首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
2.
3.
4.
5.
Objective – To compare cardiac output (CO) measured by use of lithium dilution (LiDCO) and ultrasound velocity dilution (UDCO) in conditions of high, intermediate, and low CO in anesthetized foals.
Design – Original prospective study.
Setting – University teaching hospital.
Animals – Six foals 1–3 days of age (38–45 kg).
Interventions – Neonatal foals were anesthetized and instrumented to measure direct blood pressure, heart rate, arterial blood gases, and CO. The CO was measured by use of LiDCO and UDCO techniques. Measurements were obtained from each foal at baseline and during low, intermediate, and high CO states. Measurements were converted to cardiac index (cardiac index=CO/body weight) values for statistical analysis. Agreement between the 2 methods was determined using Bland and Altman analysis and concordance correlation coefficients.
Measurements and Main Results – LiDCO determinations of CO ranged between 4.0 and 14.0 L/min resulting in cardiac index ranging between 75.5 and 310 mL/kg/min. There was no significant effect of blood pressure variation on bias or relative bias ( P =0.62 and 0.93, respectively). The mean bias and relative bias of UDCO (±SD) compared with LiDCO were −20.1±39.2 mL/kg/min and −7.7±23.4%, respectively. Concordance correlation coefficient between LiDCO and UDCO was 0.833.
Conclusions – When compared with LiDCO, the UDCO technique has acceptable clinical utility for measuring CO in healthy anesthetized newborn foals.  相似文献   

6.
ObjectiveTo evaluate the accuracy of a new cardiac output monitor (FloTrac/Vigileo), originally designed for humans, in dogs. This pulse contour cardiac output monitoring system cannot be calibrated and measures cardiac output (
t) from a standard arterial catheter.Study designProspective experimental trial.AnimalsEight adult Beagle dogs weighing 13.1 (9.8–17.1) kg [median (range)].MethodsAnaesthesia in the dogs was maintained using isoflurane. A pulmonary artery catheter and a metatarsal arterial catheter (22 gauge) were placed. Cardiac output was measured simultaneously 331 times by thermodilution and FloTrac technique. A broad spectrum of
t measurements was achieved through alterations of isoflurane concentration, administration of propofol boluses and dobutamine infusions. Agreement between the methods was quantified with Bland Altman analysis and disagreement was assessed with linear mixed models.ResultsMedian (10th and 90th percentile) cardiac output as measured with thermodilution was 2.54 (1.47 and 5.15) L minute?1 and as measured with FloTrac 8.6 (3.9 and 17.3) L minute?1. FloTrac measurements were consistently higher with a mean bias of 7 L minute?1 and limits of agreement of ?3.15 to 17.17 L minute?1. Difference between the methods was most pronounced in high
t measurements. Linear mixed models showed an estimated difference between the two methods of 8.05 (standard error 1.18) L minute?1 and a significant interaction between mean arterial pressure and method. Standard deviation (4.45 higher) with the FloTrac method compared to thermodilution was increased.ConclusionCompared to thermodilution measurements, the FloTrac system was influenced to a higher degree by arterial blood pressure, resulting in consistent overestimation of cardiac output.Clinical RelevanceThe FloTrac monitor, whose algorithms were developed based on human data, cannot be used as an alternative for thermodilution in dogs.  相似文献   

7.
8.
Objective – To determine if metatarsal artery pressure (COmet) is comparable to femoral artery pressure (COfem) as the input for transpulmonary pulse contour analysis (PiCCO) in anesthetized dogs, using the lithium dilution method (LiDCO) as a standard for cardiac output (CO) measurement. Design – Prospective randomized study. Setting – University research laboratory. Animals – Ten healthy purpose‐bred mixed breed dogs were anesthetized and instrumented to measure direct blood pressure, heart rate, arterial blood gases, and CO. Interventions – The CO was measured using LiDCO and PiCCO techniques. Animals had their right femoral and left distal metatarsal artery catheterized for proximal (COfem) and distal (COmet) PiCCO analysis, respectively. Measurements were obtained from each animal during low, normal, and high CO states by changing amount of inhalant anesthetics and heart rate. Measurements were converted to CO indexed to body weigh (CIBW=CO/kg) for statistical analysis. Agreement was determined using Bland and Altman analysis and concordance correlation coefficients. Measurements and Main Results – Thirty paired measurements were taken. The LiDCO CIBW (± SD) was 68.7 ± 30.3, 176.0 ± 53.0, and 211.1 ± 76.5 mL/kg/min during low, normal, and high CO states, respectively. There was a significant effect of CIBW state on bias and relative bias with COmet (P<0.001 and P=0.003, respectively). Bias of the COmet method (± SD) was ?116.6 (70.5), 20.1(76.4), and 91.3 (92.0) mL/kg/min at low, normal, and high CIBW, respectively. Bias of the COfem (± SD) was ?20.3 (19.0), 8.6 (70.9), and ?2.9 (83.0) mL/kg/min at low, normal, and high CIBW, respectively. The mean relative bias for COfem was ?6.7 ± 44% (limits of agreements: ?81.2 to 67.9%). Conclusion – Compared with lithium dilution, the pulse contour analysis provides a good estimation of CO, but requires femoral artery catheterization in anesthetized dogs.  相似文献   

9.
ObjectiveTo evaluate interchangeability of a thermodilution based STAT mode continuous cardiac output (CCO) measurement method with bolus thermodilution (BTD).Study designRandomized crossover study.AnimalsTen 9 month old healthy male sheep.MethodsEach sheep was anaesthetized twice for laparoscopy. On one occasion mechanical ventilation was used immediately after anaesthetic induction (IPPV treatment) and on the other occasion the start of IPPV was delayed and two periods of alveolar recruitment manoeuvres were also performed (RM treatment). Cardiac output (CO) was measured simultaneously with both CCO and BTD at 6 time points. Data were analysed using difference versus mean plots. A priori limits of acceptance were set at ±30% of the mean of every paired measurement. If <5% of the data fell outside of these limits (Chi-square test, p < 0.05) the interchangeability of methods was accepted. Proportions of data outside of these limits were also compared between treatments (Fisher's test, p < 0.05). Cardiac output data from each treatment and measurement method were also analyzed separately with one-factorial anova and Bonferroni test (p < 0.05).ResultsA total of 119 measurements were obtained. Cardiac output ranged from 1.9 to 10.4 L minute?1 (CCO) and from 1.1 to 9.8 L minute?1 (BTD). The bias and limits of agreement were 0.5 ± 1.9 L minute?1. More than 5% of all data fell outside of the limits of acceptance (24/119), and a larger proportion fell outside of these limits in the RM (20/59) compared to the IPPV treatment (4/60). The Bonferroni test detected significant decreases of CO over time in both treatments when measured with BTD but not with CCO.Conclusions and clinical relevanceThe STAT mode CCO method is not interchangeable with BTD during acute haemodynamic changes caused by recruitment manoeuvres, thus the results of STAT mode CCO should be interpreted with caution because decreases in CO may not be detected.  相似文献   

10.
Knowledge of cardiac output is expected to help guide the treatment of hypotension associated with critical illness and/or anaesthesia in neonatal foals. However, a practical and safe method of measuring cardiac output has not been described for the foal. Lithum dilution, a new method of cardiac output determination not requiring cardiac catheterisation, has recently been reported in mature horses. We compared this method to thermodilution in isoflurane-anaesthetised foals age 30-42 h and found good agreement between the 2 methods in a range of cardiac outputs 5.4-20.4 l/min. The lithium dilution technique is a practical and reliable method of measuring cardiac output in anaesthetised neonatal foals, and warrants investigation in critically ill conscious foals.  相似文献   

11.
OBJECTIVES: To determine agreement of cardiac output measured by use of lithium dilution cardiac output (LiDCO) and thermodilution cardiac output (TDCO) techniques in dogs and to determine agreement of low- and high-dose LiDCO with TDCO. ANIMALS: 10 dogs (7 males, 3 females). PROCEDURE: Cardiac output was measured in anesthetized dogs by use of LiDCO and TDCO techniques. Four rates of cardiac output were induced by occlusion of the caudal vena cava, changes in depth of anesthesia, or administration of dobutamine. Lithium dilution cardiac output was performed, using 2 doses of lithium chloride (low and high dose). Each rate of cardiac output allowed 4 comparisons between LiDCO and TDCO. RESULTS: 160 comparisons were determined of which 68 were excluded. The remaining 92 comparisons had values ranging from 1.10 to 12.80 L/min. Intraclass correlation coefficient (ICC) between low-dose LiDCO and TDCO was 0.9898 and between high-dose LiDCO and TDCO was 0.9896. When all LiDCO determinations were pooled, ICC was 0.9894. For determinations of cardiac output < 5.0 L/min, ICC was 0.9730. Mean +/- SD of the differences of TDCO minus LiDCO for all measurements was -0.084+/-0.465 L/min, and mean of TDCO minus LiDCO for cardiac outputs < 5.0 L/min was -0.002+/-0.245 L/min. CONCLUSIONS AND CLINICAL RELEVANCE: The LiDCO technique is a suitable substitute for TDCO to measure cardiac output in dogs. Use of LiDCO eliminates the need for catheterization of a pulmonary artery and could increase use of cardiac output monitoring, which may improve management of cardiovascularly unstable animals.  相似文献   

12.
ObjectiveTo compare cardiac output (CO) measured by Doppler echocardiography and thermodilution techniques in spontaneously breathing dogs during continuous infusion of propofol. To do so, CO was obtained using the thermodilution method (COTD) and Doppler evaluation of pulmonary flow (CODP) and aortic flow (CODA).Study designProspective cohort study.AnimalsEight adult dogs weighing 8.3 ± 2.0 kg.MethodsPropofol was used for induction (7.5 ± 1.9 mg kg?1 IV) followed by a continuous rate infusion at 0.7 mg kg?1 minute?1. The animals were positioned in left lateral recumbency on an echocardiography table that allowed for positioning of the transducer at the 3rd and 5th intercostal spaces of the left hemithorax for Doppler evaluation of pulmonary and aortic valves, respectively. CODP and CODA were calculated from pulmonary and aortic velocity spectra, respectively. A pulmonary artery catheter was inserted via the jugular vein and positioned inside the lumen of the pulmonary artery in order to evaluate COTD. The first measurement of COTD, CODP and CODA was performed 30 minutes after beginning continuous infusion (T0) and then at 15‐minute intervals (T15, T30, T45 and T60). Numeric data were submitted to two‐way anova for repeated measurements, Pearson’s correlation coefficient and Bland &; Altman analysis. Data are presented as mean ± SD.ResultsAt T0, COTD was lower than CODA. CODA was higher than COTD and CODP at T30, T45 and T60. The difference between the COTD and CODP, when all data were included, was ?0.04 ± 0.22 L minute?1 and Pearson’s correlation coefficient (r) was 0.86. The difference between the COTD and CODA was ?0.87 ± 0.54 L minute?1 and r = 0.69. For COTD and CODP, the difference was ?0.82 ± 0.59 L minute?1 and r = 0.61.ConclusionDoppler evaluation of pulmonary flow was a clinically acceptable method for assessing the CO in propofol‐anesthetized dogs.  相似文献   

13.
14.
OBJECTIVE: To measure cardiac output in healthy female anesthetized dogs by use of lithium dilution cardiac output and determine whether changes in mean arterial pressure were caused by changes in cardiac output or systemic vascular resistance. DESIGN: Prospective clinical study. ANIMALS: 20 healthy female dogs. PROCEDURE: Dogs were anesthetized for ovariohysterectomy. Ten dogs breathed spontaneously throughout anesthesia, and 10 dogs received intermittent positive-pressure ventilation. Cardiovascular and respiratory measurements, including lithium dilution cardiac output, were performed during anesthesia and surgery. RESULTS: Mean arterial pressure and systemic vascular resistance index were low after induction of anesthesia and just prior to surgery and increased significantly after surgery began. Cardiac index (cardiac output indexed to body surface area) did not change significantly throughout anesthesia and surgery. CONCLUSIONS AND CLINICAL RELEVANCE: Results provide baseline data for cardiac output and cardiac index measurements during clinical anesthesia and surgery in dogs. Changes in mean arterial pressure do not necessarily reflect corresponding changes in cardiac index.  相似文献   

15.
OBJECTIVE: To assess the suitability of a human algorithm for calculation of continuous cardiac output from the arterial pulse waveform, in anaesthetized horses. STUDY DESIGN: Prospective clinical study. ANIMALS: Twenty-four clinical cases undergoing anaesthesia for various conditions. MATERIALS AND METHODS: Cardiac output (Qt), measured by lithium dilution (QtLiDCO), was compared with a preceding, calibrated Qt measured from the pulse waveform (QtPulse). These comparisons were repeated every 20-30 minutes. Positive inotropes or vasopressors were administered when clinically indicated. Cardiac indices from 30.7 to 114.9 mL kg(-1) minute(-1) were recorded. Unusually shaped QtLiDCO curves were rejected and the measurement was repeated immediately. RESULTS: Eighty-nine comparisons were made between QtLiDCO and QtPulse. The bias between the mean (+/-SD) of the two methods (QtLiDCO - QtPulse) was -0.07 L minute(-1)(+/-3.08) (0.24 +/- 6.48 mL kg(-1) minute(-1)). The limits of agreement were -12.72 and 13.2 mL kg(-1) minute(-1) (Bland & Altman 1986; Mantha et al. 2000). Linear regression analysis demonstrated a correlation coefficient (r2) of 0.89. Cardiac output in individual patients varied from 49.1 to 183% of the initial measurement at the time of calibration. Linear regression of log-transformed Qt variation for each method found a mean difference of 9% with limits of agreement of -4.1 to 22.1%. CONCLUSIONS AND CLINICAL RELEVANCE: This method of pulse contour analysis is a relatively noninvasive and reliable way of monitoring continuous Qt in the horse under anaesthesia. The ability to easily monitor Qt might decrease morbidity and mortality in the anaesthetized horse.  相似文献   

16.
Objective: To compare the partial CO2 rebreathing method (non‐invasive cardiac output [NICO]) and the lithium dilution method (lithium dilution cardiac output [LiDCO]) for cardiac output (CO) measurement in anesthetized dogs. Design: Prospective study. Setting: College of Veterinary Medicine, University of Florida. Animals: Six adult dogs (weight range 22–25.4 kg). Interventions: All animals were instrumented for CO determinations using the LiDCO and NICO methods. Direct blood pressure, heart rate, arterial blood gases, end‐tidal isoflurane (ETI), and CO2 concentrations were monitored throughout the study. CO was manipulated with dobutamine and isoflurane to allow for intermediate, low, and high CO determinations in that order using LiDCO and NICO. Measurements and main results: A 1.5% ETI produced the intermediate rate of CO, a constant‐rate infusion of dobutamine (1–4 μg/kg/min) and 1.1% ETI, the highest rate, and 2.5–3% ETI, the lowest rate. Measurements were obtained in duplicate or triplicate for the LiDCO and continuously for the NICO method after achieving a stable hemodynamic plane for at least 15 minutes at each level of CO, allowing 5 minutes between measurements. Forty‐seven comparisons were determined. The correlation coefficient (r) between the 2 methods was 0.888 for all determinations. The mean LiDCO and NICO from 47 measurements were 155.9±78.7 mL/kg/min (range, 49.6–303.2) and 146.6±62.9 mL/kg/min (50–290.3), respectively. The bias between LiDCO and NICO estimations was 9.3 (?60.7 to +79.4) mL/kg/min (mean and 95% confidence interval). The mean (mL/kg/min) of the differences of LiDCO–NICO was 1.11 × NICO. The relative error was 2.4±24.7%. As CO increased, the relative difference between the methods also increased. Conclusions: The NICO is a viable non‐invasive method for CO determination in the dog and compares well with the LiDCO.  相似文献   

17.
OBJECTIVE: To assess agreement between arterial pressure waveform-derived cardiac output (PCO) and lithium dilution cardiac output (LiDCO) systems in measurements of various levels of cardiac output (CO) induced by changes in anesthetic depth and administration of inotropic drugs in dogs. ANIMALS: 6 healthy dogs. PROCEDURE: Dogs were anesthetized on 2 occasions separated by at least 5 days. Inotropic drug administration (dopamine or dobutamine) was randomly assigned in a crossover manner. Following initial calibration of PCO measurements with a LiDCO measurement, 4 randomly assigned treatments were administered to vary CO; subsequently, concurrent pairs of PCO and LiDCO measurements were obtained. Treatments included a light plane of anesthesia, deep plane of anesthesia, continuous infusion of an inotropic drug (rate adjusted to achieve a mean arterial pressure of 65 to 80 mm Hg), and continuous infusion of an inotropic drug (7 microg/kg/min). RESULTS: Significant differences in PCO and LiDCO measurements were found during deep planes of anesthesia and with dopamine infusions but not during the light plane of anesthesia or with dobutamine infusions. The PCO system provided higher CO measurements than the LiDCO system during deep planes of anesthesia but lower CO measurements during dopamine infusions. CONCLUSIONS AND CLINICAL RELEVANCE: The PCO system tracked changes in CO in a similar direction as the LiDCO system. The PCO system provided better agreement with LiDCO measurements over time when hemodynamic conditions were similar to those during initial calibration. Recalibration of the PCO system is recommended when hemodynamic conditions or pressure waveforms are altered appreciably.  相似文献   

18.
Objective – To compare the determination of cardiac output (CO) via arterial pulse pressure waveform analysis (FloTrac/Vigileo) versus lithium dilution method. Design – Prospective study. Setting – University teaching hospital. Animals – Six adult dogs. Interventions – Dogs were instrumented for CO determinations using lithium dilution (LiDCO) and FloTrac/Vigileo methods. Direct blood pressure, heart rate, arterial blood gases, and end‐tidal isoflurane (ETIso) and CO2 concentrations were measured throughout the study while CO was manipulated with different depth of anesthesia and rapid administration of isotonic crystalloids at 60 mL/kg/h. Measurements and Main Results – Baseline CO measurements were obtained at 1.3% ETIso and were lowered by 3% ETIso. Measurements were obtained in duplicate or triplicate with LiDCO and averaged for comparison with corresponding values measured continuously with the FloTrac/Vigileo method. For 30 comparisons between methods, a mean bias of ?100 mL/kg/min and 95% limits of agreement between ?311 and +112 mL/kg/min (212 mL/kg/min) was determined. The mean (mL/kg/min) of the differences of LiDCO?Vigileo=62.0402+?0.8383 × Vigileo, and the correlation coefficient (r) between the 2 methods 0.70 for all CO determinations. The repeatability coefficients for the individual LiDCO and FloTrac/Vigileo methods were 187 and 400 mL/kg/min, respectively. Mean LiDCO and FloTrac/Vigileo values from all measurements were 145 ± 68 mL/kg/min (range, 64–354) and 244 ± 144 mL/kg/min (range, 89–624), respectively. The overall mean relative error was 48 ± 14%. Conclusion – The FloTrac/Vigileo overestimated CO values compared with LiDCO and the relative error was high, which makes this method unreliable for use in dogs.  相似文献   

19.
Objective and hypothesis: To determine whether or not there is agreement between the thermodilution and echocardiographic measurement of cardiac output (CO) during normovolemia and acute hemorrhage. The hypothesis was that there will be agreement between echocardiographic measurement of CO (ECO) and thermodilution measurement of CO (TDCO) during normovolemia and acute hemorrhage. Design: CO was measured by both thermodilution and echocardiography during α‐chloralose anesthesia in dogs before and 15 and 30 minutes following acute arterial hemorrhage. Setting: Laboratory investigation. Animals: Eighteen clinically healthy dogs, weighing 20–25 kg, anesthetized with α‐chloralose. Interventions: Acute arterial hemorrhage of approximately 50% of the total blood volume. CO was measured by thermodilution and echocardiography before and 15 and 30 minutes following hemorrhage. Measurements and main results: Acute hemorrhage resulted in a significant decrease in CO. There was a lack of agreement between the 2 methods to measure CO at each time and at all anatomic points of measurement in the aorta and pulmonary artery. Conclusion: There is a lack of agreement between the 2 methods; thus, determination of CO by echocardiography may not be a clinically useful tool following hemorrhage in dogs.  相似文献   

20.

Objective

To evaluate the ability of pulse wave transit time (PWTT) to detect changes in stroke volume (SV) and to estimate cardiac output (CO) compared with the thermodilution technique in isoflurane-anaesthetized dogs.

Study design

Prospective, experimental study.

Animals

Eight adult laboratory dogs.

Methods

The dogs were anaesthetized with isoflurane and mechanically ventilated. Reference CO (TDCO) was measured via a pulmonary artery catheter using the thermodilution technique and reference SV (TDSV) was calculated. PWTT was calculated as the time from the electrocardiogram R-wave peak to the rise point of the pulse oximeter wave. Estimated CO (esCO) was derived from PWTT after calibration with arterial pulse pressure (both non-invasive and invasive methods) and TDCO. Haemodynamic changes were induced by administration of phenylephrine (vasoconstriction), high isoflurane (vasodilatation and negative inotropy) and dobutamine (vasodilatation and positive inotropy). Trending between percentage change in PWTT and TDSV was assessed using concordance analysis and receiver operator characteristic (ROC) curve. The agreement between esCO and TDCO was evaluated using the Bland–Altman method.

Results

The direction of percentage change between consecutive PWTT and the corresponding TDSV showed a concordance rate of 95%, with correlation coefficients of ?0.86 (p < 0.001). Area under the ROC curve for the change in PWTT to detect 15% change in TDSV was 0.91 (p < 0.001). TDCO compared with esCO calibrated with invasive and non-invasive blood pressure showed a bias (precision of agreement) of 0.58 (1.54) and 0.57 (1.59) L minute?1 with a percentage error of ±61% and ±63%, respectively.

Conclusions and clinical relevance

In isoflurane-anaesthetized dogs, PWTT showed a good trending ability to detect 15% changes in SV. This technique is easy to use, inexpensive, non-invasive and could become routine anaesthetic monitoring. However, the agreement between absolute esCO and TDCO was unacceptable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号