首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
BACKGROUND: In recent years, common lambsquarters (Chenopodium album L.) populations from sugar beet fields in different European countries have responded as resistant to the as‐triazinone metamitron. The populations have been found to have the same D1 point mutation as known for atrazine‐resistant biotypes (Ser264 to Gly). However, pot experiments revealed that metamitron resistance is not as clear‐cut as observed with triazine resistance in the past. The objectives of this study were to clarify the absorption, translocation and metabolic fate of metamitron in C. album. RESULTS: Root absorption and foliar absorption experiments showed minor differences in absorption, translocation and metabolism of metamitron between the susceptible and resistant C. album populations. A rapid metabolism in the C. album populations was observed when metamitron was absorbed by the roots. The primary products of metamitron metabolism were identified as deamino‐metamitron and metamitron‐N‐glucoside. PABA, known to inhibit the deamination of metribuzin, did not alter the metabolism of metamitron, and nor did the cytochrome P450 inhibitor PBO. However, inhibition of metamitron metabolism in the presence of the cytochrome P450 inhibitor ABT was demonstrated. CONCLUSION: Metamitron metabolism in C. album may act as a basic tolerance mechanism, which can be important in circumstances favouring this degradation pathway. Copyright © 2011 Society of Chemical Industry  相似文献   

2.
The expansion of atrazine‐resistant Chenopodium album (common lambsquarters) since the 1980s has forced New Zealand's maize‐growers to use an additional postemergence herbicide application. The frequent use of dicamba for this has selected for a common lambsquarters population with reduced sensitivity to dicamba. Initial greenhouse experiments with seeds that had been collected from the plants that survived field applications of dicamba showed that these plants could tolerate ≤1.2 kg ha?1, fourfold the recommended rate. These dicamba‐resistant plants were morphologically distinct from the susceptible population. The leaves of the resistant plants were less dentate and a lighter shade of green. The resistant plants were shorter, had a lower biomass and growth rate and flowered ≤19 days earlier than the susceptible plants. When grown together in various density ratios, the average biomass of both the susceptible and the resistant plants increased as the number of susceptible plants decreased in the mixture. The field experiments demonstrated that the resistant population tolerated dicamba at ≤2.4 kg ha?1, eightfold the recommended rate. Postemergence applications of bromoxynil, pyridate, nicosulfuron and mesotrione effectively controlled both populations. Nicosulfuron and mesotrione provided long‐term residual control, with nicosulfuron being more effective on the grass weeds. High rates of dicamba damaged the maize plants, resulting in an increased weed cover and reduced grain yield. The number of viable common lambsquarters seeds in the soil seed bank at the end of the growing season declined in the treatments in which common lambsquarters was controlled effectively.  相似文献   

3.
4.
5.
Ryegrass (Lolium multiflorum Lam.) is one of the most difficult annual weeds to control in cultivation systems worldwide, especially in temperate regions. The widespread use of herbicides in the past two decades has selected resistant biotypes of ryegrass in crops in Southern Brazil. Ryegrass seeds are dormant when disseminated and germination can be staggered over time (crop‐growing season). Knowledge of the germination behavior of seeds from herbicide‐resistant plants has been little studied, but it would be very useful in integrated weed management. Thus, this study aimed to characterize the dynamics of the soil seed bank of two biotypes of L. multiflorum, one glyphosate‐resistant and the other glyphosate‐susceptible, under a no‐tillage system. The treatments were arranged in a bifactorial scheme, using seeds from biotypes (glyphosate‐resistant and glyphosate‐susceptible) with monthly periods of removal from field (one to 12 months). Seeds of each biotype were placed on the soil surface and covered with soil and straw to simulate no‐till conditions. The percentage of germinated, dormant, and dead seeds was evaluated every 30 days. The ryegrass seed bank of glyphosate‐susceptible and glyphosate‐resistant biotypes was reduced to 11 and 15% of dormant seeds, respectively, at the end of 12 months. However, there was no variation in germination, dormancy, and seed mortality between susceptible and glyphosate‐resistant ryegrass. Seeds of glyphosate‐resistant biotype and susceptible showed germination behavior with similar dynamics in the soil over a period of 12 months.  相似文献   

6.
Schoenoplectus juncoides is one of the most harmful weeds found in East Asian paddy fields. Recent emergence of biotypes that are resistant to the herbicide sulfonylurea (SU) has made weed control difficult. To examine the effect of the evolution of this herbicide resistance on genetic diversity within local populations, we investigated microsatellite variability within and among paddy field populations of S. juncoides in Kinki, Japan. In vivo assay of acetolactate synthase activity and root elongation assay in the presence of SU revealed that of 21 populations, five were sulfonylurea‐susceptible (SU‐S) and eight were completely sulfonylurea‐resistant (SU‐R). The remaining eight populations were a mixture of SU‐S and SU‐R individuals. The average gene diversity for SU‐R populations (HS = 0.168) was lower than those for SU‐S (HS = 0.256) and mixed (HS = 0.209) populations, but the difference was not significant. This indicates that positive selection for SU‐R phenotype did not cause a genome‐wide reduction in genetic diversity. Genetic differentiation among S. juncoides populations was higher than that observed for most weed species studied previously. Although populations in neighbouring paddy fields showed a high level of differentiation, Bayesian clustering analyses suggested that some level of gene flow occurs among them and that the genetic exchange or colonisation between neighbouring populations could contribute to the geographical expansion of the resistant allele.  相似文献   

7.
This study describes the seedbank persistence of glyphosate‐resistant (GR) Kochia scoparia at two sites in western Canada and examines if GRK. scoparia from western Canada and mid‐western United States (USA) differ from their susceptible counterparts in seed germination and early growth characteristics at low‐temperature regimes. Site or depth of seed burial (surface, 2.5 cm, 10 cm) did not affect seed viability over time and time to 50% and 90% loss of viability averaged 210 and 232 days respectively. Glyphosate‐resistant K. scoparia generally germinated later and had lower cumulative germination than glyphosate‐susceptible (GS) K. scoparia from Saskatchewan, Canada; and Kansas, USA; but not Colorado, USA. Similarly, time to 10% first leaf of GSK. scoparia from Saskatchewan and Kansas tended to be sooner than that of GRK. scoparia, with a greater percentage of GS vs. GR seedlings of populations from all regions having attained first leaf by the end of the experiment. The short seedbank longevity and delayed and reduced germination and time to first leaf of GRK. scoparia may potentially be exploited to maximise management efficacy through delayed preseeding weed control or alternatively by early seeding date to enhance crop competitiveness.  相似文献   

8.
To reveal the effects of herbicide selection on genetic diversity in the outcrossing weed species Schoenoplectus juncoides, six sulfonylurea‐resistant (SU‐R) and eight sulfonylurea‐susceptible (SU‐S) populations were analysed using 40 polymorphic inter‐simple sequence repeat loci. The plants were collected from three widely separated regions: the Tohoku, Kanto and Kyushu districts of Japan. Genetic diversity values (Nei's gene diversity, h) within each SU‐S population ranged from = 0.125 to h = 0.235. The average genetic diversity within the SU‐S populations was HS = 0.161, and the total genetic diversity was HT = 0.271. Although the HS of the SU‐R populations (0.051) was lower than that of the SU‐S populations, the HT of the SU‐R populations (0.202) was comparable with that of the SU‐S populations. Most of the genetic variation was found within the region for both the SU‐S and SU‐R populations (88% of the genetic variation respectively). Two of the SU‐R populations showed relatively high genetic diversity (= 0.117 and 0.161), which were comparable with those of the SU‐S populations. In contrast, the genetic diversity within four SU‐R populations was much lower (from h = 0 to 0.018) than in the SU‐S populations. The results suggest that selection by sulfonylurea herbicides has decreased genetic diversity within some SU‐R populations of S. juncoides. The different level of genetic diversity in the SU‐R populations is most likely due to different levels of inbreeding in the populations.  相似文献   

9.
Leaf optical properties can play an important role in determining the red/far‐red light ratio, a signal of impending competition, in plant canopies. Knowledge of leaf optical properties and factors affecting them is important in understanding of the impacts of red/far‐red ratio in agroecosystems. Effects of leaf position on the plant stem on their optical properties at 660 and 730 nm were studied in tomato and two weeds Chenopodium album and Amaranthus retroflexus. Leaf position on stem strongly influenced leaf optical properties. Reflectance and transmittance were generally lower for the C. album and Aretroflexus leaves at higher positions on the stem, except for reflectance at 730 nm in C. album, which did not change. Reflectance was not affected in tomato. Transmittance generally decreased for leaves at higher positions. Red/far‐red ratios of reflected (Rratio) and transmitted (Tratio) light generally decreased in all species, except Rratio in tomato, where it increased slightly at higher positions. These effects were greater in A. retroflexus compared with C. album and tomato. Changes in these ratios were partly explained by chlorophyll content and leaf mass per area. The results show that leaf position on plant stem influences leaf optical properties in tomato and two weeds and this effect differed between species. These influences and the differences among species could modify red/far‐red ratios in canopies comprising these species, which could influence their growth and inter‐plant interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号