首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was conducted to evaluate the cross‐resistance of acetolactate synthase (ALS) inhibitors with different chemistries, specifically azimsulfuron (sulfonylurea), penoxsulam (triazolopyrimidine sulfonanilide) and bispyribac‐sodium (pyrimidinyl thio benzoate), in Echinochloa oryzicola and Echinochloa crus‐galli that had been collected in South Korea and to investigate their herbicide resistance mechanism. Both Echinochloa spp. showed cross‐resistance to the ALS inhibitors belonging to the above three different chemistries. In a whole plant assay with herbicides alone, the resistant/susceptible ratios for azimsulfuron, penoxsulam and bispyribac‐sodium were 12.6, 28.1 and 1.9 in E. oryzicola and 21.1, 13.7 and 1.8 in E. crus‐galli, respectively. An in vitro ALS enzyme assay with herbicides showed that the I 50‐values of the resistant accessions were approximately two‐to‐three times higher than the susceptible accessions, with no statistical difference, suggesting that the difference in ALS sensitivity cannot explain ALS inhibitor resistance in Echinochloa spp. for azimsulfuron, penoxsulam and bispyribac‐sodium. A whole plant assay with fenitrothion showed that the GR 50‐values significantly decreased in both the resistant E. oryzicola and E. crus‐galli accessions when azimsulfuron, penoxsulam and bispyribac‐sodium were applied with the P450 inhibitor, while no significant decrease was observed in the susceptible accessions when the P450 inhibitor was used. Thus, these results suggest that ALS inhibitor cross‐resistance for azimsulfuron, penoxsulam and bispyribac‐sodium is related to enhanced herbicide metabolism.  相似文献   

2.
BACKGROUND: Horseweed is a weed commonly found in agronomic crops, waste areas and roadsides. Resistance to ALS‐inhibiting herbicides in horseweed was first reported in 1993 in a population from Israel. Resistance to ALS‐inhibiting herbicides in horseweed is now widespread, but, as of now, the resistance mechanism has not been reported. RESULTS: Two of three populations evaluated (P116 and P13) were found to be uniform for resistance (>98% of individuals survived 8.8 g AI ha?1 of cloransulam), whereas a third population, P525, contained about 85% resistant individuals. Cross‐resistance to cloransulam, chlorimuron, imazethapyr and bispyribac was observed in the P116 population. P525 and P13 were both sensitive to imazethapyr but resistant to chlorimuron, imazethapyr and bispyribac. Enzyme activity assays indicated that resistance in P13 was due to an altered target site. Southern blot analysis indicated that the ALS target site is encoded by a single copy gene. Overlapping ALS gene regions were amplified and sequenced from each population. Amino acid substitutions of Ser for Pro at position 197 (P197S) was detected from P13, Ala for Pro (P197A) was identified from P525 and substitution of Glu for Asp (D376E) at position 376 was found in P116. Molecular markers were developed to differentiate between wild‐type and resistant codons at positions 197 and 376 of horseweed ALS. CONCLUSION: Resistance to ALS‐inhibiting herbicides in horseweed is conferred by target‐site mutations that have also been identified in other weed species. Identification of the mutations within horseweed ALS gene sequence enables molecular assays for rapid detection and resistance diagnosis. Copyright © 2011 Society of Chemical Industry  相似文献   

3.
Barnyardgrass (Echinochloa crus‐galli) proliferation seriously threatens rice production worldwide. Whole‐plant bioassays were conducted in order to test the sensitivity to penoxsulam of 52 barnyardgrass populations and the resistance of six penoxsulam‐resistant populations to 12 other herbicides that are commonly used in rice fields. Among the 48 populations that had escaped penoxsulam control in the rice fields, 8.3% showed a very high level of resistance, 58.3% showed a high level of resistance and 10.4% showed a moderate level of resistance. Multiple resistance was confirmed in all six penoxsulam‐resistant populations that were tested further. They exhibited at least a moderate level of resistance; that is, to 6–10 of the total of 13 herbicides that was tested. Most of the six penoxsulam‐resistant populations showed at least a moderate level of resistance to bispyribac‐sodium, quinclorac, metamifop, cyhalofop‐butyl and oxadiazon, three populations held at least a moderate level of resistance to oxyfluorfen and pretilachlor, two populations also held at least a moderate level of resistance to pyrazosulfuron‐ethyl, pyribenzoxim and fenoxaprop‐P‐ethyl, but the resistance indices of the six populations to pendimethalin were all low. This study has confirmed resistance to pretilachlor and oxadiazon in weeds for the first time.  相似文献   

4.
Echinochloa colona is the most common grass weed of summer fallows in the grain‐cropping systems of the subtropical region of Australia. Glyphosate is the most commonly used herbicide for summer grass control in fallows in this region. The world's first population of glyphosate‐resistant E. colona was confirmed in Australia in 2007 and, since then, >70 populations have been confirmed to be resistant in the subtropical region. The efficacy of alternative herbicides on glyphosate‐susceptible populations was evaluated in three field experiments and on both glyphosate‐susceptible and glyphosate‐resistant populations in two pot experiments. The treatments were knockdown and pre‐emergence herbicides that were applied as a single application (alone or in a mixture) or as part of a sequential application to weeds at different growth stages. Glyphosate at 720 g ai ha?1 provided good control of small glyphosate‐susceptible plants (pre‐ to early tillering), but was not always effective on larger susceptible plants. Paraquat was effective and the most reliable when applied at 500 g ai ha?1 on small plants, irrespective of the glyphosate resistance status. The sequential application of glyphosate followed by paraquat provided 96–100% control across all experiments, irrespective of the growth stage, and the addition of metolachlor and metolachlor + atrazine to glyphosate or paraquat significantly reduced subsequent emergence. Herbicide treatments have been identified that provide excellent control of small E. colona plants, irrespective of their glyphosate resistance status. These tactics of knockdown herbicides, sequential applications and pre‐emergence herbicides should be incorporated into an integrated weed management strategy in order to greatly improve E. colona control, reduce seed production by the sprayed survivors and to minimize the risk of the further development of glyphosate resistance.  相似文献   

5.
An acetolactate synthase (ALS)‐resistant Amaranthus retroflexus biotype was collected in a soyabean crop after repeated exposure to imazethapyr and thifensulfuron‐methyl in north‐eastern Italy. Studies were conducted to characterise the resistance status and determine alternative post‐emergence herbicides for controlling this biotype. Whole‐plant bioassay revealed that the GR50 values were 1898‐ and 293‐fold higher than those observed for the biotype susceptible to imazethapyr and imazamox respectively. The biotype also displayed high cross‐resistance to sulfonylureas. Molecular analysis demonstrated that a single nucleotide substitution had occurred in domain B (TGG to TTG at position 574), conferring a change from the amino acid tryptophan to leucine in the resistant biotype. However, herbicides with other modes of action (PSII, 4‐HPPD and PPO inhibitors) provided excellent control. The GR50 ratios for metribuzin, terbuthylazine and mesotrione were close to 1 and treatments with fomesafen gave 100% control of both susceptible and resistant biotypes at the recommended field dose. This study documents the first case of an imidazolinone and ALS‐resistant biotype in European crops and identifies the post‐emergence herbicide options available for managing this troublesome weed in soyabean crops. Alternative management strategies are also discussed.  相似文献   

6.
Experiments were conducted to (i) evaluate the efficacy of propanil formulations available in Sri Lanka in controlling Echinochloa crus‐galli; (ii) study the seedling growth of propanil‐resistant (R) and ‐susceptible (S) biotypes of the weed under different temperatures; (iii) quantify the level of resistance in R biotypes and; (iv) to suggest alternative control measures for R biotypes. Field studies showed that retail propanil formulations (36% a.i., EC) applied at 2.7 kg a.i. ha?1 gave less than 30% control of E. crus‐galli collected from several locations of the north dry zone of Sri Lanka. Chemical analysis revealed that there was no adulteration of propanil formulations at the retailer level. Growth studies conducted in controlled environments indicated that per cent germination and seedling growth of R and S biotypes were similar at the day/night temperature regimes imposed. However, per cent germination for plants grown under a 34/31°C (day/night) regime was 27–29% higher compared to those grown at 28/24°C. At the higher temperature regime, R and S biotypes reached the 2–3 leaf stage five days earlier, and the 4–5 leaf stage seven days earlier. The ED50 values from the dose–response experiments indicated that the R biotype was four times more resistant to propanil than susceptible ones. The resistance index (RI) did not vary significantly under different temperature regimes. Quinclorac (25% a.i., SC) applied at 200 g a.i. ha?1 and bispyribac‐sodium (10% a.i., SC) applied at 30 g a.i. ha?1 (recommended dosages) successfully controlled propanil‐resistant biotypes of E. crus‐galli. Conversely, oxadiazon and propanil (8% and 23% a.i., EC, respectively) applied at 280 + 805 g a.i. ha?1 did not result in satisfactory control.  相似文献   

7.
An increasing water crisis, as well as the unavailability and high cost of labor, in Pakistan has forced rice‐growers to plant rice directly into the field. However, severe weed infestation causes disastrous effects on the productivity of this rice system. In this study, three herbicides (pendimethalin, penoxsulam and bispyribac‐sodium) were evaluated for weed control in direct‐planted rice on a sandy loam soil. Weedy check and weed‐free plots were established for comparison. Weed infestation decreased the rice yield by 75.2%. However, the application of herbicides suppressed the weed infestation, with a simultaneous increase in the rice yield. The postemergence application of bispyribac‐sodium was the most effective herbicide in reducing the total weed density and dry weight over the weedy check, followed by penoxsulam and pendimethalin, respectively. Bispyribac‐sodium increased the number of productive tillers, 1000‐grain weight, number of grains per panicle and grain yield over the control, as well as improved the water productivity and economic returns of direct‐planted rice. The weeds' proliferation increased the number of unproductive tillers and decreased the plant height. In conclusion, the postemergence application of bispyribac‐sodium can be used effectively to control weeds, increase water productivity and improve the economic returns and yield of direct‐planted rice on a sandy loam soil in Pakistan.  相似文献   

8.
S. B. POWLES 《Weed Research》1986,26(3):167-172
A biotype of the grass weed Hordeum glaucum Steud, infesting a site at Willaura, Victoria, Australia has resistance to paraquat. Application of the recommended rate of paraquat does not cause death of the resistant biotype at any stage of growth. The LD50 for the resistant biotype is 6.4 kg active ingredient ha?1 which is 250 times greater than for the normal susceptible biotype (25 g active ingredient ha?1). Growth of the resistant biotype is checked by paraquat with a clear dosage response evident. The paraquat resistant biotype is also resistant to diquat but is normally affected by herbicides with different modes of action. In addition to continued foliage growth of the resistant plants after paraquat application, seeds of these plants can germinate and seedlings elongate in the dark whereas seeds of susceptible plants germinate but there is no further growth. This suggests that studies of the mechanism(s) conferring resistance will have to consider both the effect of paraquat on the chloroplast and a non-photosynthetic effect on cell growth. Un biotype de la mauvaise herbe Hordeum glaucum Steud, résistant à l'herbicide paraquat Un biotype de la graminée Hordeum glaucum Steud. à Willaura, Victoria, Australie, s'est montré résistant au paraquat. L'application de la dose préconisée de paraquat ne provoque pas la mort de ce biotype, quel qu'en soit le stade végétal. La LD50 pour le biotype résistant est 6,4 kg matière active ha?1, c'est-à-dire 250 fois plus grande que pour le biotype normal sensible (25 g matière active ha?1). Le paraquat provoque chez le biotype résistant une inhibition de croissance qui se rapporte à la dose. Le biotype résistant au paraquat l'est également au diquat mais réagit normalement envers les herbicides à mode d'action différente. Non seulement la croissance foliaire continue normalement après une application de paraquat chez les plantes résistantes, mais les graines sont capables de germer et les jeunes plants de s'allonger à l'obscurité, tandis que les graines de plantes sensibles germent à l'obscurité mais ne croissent pas. II semble donc que les études des mécanismes qui produisent la résistance devront examiner l'influence du paraquat sur le chloroplaste ainsi qu'un effet nonphotosynthétique sur la croissance cellulaire. Ueber das Auftreten eines gegen Paraquat resistenten Biotyps von Hordeum glaucum Steud. Bei Willaura, Victoria (Australien) tritt ein gegen Paraquat resistenter Biotyp von Hordeum glaucum Steud. auf. Die Application der normalerweise empfohlenen Dosierung Paraquat tötet den resistenten Biotyp in keinem Wachstumsstadium ab. Die Ld50 für den resistenten Typ beträgt 6,4 kg ai ha?1; dies ist 250 mal mehr als beim normal sensiblen Typ (25 g ai ha?1). Das Wachstum des resistenten Biotyps wird durch steigende Dosen von Paraquat beeinträchtigt. Der gegen Paraquat resistente Typ ist auch gegen Diquat unempfindlich, weist aber gegenüber Herbiziden mil anderen Wirkungsmechanismen die normale Empfindlichkeit auf. Resistente Pflanzen zeigen nach Paraquatbehandlung ein weitergehendes Blattwachstum. Ihre Samen keimen und die Sämlinge entwickeln sich im Dunkeln weiter, während die Samen sensibler Pflanzen zwar keimen, sich aber nicht weiterentwickeln. Diese Beobachtungen weisen darauf hin, dass bei Forschungen zur Aufklärung der Resistenzmechanismen, sowohl die Wirkung von Paraquat auf die Chloroplasten als auch einen nicht photosynthetiseh wirksamen Effekt auf das Zellwachstum berücksichtigen müssen.  相似文献   

9.
Sprangletop (Leptochloa chinensis L. Nees) is a serious grass weed in direct‐seeded rice cropping systems in Thailand. One population of sprangletop, BLC1, was found to be resistant to fenoxaprop‐p‐ethyl at 62‐fold the concentration of a susceptible biotype, SLC1. This study elucidated the inheritance of resistance to fenoxaprop‐p‐ethyl in this sprangletop BLC1 genotype. The reaction to the herbicide at 0.12–2.4 mg ai L?1 was determined in the seedlings of self‐pollinated resistant BLC1, susceptible SLC1 and SLC1 that had been allowed to cross‐pollinate with BLC1. At 0.24 mg ai L?1, all the seedlings of SLC1 were killed, while 99% of BLC1 survived, along with 5% of the cross‐pollinated SLC1 seedlings, which were considered to be putative F1 hybrids. The root and shoot lengths of the F1 hybrids in 0.24 mg ai L?1 of fenoxaprop‐p‐ethyl, relative to those in the absence of the herbicide, were close to or the same as the resistant parent, indicating that the resistance is a nearly complete to complete dominant trait. One‐hundred‐and‐forty‐one of the F2‐derived F3 families were classified by their response to the herbicide at 0.24 and 0.48 mg ai L?1 into 39 homozygous susceptible : 72 segregating : 30 homozygous resistant, fitted with a 1:2:1 ratio at χ2 = 1.21 and P = 0.56, indicating that the resistance to fenoxaprop‐p‐ethyl in the sprangletop BLC1 genotype is controlled by a single gene.  相似文献   

10.
Sulfonylurea resistance in Stellaria media [L.] Vill.   总被引:1,自引:1,他引:1  
A sulfonylurea resistant biotype of common chickweed (Stellaria media L. Vill.) was found in a field treated with chlorsulfuron or metsulfuron for eight consecutive years. In pot experiments the biotype was resistant to postemergence treatments with the following acetolactate synthase (ALS) inhibitors: chlorsulfuron, metsulfuron, tribenuron, triasulfuron, rimsulfuron, sulfometuron, flumetsulam and imazapyr. The level of resistance to chlorsulfuron and sulfometuron was higher than to the other sulfonylurea herbicides. Whereas the level of cross resistance to the triazolopyrimidine herbicide, flumetsulam was comparable to that of metsulfuron, that of imazapyr was significantly lower. In contrast to imazapyr the biotype was not resistant to imazethapyr, an other imidazolinone herbicide. ALS in vitro assays revealed that resistance was due to an ALS enzyme that was less sensitive to ALS inhibiting herbicides. Herbicides with different modes of action were equally effective on the susceptible and resistant biotypes.  相似文献   

11.
Paraquat resistance in a biotype of Vulpia bromoides (L.) S. F. Gray   总被引:1,自引:0,他引:1  
A biotype of Vulpia bromoides from a lucerne field in Elmhurst, Victoria, Australia was shown to be resistant to paraquat in pot trials. Application of paraquat at 50 g a.i. ha?1 killed all of the plants of a susceptible Vulpia bromoides biotype but only 6% of the resistant biotype. The LD50 for paraquat of the resistant biotype was five- to sixfold higher than for the susceptible biotype. The resistant biotype was also resistant to the bipyridyl herbicide diquat, but was susceptible to glyphosate and metribuzin. Application of 100 g a.i. ha?1 paraquat at anthesis completely suppressed seed set of the susceptible biotype and reduced that of the resistant biotype by 95%. Seed set by the paraquat-treated resistant biotype, however, showed little reduction in germination. This is the fourth species to have been found to be resistant to bipyridyl herbicides in this field, the others being Hordeum glaucum, H. leporinum and Arctotheca calendula. Résistance au paraquat d'un biotype de Vulpia bromoides (L.) S. F. Gray Un biotype de Vulpia bromoides issu d'un champ de luzerne à Elmhurst, Victoria, Australie s'est révélé résistant au paraquat lors d'essais en pots. Des traitements au paraquat 50 g m.a. ha?1 détruisaient toutes les plantes d'un biotype sensible de V. bromoides mais seulement 6% du biotype résistant. La DLV50 du paraquat pour ce biotype était 5 à 6 fois plus élevée que pour le biotype sensible. Le biotype résistant l'était aussi à l'herbicide bipyridyle diquat, mais était sensible au glyphosate et à la métribuzine. Des traitements au paraquat 100 g m.a. ha?1 au stade anthèse supprimaient complètement la production de graines du biotype sensible et réduisait de 95% celle du biotype résistant. Cependant, le pouvoir germinatif des graines issues du biotype résistant traité, n'était que peu réduit. Après Hordeum glaucum, Hordeum leporinum et Arctotheca calendula, c'est la quatrième espèce trouvée dans ce même champ résistante aux herbicides bipyridyles. Paraquatresistenz eines Biotyps von Vulpia bromoides (L.) S. F. Gray Ein Biotyp von Vulpia bromoides von einem Luzernefeld in Elmhurst, Victoria, Australien, erwies sich in Topfversuchen als paraquatresistent. Mit 50 g AS ha?1 wurden Pflanzen eines empfindlichen Biotyps abgetötet, jedoch nur 6% des resistenten. Die LD50 des resistenten Biotyps für paraquat war 5- bis 6mal höher als die des empfindlichen Biotyps. Der resistente Biotype war auch gegenüber dem Bipyridylherbizid Deiquat résistent, gegenüber Glyphosat und Metribuzin jedoch empfindlich. Nach Anwendung von 100 g AS ha?1 Paraquat vor der Blüte bildeten sich bei dem empfindlichen Biotyp keine Samen aus, bei dem resistenten waren sie um 95% vermindert; die dennoch gebildeten Samen keimten etwas weniger. Dies ist die vierte Pflanzenart, bei der eine Resistenz gegenüber Bipyridylherbiziden beobachtet wurde, die anderen sind Hordeum glaucum. Hordeum leporinum und Arctotheca calendula.  相似文献   

12.
Abstract

Chickpea suffers severe competition due to Chenopodium album L. infestation. Two to three hoeings are generally given to check C. album but increasing labour costs and scarcity of farm labour make the manual weeding difficult. Usage of herbicides appears to be a logical solution. Pre‐emergence applications of pendimethalin or ametryn alone at 1.5 kg ai ha?1 or one handweeding at 35–40 days after seeding following either 1 kg ai ha?1 of pendimethalin, ametryn or fluchloralin or metribuzin at 0.3 kg ai ha?1 applied pre‐emergence gave effective control of C. album and seed yields similar to clean‐weeded chickpeas. There was an 84% reduction in seed yield of chickpea without weeding.  相似文献   

13.
A population of Bromus tectorum infesting an olive grove at Córdoba (Spain) survived simazine use rates of 3.0 kg a.i. ha−1 over two consecutive years. Non‐tillage olive monoculture and two annual simazine applications had been carried out for 10 years. The resistant biotype showed a higher ED50 value (7.3 kg a.i. ha−1) than that of the susceptible control (0.1 kg a.i. ha−1), a 73‐fold increase in herbicide tolerance. The use of fluorescence, Hill reaction, absorption, translocation and metabolism assays showed that simazine resistance in this biotype was caused by a modification of the herbicide target site, since chloroplasts from the resistant biotype of B. tectorum were more than 300 times less sensitive to simazine than those from the susceptible biotype. In addition, non‐treated resistant plants of B. tectorum displayed a significant reduction in the QA to QB electron transfer rate when compared with the susceptible biotype, a characteristic that has been linked to several mutations in the protein D1 conferring resistance to PS II inhibiting herbicides. Resistant plants showed cross‐resistance to other groups of triazine herbicides with the hierarchy of resistance level being methoxy‐s‐triazines ≥chloro‐s‐triazines > methylthio‐s‐triazines > cis‐triazines. The results indicate a naturally occurring target‐site point mutation is responsible for conferring resistance to triazine herbicides. This represents the first documented report of target site triazine resistance in this downy brome biotype.  相似文献   

14.
Glyphosate is one of the most commonly used broad‐spectrum herbicides over the last 40 years. Due to the widespread adoption of glyphosate‐resistant (GR) crop technology, especially corn, cotton and soybean, several weed species have evolved resistance to this herbicide. Research was conducted to confirm and characterize the magnitude and mechanism of glyphosate resistance in two GR common ragweed ( A mbrosia artemisiifolia L.) biotypes from Mississippi, USA. A glyphosate‐susceptible (GS) biotype was included for comparison. The effective glyphosate dose to reduce the growth of the treated plants by 50% for the GR1, GR2 and GS biotypes was 0.58, 0.46 and 0.11 kg ae ha?1, respectively, indicating that the level of resistance was five and fourfold that of the GS biotype for GR1 and GR2, respectively. Studies using 14 C‐glyphosate have not indicated any difference in its absorption between the biotypes, but the GR1 and GR2 biotypes translocated more 14 C‐glyphosate, compared to the GS biotype. This difference in translocation within resistant biotypes is unique. There was no amino acid substitution at codon 106 that was detected by the 5‐enolpyruvylshikimate‐3‐phosphate synthase gene sequence analysis of the resistant and susceptible biotypes. Therefore, the mechanism of resistance to glyphosate in common ragweed biotypes from Mississippi is not related to a target site mutation or reduced absorption and/or translocation of glyphosate.  相似文献   

15.
In 1997 and 1998, five field studies were conducted at four Portuguese wine‐growing regions in order to evaluate the effectiveness of the chemical control of vineyard weeds under Mediterranean conditions using either reduced doses of residual herbicides or only foliar herbicides. Amitrole (3440 g a.i. ha?1), amitrole + glyphosate mono‐ammonium salt (1720 + 900 g a.i. ha?1), amitrole (3400 g a.i. ha?1), amitrole + diuron (2580 + 1500 g a.i. ha?1), amitrole + simazine (2580 + 1500 g a.i. ha?1), amitrole + terbuthylazine (2580 + 1500 g a.i. ha?1) and amitrole + diuron + simazine (2580 + 1300 + 1400 g a.i. ha?1) were assayed and compared with the following reference herbicides: glyphosate isopropylamine salt (1800 g a.i. ha?1), amitrole + diuron (2520 + 1680 g a.i. ha?1), diuron + glyphosate + terbuthylazine (1275 + 900 + 1425 g a.i. ha?1), amitrole + simazine (1900 + 3900 g a.i. ha?1) and glyphosate + simazine (800 + 2200 g a.i. ha?1). The herbicides were applied during late winter. The results indicated that good control was achieved by the application of foliar herbicides alone or of reduced rates of a mixture of residual herbicides with foliar herbicides for at least 2 months. Three months after application, the efficacy of post‐emergence herbicides and lower rates of residual herbicides decreased significantly in clay soils and under heavy rainfall conditions. Convolvulus arvensis– a weed that is becoming increasingly significant in Portuguese vineyards – was poorly controlled, even when glyphosate was used. Despite this, it can be assumed that in those regions in which the trials were conducted, it is possible to employ weed control strategies that entail the elimination or a reduction in the rate of residual herbicides.  相似文献   

16.
T K Das  D K Das 《Weed Research》2018,58(3):188-199
Variable dormancies result in periodicity in the germination of weeds and make weed control a repetitive practice. Under some conditions, repeated applications of selective herbicides can lead to the dominance of perennial weeds like Cyperus rotundus . Our hypothesis was that applying a chemical dormancy breaker (DB ) plus herbicide mixture would better control a mixture of weed species. Three experiments were designed to develop a cost‐effective DB treatment and to evaluate its dose with herbicides tank‐mixtures for effective weed management. KNO 3 and gibberellic acid GA 3 as dormancy breakers offered comparable effects, but KNO 3 was more economical than GA 3. KNO 3 at a 6% concentration was more effective in promoting weed germination than a 3% concentration in soyabean. A combination of KNO 3 (6%) and pre‐emergence pendimethalin 0.75 kg a.i. ha?1 + imazethapyr 0.10 kg a.i. ha?1 controlled annual weeds by 99% and reduced C. rotundus growth by 83%. This treatment gave significantly higher soyabean yield and net returns. Similarly, a tank‐mixture comprising of clodinafop 0.06 kg a.i. ha?1 + metsulfuron 0.006 kga.i. ha?1 was more effective against weeds than pre‐emergence tank‐mix application of pendimethalin 0.75 kg a.i. ha?1 + carfentrazone‐ethyl 0.02 kg a.i. ha?1 and isoproturon 0.75 kg a.i. ha?1. The use of pre‐emergence tank‐mixture of pendimethalin 0.75 kg a.i. ha?1 + imazethapyr 0.10 kg a.i. ha?1 should exhaust seed/tuber bank if repeated and reduce the application cost of herbicides by 50% and the dose, residue and cost of pendimethalin by 25%.  相似文献   

17.
A putative graminicide-resistant biotype of E. indica (L.) Gaertn. and a wild (graminicide sus ceptible) biotype were compared with regard to their growth, development and resistance to ary-loxyphenoxypropionate and cyclohexanedione herbicides in controlled environment studies. The resistant biotype produced much lower amounts of shoot biomass (46% less) but flow ered earlier and allocated a higher proportion and amount of biomass into seed-bearing struc tures compared with the wild type. The resistant biotype survived the application of 50 g a.i. ha?1 of clethodim, tralkoxydim, sethoxydim, fluazi-fop-butyl, fenoxaprop-ethyl and diclofop methyl with the greatest resistance being shown to the aryloxyphenoxypropionates. At rates of >1000 g a.i. ha?1, tralkoxydim achieved superior con trol to that of fluazifop-butyl. Even at rates of 4000 g a.i. ha?1, some 50% of the resistant test plants survived the application of fluazifop-bu-tyl. The trait for graminicide resistance did not appear to be strongly heritable, as assessed by the growth and survival of a graminicide-treated F1 population grown in isolation. It is concluded that widespread graminicide resistance in E. in dica is unlikely to develop from this biotype. Études comparatives de biotypes d'Eleusine indicata résistant et sensible aux herbicides à action antigraminée Un biotype d'Eleusine indica (L.) Gaertn., supposé résistant aux herbicides à action antigraminée, a été comparé en conditions contrôlées à un biotype sauvage (sensible) en ce qui concerne la croissance, le développement et la résistance aux herbicides aryoxyphénoxypropioniques et cyclohexanediones. Le biotype résistant produisait beaucoup moins de biomasse aérienne (-46%) mais fleurissait plus tôt et attribuait aux structures porteuses de graines une proportion et une quantité plus importantes de biomasse. Le biotype résistant survivait à un traitement à la dose 50 g ha?1 de clethodime, de tralkoxydime, de séthoxydime, de fluazifop-butyle. de fénoxaprop-éthyle et de diclofop-méthyle, la plus grande résistance se manifestant à l'égard des aryloxyphénoxypropioniques. à des doses >1000 g m.a. ha?1, le tralkoxydime était plus efficace que le fluazifop-butyle. Même à des doses 4000 g m.a. ha?1, environ 50% des plantes résistantes survivaient à un traitement au fluazifop-butyle. Le caractère conférant la résistance aux herbicides à action antigraminée n'a pas montré de forte héritabilité, celle-ci étant estimée par la croissance et la survie d'une population F1 traitée aux herbicides à action antigraminée et cultivée en isolement. En conclusion, il est peu probable qu'une résistance aux herbicides à action antigraminée se répande chez E. indicaà partir de ce biotype. Untersuchungen an Graminizid-resistenten und -toleranten Biotypen von Eleusine indica An einem wahrscheinlich Graminizid-resistenten und einem toleranten Biotyp von Eleusine indica (L.) Gaertn. wurden Wachstum, Entwicklung und Empfindlichkeit gegenüber Aryloxyphenoxypropionat- und Cyclohexandion-Her-biziden unter kontrollierten Bedingungen untersucht. Der resistente Biotyp hatte eine viel geringere Sproßbiomasse (46 % weniger), blühte aber früher und lagerte in die samenbildenden Organe einen größeren Anteil und Menge der Biomasse ein. Der resistente Biotyp überstand Behandlungen mit 50 g AS ha?1 Clethodim, Tralkoxydim, Sethoxydim, Fluazi-fop-butyl, Fenoxaprop-ethyl und Diclofop-methyl. wobei die höchste Resistenz gegen die Aryloxyphenoxyproprionate bestand. Bei Aufwandmengen von >1000 g AS ha?1 war die Bekämpfung mit Tralkoxydim besser als mit Fluazifop-butyl. Selbst bei Aufwandmengen von 4000 g AS ha?1 Fluazifop-butyl lag die Wirkung auf die resistenten Pflanzen bei 50 %. Die Graminizidresistenz wurde nicht sicher vererbt, wie sich bei Untersuchungen des Wachstums und der Resitenz an F1-Populationen zeigte, und eine weite Ausbreitung der Graminizidresistenz von diesem Biotyp aus wird bei Eleusine indica für wenig wahrscheinlich gehalten.  相似文献   

18.
Wild barley (Hordeum spontaneum) is one of the most troublesome weed species in winter wheat (Triticum aestivum) in Iran. Two bioassay experiments were conducted in order to study the response of wild barley and wheat to different herbicides and to study the efficacy of pre‐emergence (PRE), postemergence (POST), and PRE followed by POST applications of sulfosulfuron on wild barely. Moreover, the degradation of sulfosulfuron was studied by liquid chromatography coupled with tandem mass spectrometry (LC‐MS/MS). The results showed that wild barley was highly tolerant to clodinafop‐propargyl and its dry weight was reduced by only 15%, compared to the control, at the recommended dose (64 g ai ha?1). Sulfosulfuron reduced the wild barley biomass by ≤50% at the highest dose (90 g ai ha?1) in the first bioassay but by not more than 20% and 12% at the recommended dose (22 g ai ha?1) in the first and second bioassay, respectively. Significant differences were found among the application methods of sulfosulfuron, with the POST application being the least effective method. In contrast to the POST application, wild barley was severely injured by the PRE application of sulfosulfuron, with an ED50 dose of 7.3 g ai ha?1. The degradation study showed that wild barley can metabolize sulfosulfuron that is applied POST, but at a lower rate than wheat. By 4 h after application, wild barley had metabolized 26% of the sulfosulfuron, compared to 46% by wheat. In conclusion, wild barley can metabolize the recommended dose of sulfosulfuron that is applied POST; thus, the PRE application of sulfosulfuron or other integrated methods should be considered for the effective control of wild barley in wheat.  相似文献   

19.
The reduction of herbicide applications is a main research priority in recent years. One way to achieve this goal is by using adjuvants that can increase the efficacy of foliar‐applied herbicides by reducing surface tension. Previous studies have shown that the surface tension of distilled water decreases under the influence of a magnetic field. In order to compare the effects of a magnetic field and Frigate in clodinafop‐propargyl and cycloxydim in controlling wild oat and evaluating the surface tension, a dose–response greenhouse experiment was conducted by using 0, 8, 16, 32, 48, and 64 g ai ha?1 of clodinafop‐propargyl and 0, 15, 30, 60, 90, and 120 g ai ha?1 of cycloxydim with Frigate and/or by passing them through a magnetic field. The magnetic field and Frigate caused a significant reduction in the surface tension of the herbicide solutions. But, Frigate was more effective in reducing the surface tension of the herbicide solutions, compared with the magnetic field. The magnetic field and Frigate increased the efficacy of clodinafop‐propargyl and cycloxydim remarkably. Frigate increased the efficacy of the herbicides more than did the magnetic field. The magnetic field and Frigate collectively had more of an effect on the herbicides' efficacy than when they were applied individually. The magnetic field and Frigate were more effective in increasing the efficacy of clodinafop‐propargyl than that of cycloxydim.  相似文献   

20.
Goosegrass (Eleusine indica), regarded as one of the world's worst weeds, is highly pernicious to cash crop‐growers in Malaysia. Following reports in 2009 that glufosinate‐ammonium failed to adequately control goosegrass populations in Kesang, Malacca, and Jerantut, Pahang, Malaysia, on‐site field trials were conducted to assess the efficacy of glufosinate‐ammonium towards goosegrass in both places. Preliminary screenings with glufosinate‐ammonium at the recommended rate of 495 g ai ha?1 provided 82% control of the weed at a vegetable farm in Kesang, while the same rate failed to control goosegrass at an oil palm nursery in Jerantut. The ensuing greenhouse evaluations indicated that the “Kesang” biotype exhibited twofold resistance, while the “Jerantut” biotype exhibited eightfold resistance towards glufosinate‐ammonium, compared to susceptible goosegrass populations. The occurrence of glufosinate resistance in goosegrass calls for more integrated management of the weed to prevent escalating resistance and further proliferation of the weed in Malaysia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号