共查询到20条相似文献,搜索用时 0 毫秒
1.
Guoqi Chen Qiong Wang Zhengwei Yao Longfen Zhu Liyao Dong 《Weed Biology and Management》2016,16(1):16-23
Barnyardgrass (Echinochloa crus‐galli) proliferation seriously threatens rice production worldwide. Whole‐plant bioassays were conducted in order to test the sensitivity to penoxsulam of 52 barnyardgrass populations and the resistance of six penoxsulam‐resistant populations to 12 other herbicides that are commonly used in rice fields. Among the 48 populations that had escaped penoxsulam control in the rice fields, 8.3% showed a very high level of resistance, 58.3% showed a high level of resistance and 10.4% showed a moderate level of resistance. Multiple resistance was confirmed in all six penoxsulam‐resistant populations that were tested further. They exhibited at least a moderate level of resistance; that is, to 6–10 of the total of 13 herbicides that was tested. Most of the six penoxsulam‐resistant populations showed at least a moderate level of resistance to bispyribac‐sodium, quinclorac, metamifop, cyhalofop‐butyl and oxadiazon, three populations held at least a moderate level of resistance to oxyfluorfen and pretilachlor, two populations also held at least a moderate level of resistance to pyrazosulfuron‐ethyl, pyribenzoxim and fenoxaprop‐P‐ethyl, but the resistance indices of the six populations to pendimethalin were all low. This study has confirmed resistance to pretilachlor and oxadiazon in weeds for the first time. 相似文献
2.
3.
Experiments were conducted to (i) evaluate the efficacy of propanil formulations available in Sri Lanka in controlling Echinochloa crus‐galli; (ii) study the seedling growth of propanil‐resistant (R) and ‐susceptible (S) biotypes of the weed under different temperatures; (iii) quantify the level of resistance in R biotypes and; (iv) to suggest alternative control measures for R biotypes. Field studies showed that retail propanil formulations (36% a.i., EC) applied at 2.7 kg a.i. ha?1 gave less than 30% control of E. crus‐galli collected from several locations of the north dry zone of Sri Lanka. Chemical analysis revealed that there was no adulteration of propanil formulations at the retailer level. Growth studies conducted in controlled environments indicated that per cent germination and seedling growth of R and S biotypes were similar at the day/night temperature regimes imposed. However, per cent germination for plants grown under a 34/31°C (day/night) regime was 27–29% higher compared to those grown at 28/24°C. At the higher temperature regime, R and S biotypes reached the 2–3 leaf stage five days earlier, and the 4–5 leaf stage seven days earlier. The ED50 values from the dose–response experiments indicated that the R biotype was four times more resistant to propanil than susceptible ones. The resistance index (RI) did not vary significantly under different temperature regimes. Quinclorac (25% a.i., SC) applied at 200 g a.i. ha?1 and bispyribac‐sodium (10% a.i., SC) applied at 30 g a.i. ha?1 (recommended dosages) successfully controlled propanil‐resistant biotypes of E. crus‐galli. Conversely, oxadiazon and propanil (8% and 23% a.i., EC, respectively) applied at 280 + 805 g a.i. ha?1 did not result in satisfactory control. 相似文献
4.
Simple sequence repeat analysis of genetic diversity among Acetyl‐CoA carboxylase inhibitor‐resistant and ‐susceptible Echinochloa crus‐galli and E. oryzicola populations in Korea 下载免费PDF全文
Echinochloa species are amongst the most problematic weeds in rice fields of Korea. The steady reliance on the Acetyl‐CoA carboxylase (ACCase) and acetolactate synthase inhibiting herbicides for control of these weeds has led to resistance to these herbicides. The objective of this study was to assess the genetic diversity among populations of ACCase inhibitor‐resistant and ‐susceptible Echinochloa crus‐galli and E. oryzicola in Korea, to better understand their population structure and possible origins of resistance. Seven simple sequence repeat markers were applied to assess the genetic diversity between resistant and susceptible E. crus‐galli and E. oryzicola from 12 populations in Korea. Genetic diversity was slightly higher in the resistant group. The Unweighted Pair Group Method using Arithmetic algorithm (UPGMA) dendrogram generated two distinct clades. One clade consisted of Echinochloa spp. from three populations, i.e. Anmyeondo, Gimje 4 and Gongju, which are resistant and differentiated from the susceptible populations, and the other clade contained the rest of the populations. Structure modelling supported two clades of UPGMA clustering. Based on these data, we can infer that some resistant populations are greatly differentiated, whereas other resistant biotypes are still building up resistance in rice fields in Korea. Resistance traits will be fixed and continue to spread over time without proper control measures. 相似文献
5.
6.
Plant glutathione S‐transferase (GST) forms a major part of the herbicide detoxification enzyme network in plants. A GST cDNA was isolated from Echinochloa crus‐galli and characterised. The gene, designated EcGST1 (E. crus‐galli GeneBank no: JX518596 ), has a 684 bp open reading frame predicted to encode a 25 kD protein. Sequence alignment showed that EcGST1 is a GST homologue. Its expression in response to quinclorac treatment was monitored in seedlings (leaves and roots) and adult plants (leaves, roots, stems and seeds) of quinclorac‐resistant (R) and susceptible (S) biotypes of E. crus‐galli. EcGST1 expression was 1.5–3 times greater in the R plants than in the S plants. However, after exposure to quinclorac, the difference in the expression levels of EcGST1 in R plants, compared with S plants, increased to a ratio of 6–10. Enhanced EcGST1 levels should enable greater quinclorac detoxification following quinclorac stimulation in R plants. GST‐based metabolism may be partially responsible for resistance to quinclorac in E. crus‐galli. The results suggest a new resistance mechanism for this R biotype in Chinese rice fields. 相似文献
7.
Establishment of Lolium species resistant to acetolactate synthase‐inhibiting herbicide in and around grain‐importation ports in Japan 下载免费PDF全文
Compared with natural seed dispersal, human‐mediated seed dispersal could spread herbicide resistance genes on a much larger scale. Herbicide‐resistant weed seeds have been reported as contaminants in commercial grain. We investigated the contamination of seeds of Lolium species with target‐site mutations conferring resistance to acetolactate synthase (ALS)‐inhibiting herbicides in wheat imported from the USA, Canada and Australia into Japan. We also investigated the establishment of ALS‐inhibiting herbicide‐resistant Lolium species in 12 seaports in Japan that are major entry points for international commodities. We found herbicide‐resistant Lolium spp. seeds from all classes of wheat samples. Resistant individuals became established at six of eight ports where more than 50 kt of imported wheat is unloaded every year. The establishment of resistant Lolium spp. individuals was common at major grain landing ports. Monitoring over 3 years at one port revealed that the frequency of resistant individuals did not fluctuate between years. Many resistant individuals were distributed in front of the entrance of a fodder company, but a few resistant individuals were found in areas 2 km away from the port. The results indicate that gene flow is rare through pollen or seed movement from resistant plants to peripheral populations. Further extensive and long‐term monitoring is necessary to perform a comprehensive risk assessment of herbicide‐resistant plants entering Japan through major commercial ports. 相似文献
8.
A better understanding of weed seed production is a key element for any long‐term management allowing some weeds to shed seeds. The challenge with measuring seed production in weeds is the large effort required in terms of time and labour. For the weed species Echinochloa crus‐galli, it was tested whether the number of seeds per panicle dry weight or per panicle length can be used to estimate seed production. Experiments were conducted in three maize fields in north‐eastern Germany. The effect of factors that could influence this relationship, such as the time of seedling emergence, the density of E. crus‐galli, the control intensity of other weeds, seed predation and field, was included. A few days before maize harvest, all panicles were removed and weighed, panicle length was measured, and for a subsample of 178 panicles, the number of seeds was counted manually. Panicle dry weight predicted the number of seeds per panicle better (R2 = 0.92) than did panicle length (R2 = 0.69). The other factors except for ‘field’ and ‘seed predation’ had no effect on these relationships. The relationships between seed number and panicle dry weight found in this study closely resembled those reported in an earlier study. Based on our results, we conclude that both plant traits are appropriate for the estimatation of seed production, depending on required level of precision and availablilty of resources for the evaluation of sustainable weed management strategies. 相似文献
9.
Comparative effects of different types of tank‐mixed adjuvants on the efficacy,absorption and translocation of cyhalofop‐butyl in barnyardgrass (Echinochloa crus‐galli [L.] Beauv.) 下载免费PDF全文
The efficacy of cyhalofop‐butyl with tank‐mixed adjuvants on barnyardgrass (Echinochloa crus‐galli [L.] Beauv.), as well as the physico‐chemical properties, absorption and translocation, was evaluated and compared. The efficacy experiment showed that the treatments with tank‐mixed adjuvants were approximately twofold more effective than with cyhalofop‐butyl alone at 2% (v/v) (silwet 625 at 0.05%). The surface tension decreased and the droplets could spread automatically on the leaves after adding the adjuvants. The spreading speed increased significantly with the adjuvants. The epidermal cells and wax layer were damaged by the adjuvants. The absorption of cyhalofop‐butyl was increased significantly after adding the tank‐mixed adjuvants. GY‐T12 and silwet 625 were conducive to upward translocation and all six tank‐mixed adjuvants promoted the downward translocation of the herbicide. The results demonstrate that adjuvants can have a considerable influence on the efficiency of cyhalofop‐butyl on barnyardgrass. 相似文献
10.
11.
12.
13.
Barnyardgrass (Echinochloa crus-galli (L.) Beauv.), an annual species of the family Poaceae, is a major weed problem in rice-producing countries throughout the globe. Synthetic herbicides can effectively control this grass in rice paddies, but the development of resistant biotypes after the continuous use of the same active ingredients has led to low herbicide efficacy and yield losses. In this review, a summary of resistant-barnyardgrass cases in global rice production is reported based on data from the International Herbicide-Resistant Weed Database. The first case of resistant barnyardgrass in rice paddies was to the photosystem-II inhibitor propanil in the late 1980s. Eighty-five (85) out of 116 cases in the period from 1986 to 2022 refer to resistant barnyardgrass (E. crus-galli var. crus-galli, E. crus-galli var. formosensis and E. crus-galli var. zelayensis) in 16 countries. Barnyardgrass has been found resistant to acetolactate synthase (ALS) inhibitors (34 cases), acetyl-CoA carboxylase (ACCase) inhibitors (23 cases), photosystem-II inhibitors (11 cases), auxin mimics/cellulose biosynthesis inhibitors (9 cases), very long chain fatty acid inhibitors (6 cases), and microtubule assembly inhibitors (1 case). The majority of all resistance cases reported to the active ingredients penoxsulam, bispyribac-sodium, and imazamox (ALS inhibitors), cyhalofop-butyl and fenoxaprop-ethyl (ACCase inhibitors), propanil (photosystem-II inhibitors), and quinclorac (auxin mimics/cellulose biosynthesis inhibitors). Although target-site resistance with specific mutations has been identified, non-target site resistance mainly through herbicide detoxification is also of great concern increasing the chance of multiple herbicide resistance evolution. Rotation of herbicides should be adopted concerning the modes of action used as well as the application methods to mitigate resistance evolution of this weed in rice paddies. 相似文献
14.
The enzyme, aryl acylamidase, was characterized in propanil-susceptible and propanil-resistant barnyardgrass with respect to kinetic parameters, the effects of inhibitors, and the levels of activity in dark- and light-grown tissues. The enzyme reaction in the resistant tissue preparation proceeded linearly with time over a 5 h time course, while activity in the susceptible tissue preparation was 2- to 4-fold lower and the activity tended to decrease after 2 h. The apparent Km values were 62.1 mmol L−1 and 3.1 mmol L−1 for the enzyme activity in the susceptible and resistant tissue preparations, respectively. Two herbicides (anilofos and piperophos), previously shown to synergize propanil injury against the resistant biotype, were found to be potent inhibitors of the in vitro aryl acylamidase activity. 相似文献
15.
禾长蠕孢菌和尖角突脐孢菌防治稗草的研究 总被引:7,自引:0,他引:7
病原真菌禾长蠕孢菌稗草专化型(Helminthosporium gramineum Rabenh f.sp.echinochloae,HGE)和尖角突脐孢菌(Exserohilum monoceras,EM)在稗汁葡萄糖中的发酵滤液对稗草种子的发芽有明显的抑制效果,发芽抑制率分别为30.9%和13.5%.HGE菌在改良Fries、稗汁葡萄糖,EM菌在改良Fries中的发酵滤液对稗草根和芽的生长有明显抑制作用.HGE菌发酵滤液与其孢子混合使用比单独使用对稗草的防效明显提高,稗草感病株率、致死率分别达86.3%和69.5%,病情指数为78.7;发酵滤液与孢子结合(先后喷雾)使用后稗草的感病株率、致死率分别为83.9%和67.9%,病情指数为72.8.HGE与弯孢菌(Curvularia lunata)孢子混合喷雾接种对稗草防效明显高于2种菌孢子单独使用. 相似文献
16.
17.
Two populations of Echinochloa crus-galli (R and I) exhibited resistance to quinclorac. Another population (X) exhibited resistance to quinclorac and atrazine. The R and I populations were collected from monocultures of rice in southern Spain. The X population was collected from maize fields subjected to the application of atrazine over several years. The susceptible (S) population of the same genus was collected from locations which had never been treated with herbicides. The quinclorac ED50 value (dose causing 50% reduction in shoot fresh weight) for the R and I biotypes were 26- and 6-fold greater than for the S biotype. The X biotype was 10 times more tolerant to quinclorac than the S biotype and also showed cross-resistance to atrazine, being 82-fold more resistant to atrazine than the R, I and S biotypes. Chlorophyll fluorescence and Hill reaction analysis supported the view that the mechanism of resistance to atrazine in the X biotype was modification of the target site, the DI protein. Quinclorac at 20 mg litre-1 did not inhibit photosynthetic electron transport in any of the test biotypes. The quinclorac I50 values (herbicide dose needed for 50% Hill reaction reduction) of the S population was over 50000-fold higher than the atrazine I50 value for the same S population, indicating that quinclorac is not a PS II inhibiting herbicide. Propanil at doses greater than 0·5 kg ha-1 controlled all the biotypes. © 1997 SCI 相似文献
18.
19.
This study was conducted to evaluate the cross‐resistance of acetolactate synthase (ALS) inhibitors with different chemistries, specifically azimsulfuron (sulfonylurea), penoxsulam (triazolopyrimidine sulfonanilide) and bispyribac‐sodium (pyrimidinyl thio benzoate), in Echinochloa oryzicola and Echinochloa crus‐galli that had been collected in South Korea and to investigate their herbicide resistance mechanism. Both Echinochloa spp. showed cross‐resistance to the ALS inhibitors belonging to the above three different chemistries. In a whole plant assay with herbicides alone, the resistant/susceptible ratios for azimsulfuron, penoxsulam and bispyribac‐sodium were 12.6, 28.1 and 1.9 in E. oryzicola and 21.1, 13.7 and 1.8 in E. crus‐galli, respectively. An in vitro ALS enzyme assay with herbicides showed that the I 50‐values of the resistant accessions were approximately two‐to‐three times higher than the susceptible accessions, with no statistical difference, suggesting that the difference in ALS sensitivity cannot explain ALS inhibitor resistance in Echinochloa spp. for azimsulfuron, penoxsulam and bispyribac‐sodium. A whole plant assay with fenitrothion showed that the GR 50‐values significantly decreased in both the resistant E. oryzicola and E. crus‐galli accessions when azimsulfuron, penoxsulam and bispyribac‐sodium were applied with the P450 inhibitor, while no significant decrease was observed in the susceptible accessions when the P450 inhibitor was used. Thus, these results suggest that ALS inhibitor cross‐resistance for azimsulfuron, penoxsulam and bispyribac‐sodium is related to enhanced herbicide metabolism. 相似文献
20.
Hugh J Beckie 《Pest management science》2011,67(9):1037-1048
This review focuses on proactive and reactive management of glyphosate‐resistant (GR) weeds. Glyphosate resistance in weeds has evolved under recurrent glyphosate usage, with little or no diversity in weed management practices. The main herbicide strategy for proactively or reactively managing GR weeds is to supplement glyphosate with herbicides of alternative modes of action and with soil‐residual activity. These herbicides can be applied in sequences or mixtures. Proactive or reactive GR weed management can be aided by crop cultivars with alternative single or stacked herbicide‐resistance traits, which will become increasingly available to growers in the future. Many growers with GR weeds continue to use glyphosate because of its economical broad‐spectrum weed control. Government farm policies, pesticide regulatory policies and industry actions should encourage growers to adopt a more proactive approach to GR weed management by providing the best information and training on management practices, information on the benefits of proactive management and voluntary incentives, as appropriate. Results from recent surveys in the United States indicate that such a change in grower attitudes may be occurring because of enhanced awareness of the benefits of proactive management and the relative cost of the reactive management of GR weeds. Copyright © 2011 Society of Chemical Industry 相似文献