首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ObjectiveTo investigate the cardiovascular effects of epidural romifidine in isoflurane-anaesthetized dogs.Study designProspective, randomized, blinded experiment.AnimalsA total of six healthy adult female Beagles aged 1.25 ± 0.08 years and weighing 12.46 ± 1.48 (10.25–14.50) kg.MethodsAnaesthesia was induced with propofol (6–9 mg kg?1) and maintained with 1.8–1.9% end-tidal isoflurane in oxygen. End-tidal CO2 was kept between 35 and 45 mmHg (4.7–6.0 kPa) using intermittent positive pressure ventilation. Heart rate (HR), arterial blood pressure and cardiac output (CO) were monitored. Cardiac output was determined using a LiDCO monitor and the derived parameters were calculated. After baseline measurements, either 10 μg kg?1 romifidine or saline (total volume 1 mL 4.5 kg?1) was injected into the lumbosacral epidural space. Data were recorded for 1 hour after epidural injection. A minimum of 1 week elapsed between treatments.ResultsAfter epidural injection, the overall means (± standard deviation, SD) of HR (95 ± 20 bpm), mean arterial blood pressure (MAP) (81 ± 19 mmHg), CO (1.63 ± 0.66 L minute?1), cardiac index (CI) (2.97 ± 1.1 L minute?1 m?2) and stroke volume index (SI) (1.38 ± 0.21 mL beat?1 kg?1) were significantly lower in the romifidine treatment compared with the overall means in the saline treatment [HR (129 ± 24 bpm), MAP (89 ± 17 mmHg), CO (3.35 ± 0.86 L minute?1), CI (6.17 ± 1.4 L minute?1 m?2) and SI (2.21 ± 0.21 mL beat?1 kg?1)]. The overall mean of systemic vascular resistance index (SVRI) (7202 ± 2656 dynes seconds cm?5 m?2) after epidural romifidine injection was significantly higher than the overall mean of SVRI (3315 ± 1167 dynes seconds cm?5 m?2) after epidural saline injection.ConclusionEpidural romifidine in isoflurane-anaesthetized dogs caused significant cardiovascular effects similar to those reportedly produced by systemic romifidine administration.Clinical relevanceSimilar cardiovascular monitoring is required after epidural and systemically administered romifidine. Further studies are required to evaluate the analgesic effects of epidural romifidine.  相似文献   

2.
ObjectiveTo evaluate the volume effect of local anesthetic solution on thoracic epidural analgesia in dogs.Study designProspective, experimental trial.AnimalsFive healthy adult Beagle dogs weighing 9.7 ± 1.3 kg.MethodsA catheter was inserted into the seventh thoracic epidural space using a lumbosacral approach, and secured with suture under total intravenous (IV) anesthesia with propofol. Each dog was administered four volume treatments (0.05, 0.10, 0.15 and 0.20 mL kg−1) of 2% lidocaine via the catheter at 12 hour intervals. In every treatment, dogs were re-anesthetized with propofol (6 mg kg−1, IV) and isoflurane, and received iohexol at each volume to visualize the epidural distribution (ED) through computed tomography. Three hours after epidurography, when dogs had recovered from anesthesia, the appropriate volume of lidocaine was injected through the catheter, and sensory blockade (SB) in dermatomes was evaluated by pinching with a mosquito forceps. Results were presented as median (range), and the volume effect on ED and SB was analyzed with one-way Kruskal–Wallis anova.ResultsIn proportion to volumes (0.05, 0.10, 0.15 and 0.20 mL kg−1), there were significant increases in the extent of ED from 7.4 (5.5–9.0) to 10.4 (8.0–12.0), 13.2 (12.5–13.0), and 15.2 (13.0–18.0) vertebrae, respectively, p < 0.001, and in SB from 2.7 (1.0–5.0) to 6.8 (4.5–10.5), 9.9 (6.5–13.0), and 13.1 (11.0–15.0) dermatomes, respectively, p < 0.001. Unilateral ED and SB were observed in all treatments with various grades, and this distribution was more frequent in the low volume treatments. In the high volume treatments, temporary complications including Horner's syndrome, ataxia, paraplegia, depression, stupor, and intermittent cough occurred often.Conclusions and clinical relevanceThe increase in volume of local anesthetic solution improved SB by resulting in more consistent bilateral dermatome blockade as well as an extended blockade. However, caution should be exerted, as higher volume injections of lidocaine caused side effects in all dogs.  相似文献   

3.

Objective

To compare the effects of epidural injection of three volumes of lidocaine injected at the third (T3) or eleventh thoracic vertebra (T11) in conscious dogs to induce thoracic epidural anesthesia (TEA) and to measure the epidural dispersion of iohexol under similar conditions.

Study design

Prospective crossover experiment.

Animals

A group of five Beagle dogs weighing 10.4 ± 0.5 kg (mean ± standard deviation).

Methods

Each dog was anesthetized twice, separated by 1 week, for inserting an epidural catheter at the lumbosacral space and advancing the tip to T3 (treatment TEAT3) or T11 (treatment TEAT11). For each treatment, three volumes of 2% lidocaine (0.05, 0.10 and 0.20 mL kg–1) were administered at 24 hour intervals, and sensory blockade (SB) of dermatomes was estimated by pinching the skin with mosquito forceps. Under identical conditions of injection volume and site, iohexol was administered 3 hours after lidocaine injection to identify epidural distribution (ED) using computed tomography. The effects of injection site and volume on SB of thoracic dermatomes and ED were analyzed using a linear mixed model (p < 0.05).

Results

Thoracic SB and ED significantly increased as the volume increased (p < 0.001 and p < 0.001, respectively), and significantly decreased in TEAT3 than in TEAT11 (p = 0.011 and p = 0.002, respectively). Cervical SB was obtained in three of five dogs in TEAT3 and two of five dogs in TEAT11 injected with 0.20 mL kg–1. One dog showed temporary inspiratory stridor probably caused by bilateral laryngeal paralysis, but no hypoxia.

Conclusions and clinical relevance

TEA induced at T3 produced less thoracic SB than did TEA at T11 with the same volumes of lidocaine. The cervical SB obtained with the highest volume of lidocaine may increase the risk of laryngeal paralysis and pulmonary aspiration.  相似文献   

4.
ObjectiveTo compare the cardiovascular effects of four epidural treatments in isoflurane anaesthetised dogs.Study designProspective, randomized. experimental study.AnimalsSix female, neutered Beagle dogs (13.3 ± 1.0 kg), aged 3.6 ± 0.1 years.MethodsAnaesthesia was induced with propofol (8.3 ± 1.1 mg kg?1) and maintained with isoflurane in a mixture of oxygen and air [inspiratory fraction of oxygen (FiO2) = 40%], using intermittent positive pressure ventilation. Using a cross-over model, NaCl 0.9% (P); methadone 1% 0.1 mg kg?1 (M); ropivacaine 0.75% 1.65 mg kg?1 (R) or methadone 1% 0.1 mg kg?1 + ropivacaine 0.75% 1.65 mg kg?1 (RM) in equal volumes (0.23 mL kg?1) using NaCl 0.9%, was administered epidurally at the level of the lumbosacral space. Treatment P was administered to five dogs only. Cardiovascular and respiratory variables, blood gases, and oesophageal temperature were recorded at T-15 and for 60 minutes after epidural injection (T0).ResultsMean overall heart rate (HR in beats minute?1) was significantly lower after treatment M (119 ± 16) (p = 0.0019), R (110 ± 18) (p < 0.0001) and RM (109 ± 13) (p < 0.0001), compared to treatment P (135 ± 21). Additionally, a significant difference in HR between treatments RM and M was found (p = 0.04). After both ropivacaine treatments, systemic arterial pressures (sAP) were significantly lower compared to other treatments. No significant overall differences between treatments were present for central venous pressure, cardiac output, stroke volume, systemic vascular resistance, oxygen delivery and arterial oxygen content (CaO2). Heart rate and sAP significantly increased after treatment P and M compared to baseline (T-15). With all treatments significant reductions from baseline were observed in oesophageal temperature, packed cell volume and CaO2. A transient unilateral Horner’s syndrome occurred in one dog after treatment R.Conclusions and clinical relevanceClinically important low sAPs were observed after the ropivacaine epidural treatments in isoflurane anaesthetised dogs. Systemic arterial pressures were clinically acceptable when using epidural methadone.  相似文献   

5.
ObjectiveTo evaluate the use of ultrasound for identifying the site for needle puncture and to determine the depth to the epidural space in obese dogs.Study designProspective study in dogs undergoing elective orthopedic surgery.AnimalsA group of seven obese Labrador male dogs aged 6.93 ± 2.56 years and weighing 46.5 ± 4.1 kg (mean ± standard deviation).MethodsThe anesthetic protocol for these dogs included epidural anesthesia. With the dogs anesthetized and positioned in sternal recumbency with the pelvic limbs flexed forward, ultrasound imaging was used to locate the lumbosacral intervertebral space. Intersection of dorsal and transverse lines about the probe identified the point of needle insertion. A 17 gauge, 8.9 cm Tuohy needle was inserted perpendicularly through the skin and advanced to the lumbosacral intervertebral space. The number of puncture attempts was recorded and needle depth was compared with skin to ligamentum flavum distance.ResultsEpidural injection was performed in all dogs at the first attempt of needle insertion. The distance from skin to epidural space was 5.95 ± 0.62 cm measured by ultrasound and 5.89 ± 0.64 cm measured with the Tuohy needle. These measurements were not different (p = 0.26). A highly significant correlation coefficient of 0.966 between measurement techniques was obtained (p < 0.001).Conclusions and clinical relevanceUltrasound imaging identified the point of needle insertion for lumbosacral epidural injection in seven obese dogs. The results indicate that ultrasound can be used to locate the lumbosacral intervertebral space and identify an appropriate point for needle insertion to perform epidural injection.  相似文献   

6.
ObjectiveTo evaluate the extent sensory and motor blocks produced by the epidural injection of different volumes of 0.25% bupivacaine (Bu) with methylene blue (MB), in dogs.Study designProspective experimental trial.AnimalsTwenty healthy adult mongrel dogs, weighing 9.9 ± 1.9 kg.MethodsDogs were randomly allocated into one of four groups that received 0.2, 0.4, 0.6 or 0.8 mL kg?1 of an epidural solution containing 0.25% Bu and MB. Sensory block was evaluated against time by pinching the tail, hind limb interdigital web, toenail bases and the skin over the vertebral dermatomes. Motor block was assessed by ataxia, hind limb weight-bearing ability and by loss of muscle tone of the tail and pelvic limbs. Data were collected at 2, 5, 10, 15 and 30 minutes after the end of epidural injection. After the final time point, dogs were euthanatized and laminectomies were conducted to expose the extent of the dural dye staining.ResultsThe volumes 0.2, 0.4, 0.6 and 0.8 mL kg?1 of 0.25% Bu and MB blocked a mean of 5, 14.2, 20.2 and 21 dermatomes, respectively. The extent of the senory block increased up to a volume of 0.6 mL kg?1. Motor block was longer-lasting and more intense than sensory block. Complete dyeing of the spinal cord with MB was achieved in some dogs at 0.4 mL kg?1 and all dogs at 0.6 mL kg?1.ConclusionsThe volume of anesthetic injected into the epidural space plays an important role in the quality of the epidural anesthesia. At 0.25%, bupivacaine provided an efficient sensory block at 0.6 mL kg?1.Clinical relevanceRelatively high volumes (0.6 mL kg?1) of 0.25%, BU and MB were needed to produce an effective sensory and motor block caudal to the umbilicus, but all spinal cord segments were reached by MB at this dose.  相似文献   

7.
ObjectiveTo describe the anesthetic and adverse effects of an injectable anesthetic protocol in dogs as part of a high-volume sterilization program under field conditions in Belize.Study designProspective, observational, field study.AnimalsA total of 23 female and eight male dogs (14.2 ± 7.7 kg; age ≥ 8 weeks).MethodsUsing a volume per kg-based dose chart, dogs were administered ketamine (4.5 mg kg−1), medetomidine (0.04 mg kg−1) and hydromorphone (0.09 mg kg−1) intramuscularly. After induction of anesthesia, an endotracheal tube was inserted and dogs were allowed spontaneous breathing in room air. Monitoring included peripheral oxygen saturation (SpO2), mean arterial pressure (MAP), heart rate (HR), respiratory rate, rectal temperature and end-tidal carbon dioxide (Pe′CO2). Meloxicam (0.2 mg kg−1) was administered subcutaneously after surgery. Data were analyzed with linear models and chi-square tests (p < 0.05).ResultsOnset of lateral recumbency (3.4 ± 2 minutes) was rapid. Desaturation (SpO2 < 90%) was observed at least once in 64.5% of dogs and was more frequent in large dogs (p = 0.019). Hypercapnia (Pe′CO2 ≥ 50 mmHg; 6.7 kPa) was observed in 48.4% of dogs. MAP was 111 ± 19 mmHg, mean ± standard deviation. Hypertension (MAP ≥ 120 mmHg), bradycardia (HR ≤ 60 beats minute−1) and tachycardia (HR ≥ 140 beats minute−1) were observed in 45.2%, 16.1% and 3.3% of dogs, respectively. Hypotension and hypothermia were not observed. Sex was not significantly associated with any complication. Return of swallowing reflex and time to standing were 71 ± 23 and 152 ± 50 minutes after injection, respectively. Return of swallowing was significantly longer in large dogs.Conclusions and clinical relevanceAt the doses used, ketamine–medetomidine–hydromorphone was effective in dogs for high-volume sterilization. In this field setting, adverse effects included hypoventilation, hypoxemia and prolonged recovery.  相似文献   

8.
ObjectiveTo compare the epidural anesthesia device (EPIA), which facilitates an automatic approach to location of the epidural space, with the performance of clinicians using tactile sensation and differences in pressure when inserting an epidural needle into the epidural space of a dog.Study designProspective, crossover experiment.AnimalsA total of 14 Beagle dogs weighing 7.5 ± 2.4 kg (mean ± standard deviation).MethodsEach dog was anesthetized three times at 2 week intervals for three anesthesiologists (two experienced, one novice) to perform 14 epidural injections (seven manual and EPIA device each). The sequence of methods was assigned randomly for each anesthesiologist. The dogs were anesthetized with medetomidine (10 μg kg–1), alfaxalone (2 mg kg–1) and isoflurane and positioned in sternal recumbency with the pelvic limbs extended cranially. Epidural puncture in the manual method was determined by pop sensation, hanging drop technique and reduced injection pressure, whereas using the device a sudden decrease in reaction force on the device was detected. A C-arm identified needle placement in the epidural space, and after administration of iohexol (0.3 mL), the needle length in the epidural space was defined as the mean value measured by three radiologists. Normality was tested using the Kolmogorov–Smirnov test, and significant differences between the two methods were analyzed using an independent sample t test.ResultsIn both methods, the success rates of epidural insertion were the same at 95.2%. The length of the needle in the epidural space using the device and manual methods was 1.59 ± 0.50 and 1.68 ± 0.88 mm, respectively, with no significant difference (p = 0.718).Conclusions and clinical relevanceEPIA device was comparable to human tactile sense for an epidural needle insertion in Beagle dogs. Further research should be conducted for application of the device in clinical environments.  相似文献   

9.
ObjectiveTo compare the cardiopulmonary effects of the opioids etorphine and thiafentanil for immobilization of impala.Study designTwo-way crossover, randomized study.AnimalsA group of eight adult female impala.MethodsImpala were given two treatments: 0.09 mg kg–1 etorphine or 0.09 mg kg–1 thiafentanil via remote dart injection. Time to recumbency, quality of immobilization and recovery were assessed. Respiratory rate, heart rate (HR), mean arterial blood pressure (MAP) and arterial blood gases were measured. A linear mixed model was used to analyse the effects of treatments, treatments over time and interactions of treatment and time (p < 0.05).ResultsTime to recumbency was significantly faster with thiafentanil (2.0 ± 0.8 minutes) than with etorphine (3.9 ± 1.6 minutes; p = 0.007). Both treatments produced bradypnoea, which was more severe at 5 minutes with thiafentanil (7 ± 4 breaths minute–1) than with etorphine (13 ± 12 breaths minute–1; p = 0.004). HR increased with both treatments but significantly decreased over time when etorphine (132 ± 17 to 82 ± 11 beats minute–1) was compared with thiafentanil (113 ± 22 to 107 ± 36 beats minute–1; p < 0.001). Both treatments caused hypertension which was more profound with thiafentanil (mean overall MAP = 140 ± 14 mmHg; p < 0.001). Hypoxaemia occurred with both treatments but was greater with thiafentanil [PaO2 37 ± 13 mmHg (4.9 kPa)] than with etorphine [45 ± 16 mmHg (6.0 kPa)] 5 minutes after recumbency (p < 0.001). After 30 minutes, PaO2 increased to 59 ± 10 mmHg (7.9 kPa) with both treatments (p < 0.001).Conclusions and clinical relevanceThe shorter time to recumbency with thiafentanil may allow easier and faster retrieval in the field. However, thiafentanil caused greater hypertension, and ventilatory effects during the first 10 minutes, after administration.  相似文献   

10.
ObjectiveTo measure subarachnoid pressures, systemic circulatory and respiratory effects, and to calculate cerebral perfusion pressure during cisternal myelography.Study designProspective clinical study.AnimalsForty‐three client owned dogs with clinical signs of spinal disease, weighing 6–56 kg.MethodsDogs were premedicated with butorphanol and diazepam intravenously (IV) and anaesthesia was induced with propofol and maintained with isoflurane vaporized in oxygen. Ventilation was spontaneous. Heart and respiratory rates, invasive mean arterial blood pressure (MAP), end tidal carbon dioxide and isoflurane concentration were measured continuously. Initial subarachnoid pressure (SaP0) was measured in the cisterna magna with a needle pressure gauge. Iohexol 0.3 mL kg?1 was injected at a rate of 4.1 mL minute?1 into the cerebellomedullary cistern. The SaP was recorded during and at 120 seconds after contrast administration. The maximum SaP (SaPmax) and minimum calculated cerebral perfusion pressure (CPPmin) were recorded for each case.ResultsPrior to contrast injection, mean ± SD, MAP was 73 ± 20 mmHg and SaP0 was 10 ± 3 mmHg. The cerebral perfusion pressure (CPP) was 64 ± 20 mmHg. The contrast injection increased the SaP0 to 73 ± 33 mmHg (SaPmax). After injection, MAP increased to 97 ± 25 mmHg and the CPP decreased to 14 ± 34 mmHg. A negative correlation was found between the lowest CPP and body weight (ρ = ?0.77, p < 0.0001). Nine dogs had bradycardia, apnoea and hypertension, 21 dogs had at least one of these signs. The number of clinical signs showed significant correlation with body weight (ρ = ?0.68, p < 0.0001), SaPmax (ρ = ?0.66, p < 0.0001) and CPPmin (ρ = ?0.73, p < 0.0001).Conclusions and clinical relevanceCerebral perfusion can severely decrease during cisternal myelography using the standard dose of iohexol. Bradycardia, apnoea and systemic hypertension were associated with decreased CPP.  相似文献   

11.
ObjectiveTo examine the spread of solution in the epidural space of sternally recumbent dogs.Study designProspective experimental trial.AnimalsTen healthy adult Beagle dogs weighing 7.6 ± 1.1 kg.MethodsDogs were anaesthetized with total intravenous propofol infusion, and placed in sternal recumbency. A volume of 0.2 mL kg?1 contrast medium (CM) containing 1% new methylene blue (MB) dye was administered into the lumbosacral epidural space. Left to right lateral radiographs using a horizontal beam were taken every 5 minutes for 45 minutes. The perpendicular height (PH) between floor of the epidural canal of the highest vertebra and that of lumbosacral spinal canal was measured on radiographs. The angle of slope from the injection point toward the highest vertebral floor was measured. Immediately after taking the last radiographic image, dogs were euthanized and a laminectomy was performed from the cervical to lumbar vertebrae for visual evaluation of MB spread. The spread of CM and of MB as counted in number of stained vertebra were compared, and each of these data sets were further compared to PH and angle, using linear regression analyses.ResultsThe PH and angle were (mean ± SD) 3.8 ± 0.8 cm and 14.8 ± 2.8° respectively. The most cranial spread of CM was at 12.7 ± 5.7 (range: C6–L3) vertebrae, and at 14.0 ± 5.4 (range: C6–L2) vertebrae for MB staining. There were no significant correlations between PH and spread of CM (R2 = 0.08) or MB (R2 = 0.13), between angle and spread of CM (R2 = 0.05) or MB (R2 = 0.02), respectively. CM and MB demonstrated proportional relationship (R2 = 0.82, p < 0.001).ConclusionsNo significant inhibitory effect of upward slope on cranial epidural spread of the solution was observed. Other factors may have greater effect on epidural spread in sternally recumbent dogs.  相似文献   

12.
ObjectiveTo report the cardiovascular variables, anaesthetic effects and recovery quality of an anaesthesia technique using variable rate infusion propofol combined with constant rate infusion fentanyl in dogs undergoing elective surgery.Study designProspective clinical trial.AnimalsA total of 27 dogs, aged 2.7 ± 2.65 years and weighing 24 ± 11 kg.MethodsFollowing intramuscular acepromazine (0.03 or 0.05 mg kg?1) and subcutaneous carprofen (4 mg kg?1) pre-medication, anaesthesia was induced with propofol (4.0 ± 0.5 mg kg?1) intravenously (IV). All dogs were ventilated with 100% oxygen to maintain normocapnia. Propofol was infused at 0.4 mg kg?1 minute?1 for 20 minutes and then at 0.3 mg kg?1minute?1. If mean arterial blood pressure (MAP) decreased below 70 mmHg, propofol infusion was reduced by 0.1 mg kg?1 minute?1. Five minutes after induction of anaesthesia, fentanyl was administered (2 μg kg?1) IV followed by the infusion at 0.5 μg kg?1 minute?1 and atropine (40 μg kg?1) IV. Heart rate, MAP, respiratory rate, tidal volume, end-tidal carbon dioxide, presence of reflexes, movements and recovery times and quality were recorded.ResultsMean anaesthetic duration was 131 ± 38.5 minutes. Mean heart rate peaked 10 minutes after atropine injection and gradually declined, reaching pre-anaesthetic values at 55 minutes. MAP easily was maintained above 70 mmHg. Mean times to return of spontaneous ventilation, extubation, head lift and sternal recumbency were 21 ± 10.1, 33 ± 14.6, 43 ± 19.7 and 65 ± 23.4 minutes, respectively. Recovery was smooth and quiet. The time to sternal recumbency was significantly correlated with the duration of anaesthesia and total dose of propofol; time to extubation was correlated to total dose of propofol.Conclusion and clinical relevancePropofol and fentanyl infusions provided stable cardiovascular function and satisfactory conditions for surgery. Some modifications of infusion rates are required to improve the long-recovery times.  相似文献   

13.
ObjectiveTo compare the cardiorespiratory, anesthetic-sparing effects and quality of anesthetic recovery after epidural and constant rate intravenous (IV) infusion of dexmedetomidine (DEX) in cats given a low dose of epidural lidocaine under propofol-isoflurane anesthesia and submitted to elective ovariohysterectomy.Study designRandomized, blinded clinical trial.AnimalsTwenty-one adult female cats (mean body weight: 3.1 ± 0.4 kg).MethodsCats received DEX (4 μg kg?1, IM). Fifteen minutes later, anesthesia was induced with propofol and maintained with isoflurane. Cats were divided into three groups. In GI cats received epidural lidocaine (1 mg kg?1, n = 7), in GII cats were given epidural lidocaine (1 mg kg?1) + DEX (4 μg kg?1, n = 7), and in GIII cats were given epidural lidocaine (1 mg kg?1) + IV constant rate infusion (CRI) of DEX (0.25 μg kg?1 minute?1, n = 7). Variables evaluated included heart rate (HR), respiratory rate (fR), systemic arterial pressures, rectal temperature (RT), end-tidal CO2, end-tidal isoflurane concentration (e′ISO), arterial blood gases, and muscle tone. Anesthetic recovery was compared among groups by evaluation of times to recovery, HR, fR, RT, and degree of analgesia. A paired t-test was used to evaluate pre-medication variables and blood gases within groups. anova was used to compare parametric data, whereas Friedman test was used to compare muscle relaxation.ResultsEpidural and CRI of DEX reduced HR during anesthesia maintenance. Mean ± SD e′ISO ranged from 0.86 ± 0.28% to 1.91 ± 0.63% in GI, from 0.70 ± 0.12% to 0.97 ± 0.20% in GII, and from 0.69 ± 0.12% to 1.17 ± 0.25% in GIII. Cats in GII and GIII had longer recovery periods than in GI.Conclusions and clinical relevanceEpidural and CRI of DEX significantly decreased isoflurane consumption and resulted in recovery of better quality and longer duration, despite bradycardia, without changes in systemic blood pressure.  相似文献   

14.
ObjectiveTo evaluate the fresh gas flow (FGF) rate requirements for the Humphrey ADE semi-closed breathing system in the Mapleson A mode; to determine the FGF at which rebreathing occurs, and compare the efficiency of this system to the Bain (Mapleson D) system in spontaneously breathing cats and small dogs.Study DesignProspective clinical study.AnimalsTwenty-five healthy (ASA score I or II) client-owned cats and dogs (mean ± SD age 4.7 ± 5.0 years, and body weight 5.64 ± 3.26 kg) undergoing elective surgery or minor procedures.MethodsAnaesthesia was maintained with isoflurane delivered via the Humphrey ADE system in the A mode using an oxygen FGF of 100 mL kg−1 minute−1. The FGF was then reduced incrementally by 5–10 mL kg−1minute−1 at approximately five-minute intervals, until rebreathing (inspired CO2 >5 mmHg (0.7 kPa)) was observed, after which flow rates were increased. In six animals, once the minimum FGF at which rebreathing occurred was found, the breathing system was changed to the Bain, and the effects of this FGF delivery examined, before FGF was increased.ResultsRebreathing did not occur at the FGF recommended by the manufacturer for the ADE. The mean ± SD FGF that resulted in rebreathing was 60 ± 20 mL kg−1minute−1. The mean minimum FGF at which rebreathing did not occur with the ADE was 87 ± 39 mL kg−1minute−1. This FGF resulted in significant rebreathing (inspired CO2 8.8 ± 2.6 mmHg (1.2 ± 0.3 kPa)) on the Bain system.ConclusionsThe FGF rates recommended for the Humphrey ADE are adequate to prevent rebreathing in spontaneously breathing cats and dogs <15 kg.Clinical relevanceThe Humphrey ADE system used in the A mode is a more efficient alternative to the Bain system, for maintenance of gaseous anaesthesia in spontaneously breathing cats and small dogs.  相似文献   

15.
ObjectiveTo investigate physiological and sedative/immobilization effects of medetomidine or dexmedetomidine combined with ketamine in free-ranging Chinese water deer (CWD).Study designProspective clinical trial.Animals10 free-ranging adult Chinese water deer (11.0 ± 2.6 kg).MethodsAnimals were darted intramuscularly with 0.08 ± 0.004 mg kg?1 medetomidine and 3.2 ± 0.2 mg kg?1 ketamine (MK) or 0.04 ± 0.01 mg kg?1 dexmedetomidine and 2.9 ± 0.1 mg kg?1 ketamine (DMK) If the animal was still laterally recumbent after 60 minutes of immobilization, atipamezole was administered intravenously (MK: 0.4 ± 0.02 mg kg?1, DMK: 0.2 ± 0.03 mg kg?1). Heart rate (HR) respiratory rate (fR) and temperature were recorded at 5-minute intervals. Arterial blood was taken 15 and 45 minutes after initial injection. Statistical analysis was performed using Student’s t-test or anova. p < 0.05 was considered significant.ResultsAnimals became recumbent rapidly in both groups. Most had involuntary ear twitches, but there was no response to external stimuli. There were no statistical differences in mean HR (MK: 75 ± 14 beats minute?1; DMK: 85 ± 21 beats minute?1), fR (MK: 51 ± 35 breaths minute?1; DMK; 36 ± 9 breaths minute?1), temperature (MK: 38.1 ± 0.7 °C; DMK: 38.4 ± 0.5 °C), blood gas values (MK: PaO2 63 ± 6 mmHg, PaCO2 49.6 ± 2.6 mmHg, HCO3? 30.8 ± 4.5 mmol L?1; DMK: PaO2 77 ± 35 mmHg, PaCO2 45.9 ± 11.5 mmHg, HCO3? 31.0 ± 4.5 mmol L?1) and biochemical values between groups but temperature decreased in both groups. All animals needed antagonism of immobilization after 60 minutes. Recovery was quick and uneventful. There were no adverse effects after recovery.Conclusion and clinical relevanceBoth anaesthetic protocols provided satisfactory immobilisation. There was no clear preference for either protocol and both appear suitable for CWD.  相似文献   

16.
ObjectiveTo determine the effect of maropitant, an NK-1 receptor antagonist on the minimum alveolar concentration (MAC) of sevoflurane after intravenous and epidural administration to dogs.Study designProspective experimental study.AnimalsSeven, adult, spayed-female dogs (24.8 ± 1.9 kg).MethodsEach dog was anesthetized twice with sevoflurane in oxygen, with at least 10 days separating the anesthetic events. The minimum alveolar concentration (MAC) of sevoflurane was determined using the tail-clamp technique. During the first anesthetic event, the MAC of sevoflurane was determined initially and again after intravenous administration of maropitant (5 mg kg?1) and an infusion (150 μg kg?1 hour?1). During the second anesthetic event, an epidural catheter was advanced to the 4th lumbar vertebra and MAC was determined after administration of saline and maropitant (1 mg kg?1) epidurally. All MAC determinations were done in duplicate. The MAC values were adjusted to sea level and compared using student's t-test.ResultsThe baseline MAC for sevoflurane was 2.08 ± 0.25%. Intravenous maropitant decreased (p < 0.05) MAC by 16% (1.74 ± 0.17%). In contrast, epidural administration of either saline or maropitant did not change (p > 0.05) the MAC (2.17 ± 0.34% and 1.92 ± 0.12%, respectively).Conclusion and clinical relevanceMaropitant decreased the MAC of sevoflurane when administered intravenously to dogs but not after epidural administration.  相似文献   

17.
Alpha2 agonists have a significant role in epidural anaesthetic techniques. However, there are few reports regarding epidural administration of these drugs especially in small animals ( Greene et al. 1995; Keegan et al. 1995; Vesal et al. 1996 ). This study compared the haemodynamic effects of xylazine and medetomidine after epidural injection in dogs. Six dogs (four females and two males) weighing 27.5 ± 3.39 kg, aged 5.6 ± 1.42 years were studied on two separate occasions one month apart. Dogs were sedated with 0.5 mg kg?1 diazepam IM and 0.1 mg kg?1 acepromazine IM. After 20 minutes, a lumbosacral epidural injection of 0.25 mg kg?1 xylazine was administered (group X). One month later, following the same sedation, 15 µg kg?1 medetomidine was administered epidurally (group M). Haemodynamic variables (ECG and indirect blood pressure (Doppler)), respiratory rate and rectal temperature were recorded before (baseline) and then every 5 minutes after the epidural injection, up to 60 minutes. Differences between groups were compared by a paired t‐test. Within group changes were compared to basal values by anova . A p‐value of < 0.05 was considered statistically significant. Both groups showed significant reductions in heart rate (106.3 ± 7.7 beats minute?1 baseline versus 67.7 ± 7.6 (group M); 91 ± 3.8 baseline versus 52.3 ± 9 (group X)) and mean arterial blood pressure (113.1 ± 12.3 mm Hg baseline versus 87 ± 11 (group M); 118 ± 7 baseline versus 91 ± 14 (group X)). There were no differences between groups in these variables. After epidural injection, first degree atrioventricular block was recorded significantly more often in group X (50% against 33%) but second degree block was significantly more frequent in group M (66% against 33%). Also 50% of dogs in group X and 66% in group M showed sinus arrest. Respiratory rate decreased significantly in both groups following the epidural injection (20.66 ± 0.66 minute?1 baseline versus 16.33 ± 4.77 (group M); 37.66 ± 0.56 baseline versus 16.33 ± 1.81 group X), but no differences between groups were observed. Rectal temperature decreased significantly in group X (38.16 ± 0.21) with respect to the basal measurement (39.30 ± 0.14 °C). In group M, there was no significant reduction in temperature, however, no statistical difference in rectal temperature was found between groups. This study shows that 0.25 mg kg?1 xylazine and 15 µg kg?1 medetomidine produce similar, significant cardiovascular and respiratory changes following lumbosacral epidural administration in dogs.  相似文献   

18.
ObjectiveTo compare the hemodynamic and respiratory effects of an inspiratory impedance threshold device (ITD) in anesthetized normotensive and hypotensive dogs.Study designProspective randomized study.AnimalsTen adult dogs.MethodsDogs were anesthetized with propofol followed by isoflurane. During spontaneous ventilation, tidal volume ( V˙), systolic (SAP), mean (MAP) and diastolic arterial blood pressure, central venous pressure, gastric PCO2 as an indicator of gastric perfusion, subcutaneous oxygen tension, subcutaneous blood flow, cardiac index (CI), systemic vascular resistance and blood lactate were monitored. To monitor respiratory compliance (RC) and resistance (ResR), animals were briefly placed on mechanical ventilation. Dogs were studied under four different conditions: 1) normotension (MAP > 60 mmHg) with and without the ITD and 2) hypotension (target MAP = 40 mmHg) with and without ITD. These four conditions were performed during one anesthetic period, allowing for stabilization of parameters for each condition. Data were analyzed by anova repeated measure mixed models.ResultsNo cardiovascular changes were detected between no ITD and ITD in the normotensive state. During hypotension, CI was higher with the ITD (5 ± 1.0 L minute?1 m?2) compared with no ITD (4 ± 1.3 L minute?1 m?2). During hypotension, SAP was increased with ITD (80 ± 14 mmHg) versus without ITD (67 ± 13 mmHg). There was an increase in ResR and decreased RC with the ITD in both normotensive and hypotensive state.Conclusion and clinical relevanceImpedance threshold device in dogs during isoflurane-induced hypotension improved CI and SAP but had negative effects on RC and ResR.  相似文献   

19.
ObjectiveTo characterize the impact of mechanical positive pressure ventilation on heart rate (HR), arterial blood pressure, blood gases, lactate, glucose, sodium, potassium and calcium concentrations in rattlesnakes during anesthesia and the subsequent recovery period.Study designProspective, randomized trial.AnimalsTwenty one fasted adult South American rattlesnakes (Crotalus durissus terrificus).MethodsSnakes were anesthetized with propofol (15 mg kg−1) intravenously, endotracheally intubated and assigned to one of four ventilation regimens: Spontaneous ventilation, or mechanical ventilation at a tidal volume of 30 mL kg−1 at 1 breath every 90 seconds, 5 breaths minute−1, or 15 breaths minute−1. Arterial blood was collected from indwelling catheters at 30, 40, and 60 minutes and 2, 6, and 24 hours following induction of anesthesia and analyzed for pH, PaO2, PaCO2, and selected variables. Mean arterial blood pressure (MAP) and HR were recorded at 30, 40, 60 minutes and 24 hours.ResultsSpontaneous ventilation and 1 breath every 90 seconds resulted in a mild hypercapnia (PaCO2 22.4 ± 4.3 mmHg [3.0 ± 0.6 kPa] and 24.5 ± 1.6 mmHg [3.3 ± 0.2 kPa], respectively), 5 breaths minute−1 resulted in normocapnia (14.2 ± 2.7 mmHg [1.9 ± 0.4 kPa]), while 15 breaths minute−1 caused marked hypocapnia (8.2 ± 2.5 mmHg [1.1 ± 0.3 kPa]). Following recovery, blood gases of the four groups were similar from 2 hours. Anesthesia, independent of ventilation was associated with significantly elevated glucose, lactate and potassium concentrations compared to values at 24 hours (p < 0.0001). MAP increased significantly with increasing ventilation frequency (p < 0.001). HR did not vary among regimens.Conclusions and clinical relevanceMechanical ventilation had a profound impact on blood gases and blood pressure. The results support the use of mechanical ventilation with a frequency of 1–2 breaths minute−1 at a tidal volume of 30 mL kg−1 during anesthesia in fasted snakes.  相似文献   

20.
ObjectiveTo compare anaesthetic induction in healthy dogs using propofol or ketofol (a propofol-ketamine mixture).Study designProspective, randomized, controlled, ‘blinded’ study.AnimalsSeventy healthy dogs (33 males and 37 females), aged 6–157 months and weighing 4–48 kg.MethodsFollowing premedication, either propofol (10 mg mL?1) or ketofol (9 mg propofol and 9 mg ketamine mL?1) was titrated intravenously until laryngoscopy and tracheal intubation were possible. Pulse rate (PR), respiratory rate (fR) and arterial blood pressure (ABP) were compared to post-premedication values and time to first breath (TTFB) recorded. Sedation quality, tracheal intubation and anaesthetic induction were scored by an observer who was unaware of treatment group. Mann–Whitney or t-tests were performed and significance set at p = 0.05.ResultsInduction mixture volume (mean ± SD) was lower for ketofol (0.2 ± 0.1 mL kg?1) than propofol (0.4 ± 0.1 mL kg?1) (p < 0.001). PR increased following ketofol (by 35 ± 20 beats minute?1) but not consistently following propofol (4 ± 16 beats minute?1) (p < 0.001). Ketofol administration was associated with a higher mean arterial blood pressure (MAP) (82 ± 10 mmHg) than propofol (77 ± 11) (p = 0.05). TTFB was similar, but ketofol use resulted in a greater decrease in fR (median (range): ketofol -32 (-158 to 0) propofol -24 (-187 to 2) breaths minute?1) (p < 0.001). Sedation was similar between groups. Tracheal intubation and induction qualities were better with ketofol than propofol (p = 0.04 and 0.02 respectively).Conclusion and clinical relevanceInduction of anaesthesia with ketofol resulted in higher PR and MAP than when propofol was used, but lower fR. Quality of induction and tracheal intubation were consistently good with ketofol, but more variable when using propofol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号