guaiphenesin.Study designProspective experimental study.AnimalsTen (five male and five female), adult, healthy, Standardbred horses.MethodsHorses were premedicated with acepromazine (0.03 mg kg?1 IV). Twenty minutes later they received xylazine (1 mg kg?1 IV), then after 5 minutes, guaiphenesin (35 mg kg?1 IV) followed immediately by IV induction of anaesthesia with alfaxalone (1 mg kg?1). Cardiorespiratory variables (pulse rate, respiratory rate, pulse oximetry) and clinical signs of anaesthetic depth were evaluated throughout anaesthesia. Venous blood samples were collected at strategic time points and plasma concentrations of alfaxalone were assayed using liquid chromatography-mass spectrometry (LC/MS) and analysed by noncompartmental pharmacokinetic analysis. The quality of anaesthetic induction and recovery was scored on a scale of 1–5 (1 very poor, 5 excellent).ResultsThe median (range) induction and recovery scores were 4 (3–5) (good: horse slowly and moderately gently attained recumbency with minimal or no rigidity or paddling) and 4 (1–5) (good: horse stood on first attempt with some knuckling and ataxia) respectively. The monitored cardiopulmonary variables were within the range expected for clinical equine anaesthesia. The mean ± SD durations of anaesthesia from induction to sternal recumbency and from induction to standing were 42.7 ± 8.4 and 47 ± 9.6 minutes, respectively. The mean ± SD plasma elimination half life (t1/2), plasma clearance (Clp) and volume of distribution (Vd) for alfaxalone were 33.4 minutes, 37.1 ± 11.1 mL minute?1 kg?1 and 1.6 ± 0.4 L kg?1, respectively.Conclusions and clinical relevanceAlfaxalone, in a 2-hydroxypropyl-beta-cyclodextrin formulation, provides anaesthesia with a short duration of recumbency that is characterised by a smooth induction and satisfactory recovery in the horse. As in other species, alfaxalone is rapidly cleared from the plasma in the horse.  相似文献   

12.
13.
14.
ObjectiveTo determine the alfaxalone dose reduction during total intravenous anaesthesia (TIVA) when combined with ketamine or midazolam constant rate infusions and to assess recovery quality in healthy dogs.Study designProspective, blinded clinical study.AnimalsA group of 33 healthy, client-owned dogs subjected to dental procedures.MethodsAfter premedication with intramuscular acepromazine 0.05 mg kg-1 and methadone 0.3 mg kg-1, anaesthetic induction started with intravenous alfaxalone 0.5 mg kg-1 followed by either lactated Ringer’s solution (0.04 mL kg-1, group A), ketamine (2 mg kg-1, group AK) or midazolam (0.2 mg kg-1, group AM) and completed with alfaxalone until endotracheal intubation was achieved. Anaesthesia was maintained with alfaxalone (6 mg kg-1 hour-1), adjusted (±20%) every 5 minutes to maintain a suitable level of anaesthesia. Ketamine (0.6 mg kg-1 hour-1) or midazolam (0.4 mg kg-1 hour-1) were employed for anaesthetic maintenance in groups AK and AM, respectively. Physiological variables were monitored during anaesthesia. Times from alfaxalone discontinuation to extubation, sternal recumbency and standing position were calculated. Recovery quality and incidence of adverse events were recorded. Groups were compared using parametric analysis of variance and nonparametric (Kruskal-Wallis, Chi-square, Fisher’s exact) tests as appropriate, p < 0.05.ResultsMidazolam significantly reduced alfaxalone induction and maintenance doses (46%; p = 0.034 and 32%, p = 0.012, respectively), whereas ketamine only reduced the alfaxalone induction dose (30%; p = 0.010). Recovery quality was unacceptable in nine dogs in group A, three dogs in group AK and three dogs in group AM.Conclusions and clinical relevanceMidazolam, but not ketamine, reduced the alfaxalone infusion rate, and both co-adjuvant drugs reduced the alfaxalone induction dose. Alfaxalone TIVA allowed anaesthetic maintenance for dental procedures in dogs, but the quality of anaesthetic recovery remained unacceptable irrespective of its combination with ketamine or midazolam.  相似文献   

15.
ObjectiveTo test if the addition of butorphanol by constant rate infusion (CRI) to medetomidine–isoflurane anaesthesia reduced isoflurane requirements, and influenced cardiopulmonary function and/or recovery characteristics.Study designProspective blinded randomised clinical trial.Animals61 horses undergoing elective surgery.MethodsHorses were sedated with intravenous (IV) medetomidine (7 μg kg?1); anaesthesia was induced with IV ketamine (2.2 mg kg?1) and diazepam (0.02 mg kg?1) and maintained with isoflurane and a CRI of medetomidine (3.5 μg kg?1 hour?1). Group MB (n = 31) received butorphanol CRI (25 μg kg?1 IV bolus then 25 μg kg?1 hour?1); Group M (n = 30) an equal volume of saline. Artificial ventilation maintained end-tidal CO2 in the normal range. Horses received lactated Ringer’s solution 5 mL kg?1 hour?1, dobutamine <1.25 μg kg?1 minute?1 and colloids if required. Inspired and exhaled gases, heart rate and mean arterial blood pressure (MAP) were monitored continuously; pH and arterial blood gases were measured every 30 minutes. Recovery was timed and scored. Data were analyzed using two way repeated measures anova, independent t-tests or Mann–Whitney Rank Sum test (p < 0.05).ResultsThere was no difference between groups with respect to anaesthesia duration, end-tidal isoflurane (MB: mean 1.06 ± SD 0.11, M: 1.05 ± 0.1%), MAP (MB: 88 ± 9, M: 87 ± 7 mmHg), heart rate (MB: 33 ± 6, M: 35 ± 8 beats minute?1), pH, PaO2 (MB: 19.2 ± 6.6, M: 18.2 ± 6.6 kPa) or PaCO2. Recovery times and quality did not differ between groups, but the time to extubation was significantly longer in group MB (26.9 ± 10.9 minutes) than in group M (20.4 ± 9.4 minutes).Conclusion and clinical relevanceButorphanol CRI at the dose used does not decrease isoflurane requirements in horses anaesthetised with medetomidine–isoflurane and has no influence on cardiopulmonary function or recovery.  相似文献   

16.
ObjectiveTo evaluate the cardiorespiratory effects and plasma concentrations of medetomidine-midazolam-ketamine (MMK) combinations administered by intramuscular (IM) or subcutaneous (SC) injection in sable ferrets (Mustela putorius furo).Study designProspective randomized experimental study.AnimalsEighteen adult ferrets: weight median 1.19 (range 0.81–1.60) kg.MethodsAnimals were allocated to one of three groups: group IM07 received 20 μg kg?1 medetomidine, 0.5 mg kg?1 midazolam and 7 mg kg?1 ketamine IM; group IM10 20 μg kg?1 medetomidine, 0.5 mg kg?1 midazolam and 10 mg kg?1 ketamine IM; and group SC10 20 μg kg?1 medetomidine, 0.5 mg kg?1 midazolam and 10 mg kg?1 ketamine SC. Following instrumentation, cardiorespiratory parameters and plasma drug concentrations were measured every 5 minutes (T5–T30) for 30 minutes Ferrets were then euthanased. Data were analysed using anova for repeated measures. p < 0.05 was considered significant.ResultsResults are mean ± SD. Induction of anaesthesia (minutes) in IM07 and IM10 [2 (1)] was significantly faster than in SC10 [5 (2)]. All groups demonstrated the following: results given as groups IM07, IM10 and SC10 respectively. Mean arterial blood pressures (mmHg) were initially high [186 (13); 174 (33) and 174 (9) at T5] but decreased steadily. Pulse rates were initially 202 (20), 213 (17) and 207 (33) beats minute?1, decreasing with time. PaO2 (mmHg) was low [54.0 (8), 47.7 (10) and 38.5 (1)] at T5, although in groups IM07 and IM10 it increased over time. Plasma concentrations of all drugs were highest at T5 (36, 794 and 8264 nmol L?1 for medetomidine, midazolam and ketamine, respectively) and decreased thereafter: for both midazolam and ketamine, concentrations in IM07 and IM10 were higher than SC10.Conclusions and clinical relevanceMMK combinations containing either 7 or 10 mg kg?1 ketamine and given IM are suitable combinations for anaesthetising ferrets, although the observed degree of hypoxaemia indicates that oxygen administration is vital.  相似文献   

17.
ObjectiveTo determine the pharmacokinetics and pharmacodynamics of the neurosteroid anaesthetic, alfaxalone, in neonatal foals after a single intravenous (IV) injection of alfaxalone following premedication with butorphanol tartrate.Study designProspective experimental study.AnimalsFive clinically healthy Australian Stock Horse foals of mean ± SD age of 12 ± 3 days and weighing 67.3 ± 12.4 kg.MethodsFoals were premedicated with butorphanol (0.05 mg kg?1 IV) and anaesthesia was induced 10 minutes later by IV injection with alfaxalone 3 mg kg?1. Cardiorespiratory variables (pulse rate, respiratory rate, direct arterial blood pressure, arterial blood gases) and clinical signs of anaesthetic depth were evaluated throughout anaesthesia. Venous blood samples were collected at strategic time points and alfaxalone plasma concentrations were assayed using liquid chromatography-mass spectrometry (LC/MS) and analysed by noncompartmental pharmacokinetic analysis.ResultsThe harmonic, mean ± SD plasma elimination half life (t½) for alfaxalone was 22.8 ± 5.2 minutes. The observed mean plasma clearance (Clp) and volume of distribution (Vd) were 19.9 ± 5.9 mL minute kg?1 and 0.6 ± 0.2 L kg?1, respectively. Overall, the quality of the anaesthetic inductions and recoveries was good and most monitored physiological variables were clinically acceptable in all foals, although some foals became hypoxaemic for a short period following recumbency. The mean durations of anaesthesia from induction to first movement and from induction to standing were 18.7 ± 7 and 37.2 ± 4.7 minutes, respectively.ConclusionsThe anaesthetic protocol used provided a predictable and consistent plane of anaesthesia in the five foals studied, with minimal cardiovascular depression. In foals, as in the adult horse, alfaxalone has a short elimination half life.Clinical relevanceAlfaxalone appears to be an adequate anaesthetic induction agent in foals and the pharmacokinetics suggest that, with continuous infusion, it might be suitable to provide more prolonged anaesthesia. Oxygen supplementation is recommended.  相似文献   

18.
ObjectiveTo investigate physiological and sedative/immobilization effects of medetomidine or dexmedetomidine combined with ketamine in free-ranging Chinese water deer (CWD).Study designProspective clinical trial.Animals10 free-ranging adult Chinese water deer (11.0 ± 2.6 kg).MethodsAnimals were darted intramuscularly with 0.08 ± 0.004 mg kg?1 medetomidine and 3.2 ± 0.2 mg kg?1 ketamine (MK) or 0.04 ± 0.01 mg kg?1 dexmedetomidine and 2.9 ± 0.1 mg kg?1 ketamine (DMK) If the animal was still laterally recumbent after 60 minutes of immobilization, atipamezole was administered intravenously (MK: 0.4 ± 0.02 mg kg?1, DMK: 0.2 ± 0.03 mg kg?1). Heart rate (HR) respiratory rate (fR) and temperature were recorded at 5-minute intervals. Arterial blood was taken 15 and 45 minutes after initial injection. Statistical analysis was performed using Student’s t-test or anova. p < 0.05 was considered significant.ResultsAnimals became recumbent rapidly in both groups. Most had involuntary ear twitches, but there was no response to external stimuli. There were no statistical differences in mean HR (MK: 75 ± 14 beats minute?1; DMK: 85 ± 21 beats minute?1), fR (MK: 51 ± 35 breaths minute?1; DMK; 36 ± 9 breaths minute?1), temperature (MK: 38.1 ± 0.7 °C; DMK: 38.4 ± 0.5 °C), blood gas values (MK: PaO2 63 ± 6 mmHg, PaCO2 49.6 ± 2.6 mmHg, HCO3? 30.8 ± 4.5 mmol L?1; DMK: PaO2 77 ± 35 mmHg, PaCO2 45.9 ± 11.5 mmHg, HCO3? 31.0 ± 4.5 mmol L?1) and biochemical values between groups but temperature decreased in both groups. All animals needed antagonism of immobilization after 60 minutes. Recovery was quick and uneventful. There were no adverse effects after recovery.Conclusion and clinical relevanceBoth anaesthetic protocols provided satisfactory immobilisation. There was no clear preference for either protocol and both appear suitable for CWD.  相似文献   

19.
ObjectiveTo compare three anaesthetic protocols for umbilical surgery in calves regarding adequacy of analgesia, and cardiopulmonary and hormonal responses.Study designProspective, randomised experimental study.AnimalsThirty healthy German Holstein calves (7 female, 23 male) aged 45.9 ± 6.4 days.MethodsAll calves underwent umbilical surgery in dorsal recumbency. The anaesthetic protocols were as follows: group INH (n = 10), induction 0.1 mg kg?1 xylazine IM and 2.0 mg kg?1 ketamine IV, maintenance isoflurane in oxygen; Group INJ (n = 10), induction 0.2 mg kg?1 xylazine IM and 5.0 mg kg?1 ketamine IV, maintenance 2.5 mg kg?1 ketamine IV every 15 minutes or as required; group EPI (n = 10), high volume caudal epidural anaesthesia with 0.2 mg kg?1 xylazine diluted to 0.6 mL kg?1 with procaine 2%. All calves received peri-umbilical infiltration of procaine and pre-operative IV flunixin (2.2 mg kg?1). Cardiopulmonary variables were measured at preset intervals for up to 2 hours after surgery. The endocrine stress response was determined. Intra-operative nociception was assessed using a VAS scale. Data were compared between groups using appropriate statistical tests. A value of p < 0.05 was considered significant.ResultsAll three protocols provided adequate anaesthesia for surgery although, as judged by the VAS scale, intra-operative response was greatest with INJ. Lowest mean cortisol levels during surgery occurred in EPI. Heart rate and cardiac output did not differ between groups, but mean arterial blood pressure, systemic vascular resistance, and partial pressure of carbon dioxide were higher and arterial pH lower in groups INH and INJ than in Group EPI. Group INJ became hypoxaemic and had a significantly greater vascular shunt than did the other groups.Conclusion and clinical relevanceGroups INH and EPI both proved acceptable protocols for calves undergoing umbilical surgery, whilst INJ resulted in variable anti-nociception and in hypoxaemia. High volume caudal epidural anaesthesia provides a practical inexpensive method of anaesthesia for umbilical surgery.  相似文献   

20.
ObjectiveTo determine in dogs the effects of medetomidine and butorphanol, alone and in combination, on the induction dose of alfaxalone and to describe the induction and intubation conditions.Study designProspective, randomized, blinded clinical trial.AnimalsEighty-five client-owned dogs (ASA 1 or 2).MethodsSubjects were block randomized to treatment group according to temperament. The treatment groups were: medetomidine 4 μg kg?1 (M), butorphanol 0.1 mg kg?1 (B), or a combination of both (MB), all administered intramuscularly. After 30 minutes, a sedation score was assigned, and alfaxalone 0.5 mg kg?1 was administered intravenously over 60 seconds by an observer who was unaware of treatment group. Tracheal intubation conditions were assessed and, if tracheal intubation was not possible after 20 seconds, further boluses of 0.2 mg kg?1 were given every 20 seconds until intubation was achieved. Induction dose and adverse events (sneezing, twitching, paddling, excitement, apnoea and cyanosis) were recorded; induction quality and intubation conditions were scored and recorded.ResultsThe mean dose of alfaxalone required for induction was similar for groups M and B: 1.2 ± 0.4 mg kg?1. The mean dose requirement for group MB (0.8 ± 0.3 mg kg?1) was lower than groups M and B (p < 0.0001). Induction dose was not influenced by temperament or level of sedation. Induction and intubation scores did not differ between treatment groups. Adverse events were noted in 16 dogs; there was no association with treatment group, temperament or level of sedation.Conclusions and clinical relevanceMedetomidine and butorphanol administered in combination reduce the anaesthetic induction dose of alfaxalone compared to either agent alone. This difference should be taken into account when using this combination of drugs in a clinical setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号