首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ObjectiveTo investigate an infusion of propofol for anesthesia in comparison to tiletamine-zolazepam anesthesia, evaluating physiological variables and recovery in squirrel monkeys.Study designProspective non-blinded randomized study.AnimalsEight healthy squirrel monkeys (Saimiri sciureus), aged 3 years and weighing 0.340–0.695 kg.MethodsPremedication was intramuscular midazolam (0.5 mg) and meperidine (4 mg). Anesthesia was induced with intravenous (IV) propofol (4 mg kg?1 minute?1) and maintained with propofol starting at 0.4 mg kg?1 minute?1 (PRO, n = 4) or IV tiletamine-zolazepam (5 mg kg?1) and maintained with supplementary doses of TZ (TZ, n = 4). Cardiopulmonary variables were measured continuously. Arterial blood gases and lactate concentration were measured at the end of anesthesia. Quality and times of recovery were determined. Repeatedly measured data for significant differences were tested between groups with t-test and within groups by anova.ResultsMedian time for induction of anesthesia in PRO was 180 seconds. Mean maintenance infusion rate of propofol was 0.43 ± 0.05 mg kg?1 minute?1, varying during the 1 hour period. One monkey died after administration of TZ; others required 1, 4, or 8 supplemental doses. Cardiopulmonary variables were similar between groups, but hypotension was recorded. Recovery times to ventral recumbency in PRO (32 ± 17 minutes) and TZ (84 ± 11 minutes) and normal ambulation in PRO (58 ± 22 minutes) and TZ (358 ± 109minutes) were significantly different (p < 0.05). Recovery quality was superior in PRO, with less ataxia and fewer unsuccessful attempts to stand. Lactate concentration was not different between treatments.Conclusions and clinical relevanceCardiopulmonary variables were similar between protocols, aside from the higher incidence of hypotension in PRO, indicating that further studies with a larger number of animals are required. Compared to tiletamine-zolazepam, propofol anesthesia provided faster and superior anesthetic recovery in these animals.  相似文献   

2.
ObjectiveTo evaluate the effects of methadone, administered alone or in combination with acepromazine or xylazine, on sedation and on physiologic values in dogs.Study designRandomized cross-over design.AnimalsSix adult healthy mixed-breed dogs weighing 13.5 ± 4.9 kg.MethodsDogs were injected intramuscularly with physiologic saline (Control), or methadone (0.5mg kg−1) or acepromazine (0.1 mg kg−1) or xylazine (1.0 mg kg−1), or acepromazine (0.05 mg kg−1) plus methadone (0.5 mg kg−1) or xylazine (0.5 mg kg−1) plus methadone (0.5 mg kg−1) in a randomized cross-over design, with at least 1-week intervals. Sedation, pulse rate, indirect systolic arterial pressure, respiratory rate (RR), body temperature and pedal withdrawal reflex were evaluated before and at 15-minute intervals for 90 minutes after treatment.ResultsSedation was greater in dogs receiving xylazine alone, xylazine plus methadone and acepromazine plus methadone. Peak sedative effect occurred within 30 minutes of treatment administration. Pulse rate was lower in dogs that received xylazine either alone or with methadone during most of the study. Systolic arterial pressure decreased only in dogs receiving acepromazine alone. When methadone was administered alone, RR was higher than in other treatments during most of the study and a high prevalence of panting was observed. In all treatments body temperature decreased, this effect being more pronounced in dogs receiving methadone alone or in combination with acepromazine. Pedal withdrawal reflex was absent in four dogs receiving methadone plus xylazine but not in any dog in the remaining treatments.Conclusions and clinical relevanceMethadone alone produces mild sedation and a high prevalence of panting. Greater sedation was achieved when methadone was used in combination with acepromazine or xylazine. The combination xylazine–methadone appears to result in better analgesia than xylazine administered alone. Both combinations of methadone/sedative were considered effective for premedication in dogs.  相似文献   

3.
4.
ObjectiveTo compare dexmedetomidine with acepromazine for premedication combined with methadone in dogs undergoing brachycephalic obstructive airway syndrome (BOAS) surgery.Study designRandomized, blinded clinical study.AnimalsA group of 40 dogs weighing mean (± standard deviation) 10.5 ± 6 kg, aged 2.6 ± 1.9 years.MethodsDogs received either acepromazine 20 μg kg–1 (group A) or dexmedetomidine 2 μg kg–1 (group D) intramuscularly with methadone 0.3 mg kg–1. Anaesthesia was induced with propofol and maintained with sevoflurane. Sedation (0–18), induction (0–6) and recovery (0–5) qualities were scored. Propofol dose, hypotension incidence, mechanical ventilation requirement, extubation time, additional sedation, oxygen supplementation, regurgitation and emergency intubation following premedication or during recovery were recorded. Data were analysed using t tests, Mann-Whitney U or Chi-square tests.ResultsGroup A dogs were less sedated [median (range): 1.5 (0–12)] than group D [5 (1–18)] (p = 0.021) and required more propofol [3.5 (1–7) versus 2.4 (1–8) mg kg–1; p = 0.018]. Induction scores [group A: 5 (4–5); group D 5 (3–5)] (p = 0.989), recovery scores [group A 5 (4–5); group D 5(3–5)](p = 0.738) and anaesthesia duration [group A:93 (50–170); group D 96 (54–263) minutes] (p = 0.758) were similar between groups. Time to extubation was longer in group A 12.5 (3-35) versus group D 5.5 (0–15) minutes; (p = 0.005). During recovery, two dogs required emergency intubation (p > 0.99) and five dogs required additional sedation (p > 0.99). Oxygen supplementation was required in 16 and 12 dogs in group A and D, respectively (p = 0.167); no dogs in group A and one dog in group D regurgitated (p = 0.311).Conclusions and clinical relevanceDexmedetomidine 2 μg kg–1 produces more sedation but similar recovery quality to acepromazine 20 μg kg–1 combined with methadone in dogs undergoing BOAS surgery.  相似文献   

5.
ObjectiveTo determine the effects of intravenous (IV) premedication with acepromazine, butorphanol or their combination, on the propofol anesthetic induction dosage in dogs.Study designProspective, blinded, Latin square design.AnimalsA total of three male and three female, healthy Beagle dogs, aged 3.79 ± 0.02 years, weighing 10.6 ± 1.1 kg, mean ± standard deviation.MethodsEach dog was assigned to one of six IV treatments weekly: 0.9% saline (treatment SAL), low-dose acepromazine (0.02 mg kg–1; treatment LDA), high-dose acepromazine (0.04 mg kg–1; treatment HDA), low-dose butorphanol (0.2 mg kg–1; treatment LDB), high-dose butorphanol (0.4 mg kg–1; treatment HDB); and a combination of acepromazine (0.02 mg kg–1) with butorphanol (0.2 mg kg–1; treatment ABC). Physiologic variables and sedation scores were collected at baseline and 10 minutes after premedication. Then propofol was administered at 1 mg kg–1 IV over 15 seconds, followed by boluses (0.5 mg kg–1 over 5 seconds) every 15 seconds until intubation. Propofol dose, physiologic variables, recovery time, recovery score and adverse effects were monitored and recorded. Data were analyzed using mixed-effects anova (p < 0.05).ResultsPropofol dosage was lower in all treatments than in treatment SAL (4.4 ± 0.5 mg kg–1); the largest decrease was recorded in treatment ABC (1.7 ± 0.3 mg kg–1). Post induction mean arterial pressures (MAPs) were lower than baseline values of treatments LDA, HDA and ABC. Apnea and hypotension (MAP < 60 mmHg) developed in some dogs in all treatments with the greatest incidence of hypotension in treatment ABC (4/6 dogs).Conclusions and clinical relevanceAlthough the largest decrease in propofol dosage required for intubation was after IV premedication with acepromazine and butorphanol, hypotension and apnea still occurred.  相似文献   

6.
7.
ObjectiveTo evaluate the feasibility of gastroduodenoscopy in dogs premedicated with acepromazine in combination with butorphanol or methadone.Study designProspective, randomized, double-blinded clinical trial.AnimalsA group of 40 client-owned dogs.MethodsDogs were randomly allocated to one of two groups and give intramuscular acepromazine 0.02 mg kg–1 combined with either butorphanol 0.3 mg kg–1 (group ACEBUT) or methadone 0.2 mg kg–1 (group ACEMET). General anaesthesia was induced with propofol and ketamine and maintained with sevoflurane (2.3%) in oxygen. Cardiopulmonary variables were recorded at 5 minute intervals during anaesthesia. Feasibility of the entire gastroduodenoscopy was evaluated with a visual analogue scale (VAS) from 0 (best) to 100 (worst) (primary outcome of the study). Lower oesophageal sphincter dilatation and duodenal intubation were scored. Pylorus diameter was measured with standard endoscopic inflatable balloons. Overall cardiovascular stability was assessed during anaesthesia, using a VAS (0-100), as was the presence of fluid in the oesophagus, regurgitation, need for mechanical ventilation, and intraoperative and postoperative rescue analgesia (secondary outcomes of the study). Differences between treatments were analysed with Mann–Whitney U, Student t test, Fisher exact test or mixed model analysis of variance as appropriate. Subsequently, feasibility VAS of the gastroduodenoscopy was assessed for noninferiority between groups. The noninferiority margin was set as –10.ResultsAll gastroduodenoscopies were successfully completed in both groups using an endoscope tip diameter of 12.8 mm in all but one dog. Feasibility of gastroduodenoscopy was evaluated as 2.9 ± 5.6 in group ACEBUT and 5.1 ± 5.8 in group ACEMET. No significant differences between groups were detected in any measured or assessed variables, and noninferiority was confirmed.Conclusion and clinical relevanceIn our study population, the effects of methadone and butorphanol when combined with acepromazine were comparable.  相似文献   

8.
ObjectiveTo describe alfaxalone total intravenous anaesthesia (TIVA) following premedication with buprenorphine and either acepromazine (ACP) or dexmedetomidine (DEX) in bitches undergoing ovariohysterectomy.Study designProspective, randomised, clinical study.AnimalsThirty-eight healthy female dogs.MethodsFollowing intramuscular buprenorphine (20 μg kg?1) and acepromazine (0.05 mg kg?1) or dexmedetomidine (approximately 10 μg kg?1, adjusted for body surface area), anaesthesia was induced and maintained with intravenous alfaxalone. Oxygen was administered via a suitable anaesthetic circuit. Alfaxalone infusion rate (initially 0.07 mg kg?1 minute?1) was adjusted to maintain adequate anaesthetic depth based on clinical assessment. Alfaxalone boluses were given if required. Ventilation was assisted if necessary. Alfaxalone dose and physiologic parameters were recorded every 5 minutes. Depth of sedation after premedication, induction quality and recovery duration and quality were scored. A Student's t-test, Mann–Whitney U and Chi-squared tests determined the significance of differences between groups. Data are presented as mean ± SD or median (range). Significance was defined as p < 0.05.ResultsThere were no differences between groups in demographics; induction quality; induction (1.5 ± 0.57 mg kg?1) and total bolus doses [1.2 (0 – 6.3) mg kg?1] of alfaxalone; anaesthesia duration (131 ± 18 minutes); or time to extubation [16.6 (3–50) minutes]. DEX dogs were more sedated than ACP dogs. Alfaxalone infusion rate was significantly lower in DEX [0.08 (0.06–0.19) mg kg?1 minute?1] than ACP dogs [0.11 (0.07–0.33) mg kg?1 minute?1]. Cardiovascular variables increased significantly during ovarian and cervical ligation and wound closure compared to baseline values in both groups. Apnoea and hypoventilation were common and not significantly different between groups. Arterial haemoglobin oxygen saturation remained above 95% in all animals. Recovery quality scores were significantly poorer for DEX than for ACP dogs.Conclusions and clinical relevanceAlfaxalone TIVA is an effective anaesthetic for surgical procedures but, in the protocol of this study, causes respiratory depression at infusion rates required for surgery.  相似文献   

9.
ObjectiveTo investigate a combination of azaperone, detomidine, butorphanol and ketamine (DBK) in pigs and to compare it with the combination of azaperone, tiletamine and zolazepam (TZ).Study designProspective, randomized, blinded, cross–over study.AnimalsTwelve clinically healthy crossbred pigs aged about 2 months and weighing 16–25 kg.MethodsPigs were pre–medicated with azaperone (4 mg kg?1). Ten minutes later anaesthesia was induced with intramuscular DBK (detomidine 0.08 mg kg?1, butorphanol 0.2 mg kg?1, ketamine 10 mg kg?1) or TZ (tiletamine and zolazepam 5 mg kg?1). The pigs were positioned in dorsal recumbency. Heart and respiratory rates, posture, anaesthesia score, PaO2, PaCO2, pH and bicarbonate concentration were measured. t–test was used to compare the areas under time–anaesthesia index curve (AUCanindex) between treatments. Data concerning heart and respiratory rates, PaO2, PaCO2 and anaesthesia score were analysed with anova for repeated measurements. Wilcoxon signed rank test was used for the data concerning the duration of sedation and anaesthesia.ResultsThe sedation, analgesia and anaesthesia lasted longer after DBK than TZ. The AUCanscore were 863 ± 423 and 452 ± 274 for DBK and TZ, respectively (p = 0.002). The duration of surgical anaesthesia lasted a median of 35 minutes (0–105 minutes) after DBK and a median of 15 minutes (0–35 minutes) after TZ (p = 0.05). Four pigs after DBK and six after TZ did not achieve the plane of surgical anaesthesia. The heart rate was lower after DBK than after TZ. Both treatments had similar effects on the other parameters measured.ConclusionsAt the doses used DBK was more effective than TZ for anaesthesia in pigs under field conditions.Clinical relevanceThe combinations can be used for sedation and minor field surgery in pigs. The doses and drugs chosen were insufficient to produce a reliable surgical plane of anaesthesia in these young pigs.  相似文献   

10.
ObjectiveTo evaluate the sedative and analgesic effects of intramuscular buprenorphine with either dexmedetomidine or acepromazine, administered as premedication to cats and dogs undergoing elective surgery.Study designProspective, randomized, blinded clinical study.AnimalsForty dogs and 48 cats.MethodsAnimals were assigned to one of four groups, according to anaesthetic premedication and induction agent: buprenorphine 20 μg kg?1 with either dexmedetomidine (dex) 250 μg m?2 or acepromazine (acp) 0.03 mg kg?1, followed by alfaxalone (ALF) or propofol (PRO). Meloxicam was administered preoperatively to all animals and anaesthesia was always maintained using isoflurane. Physiological measures and assessments of pain, sedation and mechanical nociceptive threshold (MNT) were made before and after premedication, intraoperatively, and for up to 24 hours after premedication. Data were analyzed with one-way, two-way and mixed between-within subjects anova, Kruskall–Wallis analyses and Chi squared tests. Results were deemed significant if p ≤ 0.05, except where multiple comparisons were performed (p ≤ 0.005).ResultsCats premedicated with dex were more sedated than cats premedicated with acp (p < 0.001) and ALF doses were lower in dex cats (1.2 ± 1.0 mg kg?1) than acp cats (2.5 ± 1.9 mg kg?1) (p = 0.041). There were no differences in sedation in dogs however PRO doses were lower in dex dogs (1.5 ± 0.8 mg kg?1) compared to acp dogs (3.3 ± 1.1 mg kg?1) (p < 0.001). There were no differences between groups with respect to pain scores or MNT for cats or dogs.ConclusionChoice of dex or acp, when given with buprenorphine, caused minor, clinically detectable, differences in various characteristics of anaesthesia, but not in the level of analgesia.Clinical relevanceA combination of buprenorphine with either acp or dex, followed by either PRO or ALF, and then isoflurane, accompanied by an NSAID, was suitable for anaesthesia in dogs and cats undergoing elective surgery. Choice of sedative agent may influence dose of anaesthetic induction agent.  相似文献   

11.
ObjectiveTo determine the potency ratio between S-ketamine and racemic ketamine as inductive agents for achieving tracheal intubation in dogs.Study designProspective, randomized, ‘blinded’, clinical trial conducted in two consecutive phases.Animals112 client-owned dogs (ASA I or II).MethodsAll animals were premedicated with intramuscular acepromazine (0.02 mg kg−1) and methadone (0.2 mg kg−1). In phase 1, midazolam (0.2 mg kg−1) with either 3 mg kg−1 of racemic ketamine (group K) or 1.5 mg kg−1 of S-ketamine (group S) was administered IV, for induction of anaesthesia and intubation. Up to two additional doses of racemic (1.5 mg kg−1) or S-ketamine (0.75 mg kg−1) were administered if required. In phase 2, midazolam (0.2 mg kg−1) with 1 mg kg−1 of either racemic ketamine (group K) or S-ketamine (group S) was injected and followed by a continuous infusion (1 mg kg minute−1) of each respective drug. Differences between groups were statistically analyzed via t-test, Fisher exact test and ANOVA for repeated measures.ResultsDemographics and quality and duration of premedication, induction and intubation were comparable among groups. During phase 1 it was possible to achieve tracheal intubation after a single dose in more dogs in group K (n = 25) than in group S (n = 16) (p = 0.046). A dose of 3 mg kg−1 S-ketamine allowed tracheal intubation in the same number of dogs as 4.5 mg kg−1 of racemic ketamine. The estimated potency ratio was 1.5:1. During phase 2, the total dose (mean ± SD) of S-ketamine (4.02 ±1.56 mg kg−1) and racemic ketamine (4.01 ± 1.42) required for tracheal intubation was similar.Conclusion and clinical relevanceRacemic and S-ketamine provide a similar quality of anaesthetic induction and intubation. S-ketamine is not twice as potent as racemic ketamine and, if infused, the potency ratio is 1:1.  相似文献   

12.
13.
ObjectiveTo investigate the influence of l–methadone on medetomidine–induced changes in arterial blood gases and clinical sedation in dogs.Study designProspective experimental cross–over study (Latin square design).AnimalsFive 1–year–old purpose bred laboratory beagle dogs of both sexes.MethodsEach dog was treated three times: medetomidine (20 μg kg?1 IV), l–methadone (0.1 mg kg?1 IV) and their combination. Arterial blood was collected for blood gas analysis. Heart and respiratory rates were recorded, and clinical sedation and reaction to a painful stimulus were scored before drug administration and at various time points for 30 minutes thereafter.ResultsArterial partial pressure of oxygen decreased slightly after medetomidine administration and further after medetomidine/l–methadone administration (range 55.2–86.7 mmHg, 7.4–11.6 kPa, at 5 minutes). A slight increase was detected in arterial partial pressure of carbon dioxide after administration of l–methadone and medetomidine/l–methadone (42.6 ± 2.9 and 44.7 ± 2.4 mmHg, 5.7 ± 0.4 and 6.0 ± 0.3 kPa, 30 minutes after drug administration, respectively). Arterial pH decreased slightly after administration of l–methadone and medetomidine/l–methadone. Heart and respiratory rates decreased after administration of medetomidine and medetomidine/l–methadone, and no differences were detected between the two treatments. Most dogs panted after administration of l–methadone and there was slight sedation. Medetomidine induced moderate or deep sedation, and all dogs were deeply sedated after administration of medetomidine/l–methadone. Reaction to a noxious stimulus was strong or moderate after administration of methadone, moderate or absent after administration of medetomidine, and absent after administration of medetomidine/l–methadone.Conclusions and clinical relevanceAt the doses used in this study, l–methadone potentiated the sedative and analgesic effects and the decrease in arterial oxygenation induced by medetomidine in dogs, which limits the clinical use of this combination.  相似文献   

14.
ObjectiveTo describe ketamine–propofol total intravenous anaesthesia (TIVA) following premedication with acepromazine and either medetomidine, midazolam or morphine in rabbits.Study designRandomized, crossover experimental study.AnimalsA total of six healthy female New Zealand White rabbits (2.2 ± 0.3 kg).MethodsRabbits were anaesthetized on four occasions, each separated by 7 days: an intramuscular injection of saline alone (treatment Saline) or acepromazine (0.5 mg kg–1) in combination with medetomidine (0.1 mg kg–1), midazolam (1 mg kg–1) or morphine (1 mg kg–1), treatments AME, AMI or AMO, respectively, in random order. Anaesthesia was induced and maintained with a mixture containing ketamine (5 mg mL–1) and propofol (5 mg mL–1) (ketofol). Each trachea was intubated and the rabbit administered oxygen during spontaneous ventilation. Ketofol infusion rate was initially 0.4 mg kg–1 minute–1 (0.2 mg kg–1 minute–1 of each drug) and was adjusted to maintain adequate anaesthetic depth based on clinical assessment. Ketofol dose and physiological variables were recorded every 5 minutes. Quality of sedation, intubation and recovery times were recorded.ResultsKetofol induction doses decreased significantly in treatments AME (7.9 ± 2.3) and AMI (8.9 ± 4.0) compared with treatment Saline (16.8 ± 3.2 mg kg–1) (p < 0.05). The total ketofol dose to maintain anaesthesia was significantly lower in treatments AME, AMI and AMO (0.6 ± 0.1, 0.6 ± 0.2 and 0.6 ± 0.1 mg kg–1 minute–1, respectively) than in treatment Saline (1.2 ± 0.2 mg kg–1 minute–1) (p < 0.05). Cardiovascular variables remained at clinically acceptable values, but all treatments caused some degree of hypoventilation.Conclusions and clinical relevancePremedication with AME, AMI and AMO, at the doses studied, significantly decreased the maintenance dose of ketofol infusion in rabbits. Ketofol was determined to be a clinically acceptable combination for TIVA in premedicated rabbits.  相似文献   

15.
ObjectiveTo assess as premedicants, the sedative, cardiorespiratory and propofol-sparing effects in dogs of dexmedetomidine and buprenorphine compared to acepromazine and buprenorphine.Study designProspective, randomised, blinded clinical studyAnimalsSixty healthy dogs (ASA grades I/II). Mean (SD) body mass 28.0 ± 9.1 kg, and mean age 3.4 ± 2.3 years.MethodsDogs were allocated randomly to receive 15 μg kg?1 buprenorphine combined with either 30 μg kg?1 acepromazine (group 1), 62.5 μg m?2 dexmedetomidine (group 2), or 125 μg m?2 dexmedetomidine (group 3) intramuscularly. After 30 minutes, anaesthesia was induced using a propofol target controlled infusion. Heart rate, respiratory rate, and oscillometric arterial blood pressure were recorded prior to induction, at endotracheal intubation and at 3 and 5 minutes post-intubation. Induction quality and pre-induction sedation were scored on 4 point scales. Propofol target required for endotracheal intubation was recorded. Data were analysed using Chi-squared tests, Kruskal-Wallis, one way and general linear model anova (p < 0.05).ResultsAge was significantly lower in group 1 (1.0 (1.0–3.8) years) than group 2 (5.0 (2.0–7.0) years), (median, (IQR)). There were no significant differences in sedation or quality of induction between groups. After premedication, heart rate was significantly lower and arterial blood pressures higher in groups 2 and 3 than group 1, but there was no significant difference between groups 2 and 3. Propofol targets were significantly lower in group 3 (1.5 (1.0–2.5) μg mL?1) than group 1 (2.5 (2.0–3.0) μg mL?1); no significant differences existed between group 2 (2.0 (1.5–2.5) μg mL?1) and the other groups (median, (interquartile range)).Conclusions and Clinical relevanceWhen administered with buprenorphine, at these doses, dexmedetomidine had no advantages in terms of sedation and induction quality over acepromazine. Both doses of dexmedetomidine produced characteristic cardiovascular and respiratory effects of a similar magnitude.  相似文献   

16.
ObjectiveTo evaluate the efficacy of maropitant for prevention of vomiting and gastroesophageal reflux (GER) in dogs following acepromazine-hydromorphone premedication and inhalation anesthesia.Study designRandomized, blinded, prospective clinical study.AnimalsTwenty-six dogs admitted for elective soft tissue or orthopedic procedures that were 3.1 ±3.1 years of age and weighed 20.5 ± 11.4 kg.MethodsDogs were randomly assigned to one of two groups: Group M received maropitant (1.0 mg kg?1) and Group S received 0.9% saline (0.1 mL kg?1) intravenously 45–60 minutes before premedication with hydromorphone (0.1 mg kg?1) and acepromazine (0.03 mg kg?1) intramuscularly. An observer blinded to treatment documented any retching or vomiting for 20 minutes before induction with propofol (2–6 mg kg?1) and inhalation anesthesia. A pH probe inserted into the distal esophagus was used to detect GER.ResultsNone of the dogs in Group M retched or vomited (0/13), 6/13 (46%) in Group S were observed to retch or vomit, and the difference between groups was significant (p = 0.015). There were no differences between groups in the number of dogs with GER (Group M: 4/13, Group S: 6/13 dogs) or the number of reflux events. Esophageal pH at the end of anesthesia was significantly lower in both M and S groups in dogs with GER versus dogs without GER (p = 0.004 and 0.011, respectively). Only dogs with GER in Group S had significantly lower pH at the end compared to the beginning of anesthesia (p = 0.004).Conclusions and clinical relevanceIntravenous maropitant prevented retching and vomiting associated with acepromazine-hydromorphone premedication. Maropitant did not prevent the occurrence of GER. Fewer dogs in Group M developed GER but further study with a larger number of dogs is necessary to determine if there is a significant difference.  相似文献   

17.
ObjectiveEvaluate antinociception, anesthesia, and recovery in llamas given tiletamine-zolazepam (TZ) with either morphine, xylazine, morphine and xylazine, or saline.Study designRandomized crossover experimental study.AnimalsSix healthy, adult intact male llamas.MethodsLlamas were given each of four treatments intramuscularly with a 1-week washout: TZ (2 mg kg?1) combined with either morphine (0.5 mg kg?1; M), xylazine (0.15 mg kg?1; X), morphine (0.5 mg kg?1) and xylazine (0.15mg kg?1) (MX), or saline (C). Llamas breathed room air during the experiment. Characteristics of anesthesia, recovery, and selected cardiopulmonary variables were recorded. Antinociception was assessed by clamping a claw at 5-minute intervals. Data were analyzed using a mixed-model anova and Tukey-Kramer test, and are expressed as least squares mean ± SEM. Significance was set at p < 0.05.ResultsNo llama in the control group demonstrated antinociception. Antinociception was longest with treatment MX, followed by treatments X and M, respectively. Heart rates in llamas given treatments X and MX were significantly lower than with other treatments. The respiratory rate in llamas given treatment C was greater (p < 0.05) than for all other treatments, however, the respiratory rate was not significantly different among treatments X, M and MX. The PaO2 for llamas given MX remained <60 mmHg throughout the 20 minute period of blood gas analysis. Mean arterial blood pressure in llamas in treatment MX was less than for treatments M or C.Conclusion and clinical relevanceThe combination of morphine (0.5 mg kg?1) and xylazine (0.15 mg kg?1) increased the duration of antinociception compared with xylazine alone, in TZ-anesthetized llamas. Treatments X, M and MX were associated with hypoxemia (PaO2 < 60 mmHg).  相似文献   

18.
ObjectiveTo determine the induction doses, then minimum infusion rates of alfaxalone for total intravenous anaesthesia (TIVA), and subsequent, cardiopulmonary effects, recovery characteristics and alfaxalone plasma concentrations in cats undergoing ovariohysterectomy after premedication with butorphanol-acepromazine or butorphanol-medetomidine.Study designProspective randomized blinded clinical study.AnimalsTwenty-eight healthy cats.MethodsCats undergoing ovariohysterectomy were assigned into two groups: together with butorphanol [0.2 mg kg?1 intramuscularly (IM)], group AA (n = 14) received acepromazine (0.1 mg kg?1 IM) and group MA (n = 14) medetomidine (20 μg kg?1 IM). Anaesthesia was induced with alfaxalone to effect [0.2 mg kg?1 intravenously (IV) every 20 seconds], initially maintained with 8 mg kg?1 hour?1 alfaxalone IV and infusion adjusted (±0.5 mg kg?1 hour?1) every five minutes according to alterations in heart rate (HR), respiratory rate (fR), Doppler blood pressure (DBP) and presence of palpebral reflex. Additional alfaxalone boli were administered IV if cats moved/swallowed (0.5 mg kg?1) or if fR >40 breaths minute?1 (0.25 mg kg?1). Venous blood samples were obtained to determine plasma alfaxalone concentrations. Meloxicam (0.2 mg kg?1 IV) was administered postoperatively. Data were analysed using linear mixed models, Chi-squared, Fishers exact and t-tests.ResultsAlfaxalone anaesthesia induction dose (mean ± SD), was lower in group MA (1.87 ± 0.5; group AA: 2.57 ± 0.41 mg kg?1). No cats became apnoeic. Intraoperative bolus requirements and TIVA rates (group AA: 11.62 ± 1.37, group MA: 10.76 ± 0.96 mg kg?1 hour?1) did not differ significantly between groups. Plasma concentrations ranged between 0.69 and 10.76 μg mL?1. In group MA, fR, end-tidal carbon dioxide, temperature and DBP were significantly higher and HR lower.Conclusion and clinical relevanceAlfaxalone TIVA in cats after medetomidine or acepromazine sedation provided suitable anaesthesia with no need for ventilatory support. After these premedications, the authors recommend initial alfaxalone TIVA rates of 10 mg kg?1 hour?1.  相似文献   

19.
ObjectiveTo investigate the effects of intramuscularly administered acepromazine or dexmedetomidine on buccal mucosa microcirculation in Beagle dogs.Study designExperimental, blinded, crossover study.AnimalsA group of seven Beagle dogs aged 7.5 ± 1.4 years (mean ± standard deviation).MethodsMicrocirculation was assessed on buccal mucosa using sidestream dark field videomicroscopy. After baseline measurements, 5 μg kg–1 dexmedetomidine or 30 μg kg–1 acepromazine were administered intramuscularly. After 10, 20 and 30 minutes, measurements were repeated. At 40 minutes after premedication, anaesthesia was induced with propofol intravenously and maintained with isoflurane. Measurements were repeated 50, 60 and 65 minutes after the injection of the investigated drugs. Analysed microcirculatory variables were: Perfused de Backer density, Perfused de Backer density of vessels < 20 μm, Proportion of perfused vessels and Proportion of perfused vessels < 20 μm. Heart rate (HR), systolic, diastolic (DAP) and mean (MAP) arterial pressures were recorded at the same time points. Macro- and microcirculatory variables were analysed using a linear mixed model with baseline as a covariate, treatment, trial period and repetition as fixed effects and time and dog as random effect. Results are presented as effect size and confidence interval; p values < 0.05 were considered significant.ResultsAfter acepromazine, Perfused de Backer density was greater during sedation and anaesthesia [3.71 (1.93–5.48 mm mm–2, p < 0.0001) and 2.3 (0.86–3.75 mm mm–2, p < 0.003)], respectively, than after dexmedetomidine. HR was significantly lower, whereas MAP and DAP were significantly higher with dexmedetomidine during sedation and anaesthesia (p < 0.0001 for all) compared with acepromazine.Conclusions and clinical relevanceThe sedative drugs tested exerted a significant effect on buccal mucosal microcirculation with a higher Perfused de Backer density after the administration of acepromazine compared with dexmedetomidine. This should be considered when microcirculation is evaluated using these drugs.  相似文献   

20.
ObjectiveTo investigate the clinical efficacy of four analgesia protocols in dogs undergoing tibial tuberosity advancement (TTA).Study designProspective, randomized, blinded study.AnimalsThirty-two client owned dogs undergoing TTA-surgery.MethodsDogs (n= 8 per treatment) received an oral placebo (PM and PRM) or tepoxalin (10 mg kg?1) tablet (TM and TRM) once daily for 1 week before surgery. Epidural methadone (0.1 mg kg?1) (PM and TM) or the epidural combination methadone (0.1 mg kg?1)/ropivacaine 0.75% (1.65 mg kg?1) (PRM and TRM) was administered after induction of anaesthesia. Intra-operative fentanyl requirements (2 μg kg?1 IV) and end-tidal isoflurane concentration after 60 minutes of anaesthesia (Fe′ISO60) were recorded. Post-operative analgesia was evaluated hourly from 1 to 8 and at 20 hours post-extubation with a visual analogue scale (VAS) and the University of Melbourne Pain Scale (UMPS). If VAS > 50 and/or UMPS > 10, rescue methadone (0.1 mg kg?1) was administered IV. Analgesic duration (time from epidural until post-operative rescue analgesia) and time to standing were recorded. Normally distributed variables were analysed with an F-test (α = 0.05) or t-test for pairwise inter-treatment comparisons (Bonferonni adjusted α = 0.0083). Non-normally distributed data were analysed with the Kruskall–Wallis test (α = 0.05 or Bonferonni adjusted α = 0.005 for inter-treatment comparison of post-operative pain scores).ResultsMore intra-operative analgesia interventions were required in PM [2 (0–11)] [median (range)] and TM [2 (1–2)] compared to PRM (0) and TRM (0). Fe′ISO60 was significantly lower in (PRM + TRM) compared to (PM + TM). Analgesic duration was shorter in PM (459 ± 276 minutes) (mean ± SD) and TM (318 ± 152 minutes) compared to TRM (853 ± 288 minutes), but not to PRM (554 ± 234 minutes). Times to standing were longer in the ropivacaine treatments compared to TM.Conclusions and clinical relevanceInclusion of epidural ropivacaine resulted in reduction of Fe′ISO60, avoidance of intra-operative fentanyl administration, a longer duration of post-operative analgesia (in TRM) and a delay in time to standing compared to TM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号