首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 194 毫秒
1.
Increase in the number of small‐scale backyard poultry flocks in the USA has substantially increased human‐to‐live poultry contact, leading to increased public health risks of the transmission of multi‐drug resistant (MDR) zoonotic and food‐borne bacteria. The objective of this study was to detect the occurrence of Salmonella and MDR Gram‐negative bacteria (GNB) in the backyard poultry flock environment. A total of 34 backyard poultry flocks in Washington State (WA) were sampled. From each flock, one composite coop sample and three drag swabs from nest floor, waterer‐feeder, and a random site with visible faecal smearing, respectively, were collected. The samples were processed for isolation of Salmonella and other fermenting and non‐fermenting GNB under ceftiofur selection. Each isolate was identified to species level using MALDI‐TOFF and tested for resistance against 16 antibiotics belonging to eight antibiotic classes. Salmonella serovar 1,4,[5],12:i:‐ was isolated from one (3%) out of 34 flocks. Additionally, a total of 133 ceftiofur resistant (CefR) GNB including Escherichia coli (53), Acinetobacter spp. (45), Pseudomonas spp. (22), Achromobacter spp. (8), Bordetella trematum (1), Hafnia alvei (1), Ochrobactrum intermedium (1), Raoultella ornithinolytica (1), and Stenotrophomonas maltophilia (1) were isolated. Of these, 110 (82%) isolates displayed MDR. Each flock was found positive for the presence of one or more CefR GNB. Several MDR E. coli (n = 15) were identified as extended‐spectrum β‐lactamase (ESBL) positive. Carbapenem resistance was detected in non‐fermenting GNB including Acinetobacter spp. (n = 20), Pseudomonas spp. (n = 11) and Stenotrophomonas maltophila (n = 1). ESBL positive E. coli and carbapenem resistant non‐fermenting GNB are widespread in the backyard poultry flock environment in WA State. These GNB are known to cause opportunistic infections, especially in immunocompromised hosts. Better understanding of the ecology and epidemiology of these GNB in the backyard poultry flock settings is needed to identify potential risks of transmission to people in proximity.  相似文献   

2.
Salmonella Heidelberg and Salmonella Typhimurium are among the most common serotypes responsible for human salmonellosis in Ontario. Introduction of the Ontario Investigation Tools (OIT) in 2014 allowed for standardized case investigation and reporting. This study compared the risk factors and symptomatology for sporadic S. Heidelberg and S. Typhimurium cases reported in Ontario in 2015, following implementation of the OIT. Multilevel logistic regression models were applied to assess associations between serotype and individual‐level demographic characteristics, exposures and symptoms for sporadic confirmed cases of S. Heidelberg and S. Typhimurium in Ontario in 2015. There were 476 sporadic cases of S. Typhimurium (n = 278) and S. Heidelberg (n = 198) reported in Ontario in 2015. There were significant associations between the odds of the isolate from a case being one of these serotypes, and travel, consumption of sprouts (any type), contact with reptiles and development of malaise, fever or bloody diarrhoea. The S. Typhimurium and S. Heidelberg cases differed in both symptom presentation and risk factors for illness. Case–case comparisons of Salmonella serotypes have some advantages over case–control studies in that these are less susceptible to selection and recall bias while allowing for rapid comparison of cases to identify potential high‐risk exposures that are unique to one of the serotypes when compared to the other. Comparing cases of two different Salmonella serotypes can help to highlight risk factors that may be uniquely associated with one serotype, or more strongly associated with one serotype compared to another. This information may be useful for understanding relative source attribution between common serotypes of Salmonella.  相似文献   

3.
The aim of the present study was to carry out molecular epidemiological investigation on enterotoxigenic Escherichia coli (ETEC) K99 and Salmonella spp. in diarrheic neonatal calves. Fecal samples were obtained from 220 diarrheic calves at 9 farms related to four governorates in central and northern Egypt. E. coli and Salmonella spp. isolates were examined for E. coli K99 and Salmonella spp. using PCR. ETEC K99 was recovered from 20 (10.36 %) out of 193 isolates, whereas Salmonella spp. was recovered from nine calves (4.09%).Multivariable logistic regression was used to evaluate the risk factors associated with both infections. ETEC K99 was significantly affected by age (P < 0.01; OR: 1.812; CI 95%: 0.566–1.769), colostrum feeding practice (P < 0.01; OR: 5.525; CI 95%: 2.025–15.076), rotavirus infection (P < 0.001; OR: 2.220; CI 95%: 0.273–1.251), vaccination of pregnant dams with combined vaccine against rotavirus, coronavirus and E. coli (K99) (P < 0.001; OR: 4.753; CI 95%: 2.124–10.641), and vitamin E and selenium administration to the pregnant dam (P < 0.01; OR: 3.933; CI 95%: 0.703–1.248).Infection with Salmonella spp. was found to be significantly affected by the animal age (P < 0.05; OR: 0.376; CI 95%: 0.511–1.369), Hygiene (P < 0.05; OR: 0.628; CI 95%: 1.729–5.612), and region (P < 0. 01; OR: 0.970; CI 95%: 0.841–1.624).The results of the present study indicate the importance of PCR as rapid, effective and reliable tool for screening of ETEC and Salmonella spp. when confronted with cases of undifferentiated calf diarrhea. Moreover, identification of the risk factors associated with the spreading of bacteria causing diarrhea may be helpful for construction of suitable methods for prevention and control.  相似文献   

4.
It is well understood that Salmonella is carried by animals and in majority of cases as asymptomatic hosts. Surveillance efforts have focused on the role of agriculture and contamination points along the food chain as the main source of human infection; however, very little attention has been paid to the contribution of wildlife in the dissemination of Salmonella and what effect anthropogenic sources have on the circulation of antibiotic resistant Salmonella serovars in wildlife species. A purposive survey was taken of large corvids roosting yearly between November and March in Europe and North America. Two thousand and seven hundred and seventy‐eight corvid faecal specimens from 11 countries were submitted for Salmonella spp. culture testing. Presumptive positive isolates were further serotyped, susceptibility tested and analysed for antibiotic resistance genes. Overall, 1.40% (39/2778) (CI = 1.01, 1.90) of samples were positive for Salmonella spp. Salmonella Enteritidis was the most prevalent serovar followed by S. Infantis, S. Montevideo and S. Typhimurium. No significant difference (P > 0.05) was found in the proportion of Salmonella recovered in Europe versus North America. The most variability of serovars within a site was in Kansas, USA with five different serovars recovered. European sites were significantly more likely to yield Salmonella resistant to more than one antibiotic (OR 71.5, P < 0.001, CI = 3.77, 1358) than North American sites, where no resistance was found. Resistance to nalidixic acid, a quinolone, was recovered in nine isolates from four serovars in four different sites across Europe. Large corvids contribute to the transmission and dissemination of Salmonella and resistance genes between human and animal populations and across great distances. This information adds to the knowledge base of zoonotic pathogen prevalence and antibiotic resistance ecology in wild birds.  相似文献   

5.
6.
Zoonotic Salmonella infections cause approximately 130 000 illnesses annually in the United States. Of 72.9 million US households owning at least one pet, five million own small mammals; 3000 hedgehogs were documented by USDA in USDA‐licensed breeding facilities and pet stores in 2012. State health department collaborators and PulseNet, the national bacterial subtyping network, identified human infections of a Salmonella Typhimurium outbreak strain, which were investigated by CDC, USDA‐APHIS and state public and animal health officials. A case was defined as an illness in a person infected with the outbreak strain identified between 1 December 2011 and 3 June 2013. Investigators collected information on patient exposures, cultured animal and environmental specimens for Salmonella, and conducted traceback investigations of USDA‐licensed hedgehog facilities. There were 26 cases in 12 states. Illness onset dates ranged from 26 December 2011 to 8 April 2013. The median patient age was 15 years (range = <1–91 years); 58% were female. Among 23 persons with available information, 8 (35%) were hospitalized and one outbreak strainassociated death was reported. Of 25 patients with available information, 20 (80%) reported pet hedgehog contact in the week before illness onset. The outbreak strain was isolated from animal and environmental samples collected from three ill persons’ homes in three states. Hedgehogs were purchased in geographically distant states from USDA‐licensed breeders (10/17, 59%); a USDA‐licensed pet store (1/17, 6%); unlicensed or unknown status breeders (3/17, 18%); and private individuals (3/17, 18%). Traceback investigations of USDA‐licensed facilities did not reveal a single source of infection. Public and animal health collaboration linked pet hedgehog contact to human infections of Salmonella Typhimurium, highlighting the importance of a One Health investigative approach to zoonotic salmonellosis outbreaks. More efforts are needed to increase awareness among multiple stakeholders on the risk of illness associated with pet hedgehogs.  相似文献   

7.
Rat‐associated zoonoses transmitted through faeces or urine are of particular concern for public health because environmental exposure in homes and businesses may be frequent and undetected. To identify times and locations with greater public health risks from rats, we investigated whether rat characteristics, environmental features, socioeconomic factors, or season could predict rat infection risk across diverse urban neighbourhoods. In partnership with a pest management company, we sampled rats in 13 community areas along an income gradient in Chicago, a large city where concern about rats has increased in recent years. We collected kidneys for Leptospira spp. testing and colon contents for aerobic bacteria such as Salmonella spp. and Escherichia coli. Of 202 sampled rats, 5% carried Leptospira spp. and 22% carried E. coli. Rats were significantly more likely to carry Leptospira spp. on blocks with more standing water complaints in higher‐income neighbourhoods (OR = 6.74, 95% CI: 1.54–29.39). Rats were significantly more likely to carry E. coli on blocks with more food vendors (OR = 9.94, 2.27–43.50) particularly in low‐income neighbourhoods (OR = 0.26, 0.09–0.82) and in the spring (OR = 15.96, 2.90–88.62). We detected a high diversity of E. coli serovars but none contained major virulence factors. These associations between environmental features related to sanitation and infection risk in rats support transmission through water for Leptospira spp. and faecal–oral transmission for E. coli. We also found opposing relationships between zoonotic infection risk and income for these two pathogens. Thus, our results highlight the importance of sanitation for predicting zoonotic disease risks and including diverse urban areas in pathogen surveillance to mitigate public health risks from rats.  相似文献   

8.
Feeding raw-meat-based diets to companion animals has become a widespread practice, and many owners are now accustomed to buying frozen ingredients online. The goals of this study were to assess the microbiological quality of raw-meat dog foods obtained from specialized websites and to evaluate the effects of storage at different temperatures for a few days. Twenty-nine raw dog food products were processed for quantitative bacteriology (i.e. total viable count, TVC; Escherichia coli; faecal coliforms, FC) and sulphite-reducing clostridia, and analysed for the presence of Salmonella spp., Listeria monocytogenes, Yersinia enterocolitica and Clostridium difficile. Every sample was examined right after the delivery (T0), after 24 to 48 hr and after 72 hr, both at 2°C and 7°C. At T0, the mean score for the TVC was 5.9 × 106 cfu/g (SD = 4.8 × 107 cfu/g), while those for E. coli and FC were 1.1 × 104 cfu/g (SD = 2.5 × 105 cfu/g) and 3.3 × 103 cfu/g (SD = 6.5 × 104 cfu/g) respectively. The samples stored at 2°C had a significant increase of all parameters (TVC: p < .01; E. coli: p = .03; FC: p = .04) through time. Noteworthy differences between the analyses performed at 2°C and 7°C were found for TVC (p < .01), being the samples considerably more contaminated at higher temperatures. No sample tested positive for Salmonella spp., while L. monocytogenes was isolated from 19 products, Y. enterocolitica from three products and Clostridium perfringens and C. difficile from four and six products respectively. The microbiological quality of raw-meat dog foods sold online appears to be poor, carrying considerable amounts of potentially zoonotic bacteria and reaching greater levels of bacterial contaminations if not kept at proper refrigeration temperatures and fed soon after defrosting.  相似文献   

9.
The risk of Salmonella shedding among pigs at slaughter with regard to their previous on‐farm Salmonella status was assessed in a group of pigs from a farm from NE of Spain. A total of 202 pigs that had been serologically monitored monthly during the fattening period and from which mesenteric lymph nodes (MLN) and faecal (SFEC) samples were collected at slaughter for Salmonella isolation were included. A repeated‐measures anova was used to assess the relationship between mean OD% values during the fattening period and sampling time and bacteriology on MLN and SFEC. Pigs were also grouped into four groups, that is pigs seronegative during the fattening period and Salmonella negative in MLN (group A; = 69); pigs seronegative during the fattening period but Salmonella positive in MLN (B; = 36); pigs seropositive at least once and Salmonella positive in MLN (C; = 50); and pigs seropositive at least once but Salmonella negative in (D; = 47). Pigs shedding at slaughter seroconverted much earlier and showed much higher mean OD% values than non‐shedders pigs. The proportion of Salmonella shedders in groups A and D was high and similar (26.1% and 29.8%, respectively), but significantly lower than that for groups B and C. The odds of shedding Salmonella for groups B and C were 4.8 (95% CI = 1.5–15.5) and 20.9 (3.7–118) times higher, respectively, when compared to A. It was concluded that a large proportion of Salmonella seronegative pigs may shed Salmonella at slaughter, which would be likely associated to previous exposure with contaminated environments (i.e. transport and lairage). For pigs already infected at farm, the likelihood of shedding Salmonella was much higher and may depend on whether the bacterium has colonized the MLN or not. The odds of shedding Salmonella spp. were always much higher for pigs in which Salmonella was isolated from MLN.  相似文献   

10.
Antimicrobial resistance (AMR) in the aquatic environment represents an important means of introduction and dissemination of resistance genes, and presence of resistant pathogens in surface waters may pose a public health concern to recreational and drinking water users. The purpose of this study was to explore antimicrobial resistance patterns in water samples collected from the Grand River watershed (southwestern Ontario, Canada) to describe the composition, trends and potential risks of AMR in the aquatic environment. As part of FoodNet Canada and the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS), stream water samples were collected bi‐weekly from sampling sites within the Grand River watershed in the Waterloo, Ontario sentinel site and tested for the presence and antimicrobial susceptibility of Salmonella spp. (2005–2013) and generic Escherichia coli (2012–2013). Of all samples tested, 16% of Salmonella and 22% of E. coli isolates were resistant to at least one antimicrobial, including three Salmonella isolates and two E. coli isolates that were resistant to Category I antimicrobials, which are classified as very high importance for the treatment of serious bacterial infections in humans. The greatest proportion of resistant E. coli isolates were observed from the river site upstream of the drinking water intake, while the greatest proportion of resistant Salmonella isolates were from sites upstream in the watershed, and at one recreational water site. Salmonella resistance trends remained fairly stable between 2007 and 2013, with the exception of streptomycin and tetracycline which increased in 2010 and 2013. Continued surveillance of antimicrobial resistance patterns and exploration of risk factor data will allow for a better understanding of resistance transmission in the aquatic environment.  相似文献   

11.
The aims of the present study were to determine (i) the profiles of phylogroup and (ii) the antimicrobial susceptibility of pathogenic Escherichia coli strains isolated from calves, and of Salmonella spp. strains isolated from calves and pigs in Minas Gerais State, Brazil. Sixty-one pathogenic E. coli strains and Salmonella spp. (n?=?24) strains isolated from fecal samples of calves and Salmonella spp. (n?=?39) strains previously isolated from fecal samples of growing/finishing pigs were tested. The minimum inhibitory concentration (MIC) using the agar dilution method was determined for nalidixic acid, amikacin, amoxicillin, ampicillin, cefoxitin, norfloxacin, gentamicin, tetracycline, and trimethoprim-sulfamethoxazole. All E. coli isolates were susceptible to amikacin. Tetracycline was the antimicrobial that presented the higher frequency of resistance among E. coli strains, followed by ampicillin, trimethoprim-sulfamethoxazole, amoxicillin, nalidixic acid, norfloxacin, gentamicin, and cefoxitin. E. coli (n?=?61) strains isolated from calves belonged to different phylogroup namely, phylogroup A (n?=?26), phylogroup B1 (n?=?31), phylogroup E (n?=?3), and phylogroup F (n?=?1). Phylogroups B2, C, and D were not identified among the E. coli in the present study. All Salmonella spp. (n?=?24) strains isolated from fecal samples of calves were susceptible to amikacin, amoxicillin, ampicillin, norfloxacin, gentamicin, tetracycline, and trimethoprim-sulfamethoxazole. Resistance to nalidixic acid and cefoxitin was detected in 16.66 and 8.33 % of the Salmonella spp. strains, respectively. Among the Salmonella spp. (n?=?39) strains isolated from fecal samples of pigs, the higher frequency of resistance was observed to tetracycline, followed by amoxicillin, gentamicin, ampicillin, trimethoprim-sulfamethoxazole, nalidixic acid, cefoxitin, and norfloxacin. All strains were susceptible to amikacin. Forty-eight (78.68 %) of the E. coli strains were classified as multidrug-resistant, whereas among Salmonella spp. strains, the percentage of multidrug resistance was 57.14 %, being all multidrug-resistant strains isolated from pigs (92.30 %). The results from the present study indicate a high frequency of antimicrobial resistance among pathogenic E. coli strains isolated from calves and Salmonella spp. strains isolated from pigs and a high rate of susceptibility to most antimicrobials tested among Salmonella spp. strains isolated from calves. Our study highlights the presence of multidrug-resistant strains of E. coli and Salmonella spp. isolated from food-producing animals in Minas Gerais, Brazil.  相似文献   

12.
Broiler chicken flocks are a significant source of Campylobacter jejuni and Campylobacter coli that result in the major public health problem of campylobacteriosis. Accurate estimates of the prevalence of both C. coli and C. jejuni in flocks would enhance epidemiological understanding, risk assessment and control options. This study combined results from a panel of 10 detection tests (direct culture, enrichment and PCR) on caecal samples from flocks at slaughter. A parallel interpretation approach was used to determine the presence of Campylobacter spp. and for C. jejuni and C. coli individually. The sample was considered positive if at least one method detected the target and this interpretation was taken to represent a ‘proxy gold standard’ for detection in the absence of a gold standard reference test. The sensitivity of each individual method to detect Campylobacter spp., C. jejuni and C. coli was then estimated relative to the proxy gold standard. Enrichment in adapted Exeter broth (deficient in polymyxin B) with a resuscitation step was 100% sensitive, whilst direct culture on modified charcoal cefoperazone deoxycholate agar (mCCDA) was highly sensitive (97.9%). Enrichment methods using Preston broth and Bolton broth were significantly less sensitive. Enrichment in Exeter broth promoted the recovery of C. jejuni, whilst enrichment in Bolton broth favoured C. coli. A RT‐PCR detection test could identify 80% of flocks that were co‐colonised with both species. This study found that 76.3% (n = 127) of flocks were colonised with Campylobacter spp. The majority (95.9%) of Campylobacter‐positive flocks were colonised with C. jejuni; however, approximately one‐third of positive flocks were simultaneously colonised with both C. jejuni and C. coli. The findings highlight the impact of different detection methodologies on the accuracy of the estimated incidence of both C. jejuni and C. coli entering the abattoir within broiler flocks and the associated public health risks.  相似文献   

13.
14.
Medium-chain fatty acids (MCFAs) have antialgal, antibacterial, antifungal, antiprotozoan, and antiviral activities. However, antibacterial activities of MCFAs in the hindgut of pigs and cattle are still unknown. We report the effects of the supplementation of MCFAs on fecal bacteria of pigs, lactating cows, and Japanese Black calves. Lactobacillus spp., Bifidobacterium spp., eaeA(+) Escherichia coli, Salmonella spp., Campylobacter jejuni, and Clostridium perfringens in the feces of animals were quantified by real-time PCR assay. There was no significant increase or decrease in Lactobacillus spp. and Bifidobacterium spp. in the three animals. In the pig feces, eaeA(+) E. coli was reduced to less than a third in the treatment group (P < 0.01). C. jejuni in the pig feces was also significantly less in the treatment group compared with the control (P < 0.01). In the lactating cow, eaeA(+) E. coli was reduced to one fifth of that in the control (P < 0.01). Salmonella spp. was halved in calf feces (P < 0.01). Thus, a reduction in Gram-negative pathogenic bacteria was observed. In conclusion, supplementation of a MCFA calcium soap in the diet would be beneficial to growing pigs, lactating cow, and calves by reducing pathogenic bacteria.  相似文献   

15.
The purpose of this study was to investigate the occurrence, antimicrobial resistance patterns, phenotypic and genotypic relatedness of Salmonella enterica recovered from captive wildlife host species and in the environment in Ohio, USA. A total of 319 samples including faecal (n = 225), feed (n = 38) and environmental (n = 56) were collected from 32 different wild and exotic animal species in captivity and their environment in Ohio. Salmonellae were isolated using conventional culture methods and tested for antimicrobial susceptibility with the Kirby–Bauer disc diffusion method. Salmonella isolates were serotyped, and genotyping was performed using the pulsed‐field gel electrophoresis (PFGE). Salmonella was detected in 56 of 225 (24.9%) faecal samples; six of 56 (10.7%) environmental samples and six of 38 (15.8%) feed samples. Salmonella was more commonly isolated in faecal samples from giraffes (78.2%; 36/46), cranes (75%; 3/4) and raccoons (75%; 3/4). Salmonella enterica serotypes of known public health significance including S. Typhimurium (64.3%), S. Newport (32.1%) and S. Heidelberg (5.3%) were identified. While the majority of the Salmonella isolates were pan‐susceptible (88.2%; 60 of 68), multidrug‐resistant strains including penta‐resistant type, AmStTeKmGm (8.8%; six of 68) were detected. Genotypic diversity was found among S. Typhimurium isolates. The identification of clonally related Salmonella isolates from environment and faeces suggests that indirect transmission of Salmonella among hosts via environmental contamination is an important concern to workers, visitors and other wildlife. Results of this study show the diversity of Salmonella serovars and public health implications of human exposure from wildlife reservoirs.  相似文献   

16.
The objective of this field trial was to determine if vaccination against Haemophilus parasuis serovar 5 (HPS 5) and pathogenic serotypes of Escherichia coli would improve nursery pig performance in an outdoor unit in different seasons. The unit was concurrently infected with HPS 5 and with different serotypes of E. coli. All piglets were born to HPS 5 vaccinated sows. The trial was carried out in four (two summer and two winter) groups. Group 1 (E. coli and HPS vaccinated, summer season) (n = 362): Piglets were vaccinated pre‐weaning with inactivated E. coli‐VT2e‐toxin and post‐weaning against HPS 5. Group 2 (non‐vaccinated, summer season) (n = 349): Piglets were not vaccinated. Group 3 (E. coli and HPS vaccinated, winter season) (n = 358): The animals were analogously treated as Group 1. Group 4 (non‐vaccinated, winter season) (n = 353): Piglets were not vaccinated. The following parameters were evaluated: A: average daily nursery weight gain (ADG), B: nursery mortality, C: feed efficiency (FE). No significant weight differences were detected within the vaccinated and non‐vaccinated summer or winter raised groups of weaners. Summer raised weaners were significantly (P<0.05) heavier from day 35 on than winter raised animals. ADG and FE of summer raised pigs were significantly better (weeks 1–3 P<0.05; fourth week post‐weaning P<0.01) during the nursery period than that of the winter raised groups. Winter raised vaccinated weaners showed during the last week of nursing significantly (P<0.05) better daily gain and feed efficiency compared with the non‐vaccinated winter raised animals. Non‐significant ADG and FE differences were detectable between the summer raised vaccinated or non‐vaccinated groups of pig. Winter raised non‐vaccinated animals suffered significantly (P<0.05) higher nursery mortality (10.63%) compared to the winter raised vaccinated animals. Implication: In cases of concurrent infections with HPS 5 and with different serotypes of E. coli, especially during winter season, vaccination against both diseases is suggested.  相似文献   

17.
The seroprevalence of Salmonella spp., pathogenic Yersinia spp., Toxoplasma gondii and Trichinella spp. was studied in 1353 finishing pigs from 259 farms that were allocated according to farm types: large fattening farms (≥1000 pig places), small fattening farms (< 1000 pig places) and farrow‐to‐finish farms. The antibodies were analysed with commercial ELISA kits in meat juice samples that were collected at Finnish slaughterhouses. Salmonella antibodies were rare (3% of pigs, 14% of farms) when the cut‐off optical density (OD) value 0.2 was used. Antibodies to pathogenic Yersinia spp. and T. gondii were detected in 57% of pigs and 85% of farms (OD ≥0.3) and in 3% of pigs and 9% of farms (OD ≥0.15), respectively. No antibodies to Trichinella spp. were detected (OD ≥0.3). The European Food Safety Authority (EFSA) considers Salmonella spp., Yersinia enterocolitica, T. gondii and Trichinella spp. as the most relevant biological hazards in the context of meat inspection of pigs. The seroprevalence of these important zoonotic pathogens was low in Finland, except that of Yersinia. The seroprevalence of Toxoplasma was significantly higher in pigs originating from small‐scale fattening farms (P < 0.05). Strong positive correlation was observed at the animal level between Salmonella and Yersinia seropositivity and between Salmonella and Toxoplasma seropositivity (P < 0.05). We suggest that these results reflect the level and importance of biosecurity measures applied on the farms. Meat juice serology at slaughter is a useful tool for targeting measures to control these pathogens. The information obtained from analyses should be used as part of the food chain information (FCI).  相似文献   

18.
The role of free‐ranging wildlife in the epidemiology of enteropathogens causing clinical illness in humans and domestic animals is unclear. Salmonella enterica and anti‐microbial resistant bacteria have been detected in the faeces of raccoons (Procyon lotor), but little is known about the carriage of these bacteria in other sympatric meso‐mammals. Our objectives were to: (a) report the prevalence of Salmonella and associated anti‐microbial resistance, Campylobacter spp, Clostridium difficile, and anti‐microbial resistant Escherichia coli in the faeces of striped skunks (Mephitis mephitis) and Virginia opossums (Didelphis virginiana) in southern Ontario; and (b) compare the prevalence of these bacteria in the faeces of these meso‐mammal hosts with raccoons from a previously reported study. Faecal swabs were collected from striped skunks and Virginia opossums on five swine farms and five conservation areas from 2011 to 2013. Salmonella was detected in 41% (9/22) and 5% (5/95) of faecal swabs from Virginia opossums and striped skunks, respectively. None of the Salmonella serovars carried resistance to anti‐microbials. The prevalence of Campylobacter spp., C. difficile, and anti‐microbial resistant E. coli ranged from 6% to 22% in striped skunk and Virginia opossums. Using exact logistic regression, Salmonella was significantly more likely to be detected in faecal swabs of Virginia opossums than skunks and significantly less likely in faecal swabs from skunks than raccoons from a previously reported study. In addition, Campylobacter spp. was significantly more likely to be detected in raccoons than opossums. Salmonella Give was detected in 8/9 (89%) of Salmonella‐positive Virginia opossum faecal swabs. Our results suggest that striped skunks and Virginia opossums have the potential to carry pathogenic enteric bacteria in their faeces. The high prevalence of Salmonella Give in Virginia opossum faecal swabs in this study as well as its common occurrence in other Virginia opossum studies throughout North America suggests Virginia opossums may be reservoirs of this serovar.  相似文献   

19.
The objective of the present study was to evaluate the effectiveness of enrofloxacin (ERFX) as a second‐line antibiotic for treatment of acute Escherichia coli (E. coli) mastitis. Forty‐two cows with naturally occurring acute E. coli mastitis were enrolled. On the first day of treatment (day 0), empirically selected antibiotics (oxytetracycline: n = 32, kanamycin: n = 10) were administered. Although systemic signs improved in 10 cows (first‐line group), the signs remained unchanged or worsened in 32 cows on day 1, including two cows that were found dead. The 30 surviving cows were randomly assigned to second‐line groups constituting an ERFX group (n = 19) or a control group (n = 11) that was treated with other antibiotics. Response to each treatment was evaluated by measuring clinical signs from day 0 to day 3, subsequent quarter milk recovery, and the 60‐day survival rate. Appetite on day 3 was significantly better in the ERFX group compared to the control group. No significant differences were observed in the 60‐day survival rate or the subsequent milk recovery between the ERFX group and the control group. Thus, the use of ERFX as a second‐line antibiotic for the treatment of acute E. coli mastitis could induce a rapid appetite recovery.  相似文献   

20.
Fluoroquinolones are used to treat infections caused by Escherichia coli in canine and feline veterinary patients, particularly those infecting the urinary tract. The gyrA gene is a primary target causing fluoroquinolone resistance in Gram negative coliforms, with mutations in codons 83 and 87 generally associated with high-level of resistance E. coli clinical isolates. We have developed a fluorescence resonance energy transfer (FRET) quantitative PCR to identify enrofloxacin-resistance in clinical E. coli isolates that carry mutations in codons 83 and 87 of gyrA. This real-time quantitative PCR assay is rapid, economical, and sensitive compared with cultured antimicrobial susceptibility testing. The assay identified as few as four genome copies per reaction from culture and 19 genome copies in urine. For the 70 isolates tested, the sensitivity was 87.5% (95% CI = 75–95.3%) (n = 42/48), specificity was 100% (95% CI = 87.3–100%) (n = 22/22), whereas accuracy was 91.4% (95% CI = 82.3–97%) (n = 64/70). Furthermore, we were able to accurately differentiate between the wild type and mutants E. coli directly from infected canine urine samples (n = 5) within 2 h. These results were confirmed by sequence alignments of the PCR products and comparison with the susceptibility testing. The FRET-PCR assay appears to have promising clinical application as an early diagnostic tool for rapid and sensitive detection and differentiation of the level of fluoroquinolone resistance among clinical E. coli isolates that may facilitate design of the dosing regimen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号