首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Populations of the winter annual Emex australis were established by initiating irrigation at monthly intervals, beginning in mid-summer. Natural seedling densities varied from 100 m?2 when irrigation was begun during late January to almost 700 m?2 when it began at the end of March. Densities were increased by sowing non-dormant seeds, but most sown seeds became dormant when introduced before autumn. Plants which emerged after the earliest irrigation grew most rapidly. Those originating from the latest irrigation grew most slowly, in association with vigorous growth of other annual species. Because it minimizes interspecific competition, early commencement of irrigation, coupled with sowings of nondormant seeds is the best method for establishing E. australis during summer. Maintenance of such populations may enhance the persistence of non-aestivating biological control agents and/or boost their numbers prior to the onset of mass germination. This approach could also prove useful for other winter annuals which are targeted for biological control.  相似文献   

2.
P. W. WEISS 《Weed Research》1977,17(5):321-324
When plants of Emex australis Steinh. and E. spinosa Campd. were grown in pots in monoculture or in competition, there was greater seedling mortality in E. australis. In competition with E. spinosa, E. australis was later-flowering and had lower seed, leaf, root and total dry weights. However, in E. spinosa leaf, stem, seed and total dry weight were greater than they were in mono-culture. The more bulbous root and more erect stems of E. spinosa may be linked with its greater competitive ability. Although at present much more restricted in occurrence in Australia than E. australis, the results suggest that E. spinosa will in time become the dominant species where the two occur together.  相似文献   

3.
Common ragweed (Ambrosia artemisiifolia L.) is one of the annual plants that were described recently as invasive weeds in Europe. This species is described as an invasive plant that produces seeds that are highly variable. Its production of variably sized seeds is regarded as promoting its spread in different environments. Experiments were carried out to determine the influence of the seed weight and temperature on germination and the influence of the seed weight and burial depth on seedling emergence. The seeds were divided into a number of classes of weight and the seed weight effect on germination was evaluated by Petri dish assays. In another experiment, the seeds were buried at different depths in a clay soil/sand mix to estimate the burial effect on germination and seedling emergence. The germination level of A. artemisiifolia was high overall, between 76.8% and 94.2%. The seed germination was modified by temperature but it was not influenced by the seed weight. The amounts of germination and seedling emergence were greater for the seeds on the soil surface and decreased with an increasing burial depth, from 2 to 8 cm. No germination or emergence was observed for the seeds that were buried at 10 and 12 cm. The lightest seeds were more sensitive to burial. A greater level of seedling emergence for those seeds that were placed near the soil surface could explain the success of this species in open habitats, where the probability of deeper burial is low. After high seed production, the management of A. artemisiifolia in fields could be partly achieved through soil tillage, burying seeds below 10 cm, and not carrying out deep soil tillage the following year.  相似文献   

4.
Mechanical control of Tussilago farfara is carried out mainly by soil cultivation. The aim is to deplete the energy stored in the rhizomes. The treatment includes cutting the rhizomes, to stimulate increased shooting, followed by renewed soil cultivation to destroy the shoots and incorporate them into the soil. Factors generally regarded as important in the control of perennial weeds are extent of fragmentation and burial depth. In this study, the importance of these two factors on T. farfara emergence was studied in detail in two pot experiments. Rhizomes were cut into different lengths (5–25 cm) and buried at various depths (1–42 cm) in pots filled with peat soil or clay loam. Shoot germination, emergence and early plant performance were studied. Intensive fragmentation and deep burial (possible to achieve using conventional tillage) are not enough to completely hinder emergence of T. farfara; 6‐cm fragments emerged and developed normal leaves from 42 cm depth, regardless of soil type. However, there were higher total emergence and emergence rates in peat soil than in clay soil. Burial depth was correlated with time to emergence; burying rhizome fragments, not longer than 25 cm, to at least 20 cm depth gave a time to emergence of at least 20 days. The delay of weed emergence should allow good establishment of a crop and ensure a significant competitive effect against T. farfara.  相似文献   

5.
Creeping mannagrass is a perennial grass weed widely distributed in China and is becoming increasingly problematic in nurseries and landscapes in some regions. Understanding the germination ecology and response to commonly available POST herbicides of this weed is critical to determining its adaptive capabilities and potential for infestation, and assist in the development of effective control strategies. In the light/dark regime, creeping mannagrass germinated over a wide range of temperatures (15/5 to 30/20°C), with maximum germination at 20/10°C (95%). No seed germinated at 35/25 or 10/0°C. The time required for 50% of maximum germination increased as temperature decreased. Compared with the light/dark conditions, germination was slightly stimulated when seeds were placed in the dark. Creeping mannagrass is moderately tolerant to osmotic and salt stress, which had 53 and 50% germination rates at ?0.6 mPa osmotic potential and 200 mM NaCl concentration, respectively. Seedling emergence of the seeds buried at a depth of 0.5 cm (86%) was higher than those sowing on the soil surface (17%), but declined with burial depth increasing. There were no differences in the emergence rates from a burial depth 0.5–2 cm. Few seeds (4%) could emerge when seeds were sowed at a depth of 8 cm. POST application of haloxyfop‐R‐methyl, quizalofop‐p‐ethyl, sethoxydim, and pinoxaden provides 100% control of creeping mannagrass at the three‐leaf to five‐leaf stages. To achieve 80% control with clodinafop‐propargyl, mesosulfuron‐methyl, and fenoxaprop‐p‐ethyl, herbicides had to be applied at the three‐leaf stage.  相似文献   

6.
Echinochloa colona and Trianthema portulacastrum are weeds of maize that cause significant yield losses in the Indo‐Gangetic Plains. Field experiments were conducted in 2009 and 2010 to determine the influence of row spacing (15, 25 and 35 cm) and emergence time of E. colona and T. portulacastrum (0, 15, 25, 35, 45 and 55 days after maize emergence; DAME) on weed growth and productivity of maize. A season‐long weed‐free treatment and a weedy control were also used to estimate maize yield and weed seed production. Crop row spacing as well as weed emergence time had a significant influence on plant height, shoot biomass and seed production of both weed species and grain yield of maize in both years. Delay in emergence of weeds resulted in less plant height, shoot biomass and seed production. However, increase in productivity of maize was observed by delay in weed emergence. Likewise, growth of both weed species was less in narrow row spacing (15 cm) of maize, as compared with wider rows (25 and 35 cm). Maximum seed production of both weeds was observed in weedy control plots, where there was no competition with maize crop and weeds were in rows 35 cm apart. Nevertheless, maximum plant height, shoot biomass and seed production of both weed species were observed in 35 cm rows, when weeds emerged simultaneously with maize. Both weed species produced only 3–5 seeds per plant, when they were emerged at 55 DAME in crop rows spaced at 15 cm. Infestation of both weeds at every stage of crop led to significant crop yield loss in maize. Our results suggested that narrow row spacing and delay in weed emergence led to reduced weed growth and seed production and enhanced maize grain yield and therefore could be significant constituents of integrated weed management strategies in maize.  相似文献   

7.
Galinsoga quadriradiata (hairy galinsoga) and Galinsoga parviflora (smallflower galinsoga, gallant soldier) are very troublesome weeds in many vegetable row crops in Europe. To optimise management strategies for Galinsoga spp. control, an in‐depth study of germination biology was performed. Germination experiments were conducted to evaluate the impact of light and alternating temperatures on germination of a large set of Galinsoga populations. Seedling emergence was investigated by burying seeds at different depths in a sandy and sandy loam soil. Dormancy of fresh seeds harvested in autumn was evaluated by studying germination response in light at 25/20°C with and without nitrate addition. Seed longevity was investigated in an accelerated ageing experiment by exposing seeds to 45°C and 100% relative humidity. Galinsoga spp. seeds required light for germination; light dependency varied among populations. Seedling emergence decreased drastically with increasing burial depth. Maximum depth of emergence varied between 4 and 10 mm depending on soil type and population. In a sandy soil, emergence percentages were higher and seedlings were able to emerge from greater depths than in a sandy loam soil. Freshly produced G. parviflora seeds, harvested in autumn, showed a varying but high degree of primary dormancy and were less persistent than G. quadriradiata seeds that lack primary dormancy. Lack of primary dormancy of freshly harvested G. quadriradiata seeds and light dependency for germination may be used to optimise and develop Galinsoga management strategies.  相似文献   

8.
Caucalis platycarpos is a weed species in irrigated and dry land farming systems in East Azerbaijan and Kermanshah provinces of Iran. Experiments were undertaken to compare C. platycarpos seed germination and emergence of a population from each province over a range of environmental factors, burial depth and crop residue treatments. The Azerbaijan population required lower temperatures (20/10°C day/night temperature) for its highest (90%) germination, compared with the Kermanshah population (88% germination at 25/15°C day/night temperature). In both populations, germination was 84–90% over a wide range of light/dark periods (10–24 h light), but considerable reduction (up to 42%) occurred under continuous darkness. The osmotic potential required for 50% inhibition of germination was ?0.54 and ?0.40 MPa for Azerbaijan and Kermanshah populations respectively. The NaCl concentration of 8.83 and 5.71 dS m?1 caused 50% inhibition of germination in Azerbaijan and Kermanshah populations respectively. The X50 parameter (the burial depth at which emergence is reduced by 50%) for Azerbaijan and Kermanshah population was 2.18 and 2.86 cm respectively. Crop residues had more inhibitory effects on the Azerbaijan than Kermanshah population. Adaptive differentiation of C. platycarpos populations has also resulted in smaller seeds of the Azerbaijan compared with the Kermanshah population and resulted in higher emergence for Kermanshah population seedlings from greater soil depths. These results suggest that differences in germination requirements, drought and salinity tolerance of C. platycarpos populations are correlated with environmental conditions of the habitats of the studied populations.  相似文献   

9.
Seed dormancy and persistence in the soil seedbank play a key role in timing of germination and seedling emergence of weeds; thus, knowledge of these traits is required for effective weed management. We investigated seed dormancy and seed persistence on/in soil of Chenopodium hybridum, an annual invasive weed in north‐western China. Fresh seeds are physiologically dormant. Sulphuric acid scarification, mechanical scarification and cold stratification significantly increased germination percentages, whereas dry storage and treatments with plant growth regulators or nitrate had no effect. Dormancy was alleviated by piercing the seed coat but not the pericarp. Pre‐treatment of seeds collected in 2012 and 2013 with sulphuric acid for 30 min increased germination from 0% to 66% and 62% respectively. Effect of cold stratification on seed germination varied with soil moisture content (MC) and duration of treatment; seeds stratified in soil with 12% MC for 2 months germinated to 39%. Burial duration, burial depth and their interaction had significant effects on seed dormancy and seed viability. Dormancy in fresh seeds was released from October to February, and seeds re‐entered dormancy in April. Seed viability decreased with time for seeds on the soil surface and for those buried at a depth of 5 cm, and 39% and 10%, respectively, were viable after 22 months. Thus, C. hybridum can form at least a short‐lived persistent soil seedbank.  相似文献   

10.
Button grass (Dactyloctenium radulans) is a native, widely spread summer grass weed species in Australia. However, limited information is available on the seed germination biology of this species. Experiments were conducted to evaluate the effect of environmental factors on the germination and emergence of two populations of D. radulans. The seeds of these populations were collected separately from Dalby, Queensland and Coleambally, NSW. Seeds were germinated at a range of constant and alternating temperatures (25/15, 30/20, 35/25 and 40/30°C day/night). The greatest seed germination was at a constant temperature of 30°C. Seed germination was reduced at the lowest alternating temperature (25/15°C). Germination of both populations was strongly stimulated by light, suggesting a great amount of emergence of D. radulans on bare ground, such as crop seedbeds. Germination of the D. radulans population collected from a northern cotton farming system (Dalby) was more tolerant to a greater range of salt stress than the population sourced from the south (Coleambally). Seeds of both populations germinated over a wide range of pH, between 4 and 10. However, germination was the greatest in a high pH buffer solution, indicating that the species prefers to germinate in alkaline soil. These results showed that D. radulans seeds possess a wide range of tolerance mechanisms to different environmental stresses. Information obtained in this study will help in developing more sustainable and effective integrated weed management strategies for the control of this weed and weeds with similar responses in summer cropping systems, such as cotton.  相似文献   

11.
Information on seed germination and emergence ecology of Aegilops tauschii is scant, despite it being a widespread invasive weed in China. We conducted this study to determine the effects of various factors on seed germination and seedling emergence in three A. tauschii populations. Seeds germinated across a wide range of temperatures (5–35°C), with germination of over 90% at 15–20°C. Germination was completely inhibited when dry seeds were exposed to a temperature of 160°C for 5 min; a similar response was observed for pre-soaked seeds at 100°C. Light was neither required for nor inhibited germination. Germination was not significantly affected by pH. Aegilops tauschii was relatively tolerant to low osmotic potential and high salt stress: over 80% of seeds germinated at −0.3 MPa, and all three populations germinated in the presence of 400 mM salt (NaCl) although salt tolerance varied among the populations. Seeds buried at depths of 1–3 cm emerged well, but emergence was completely inhibited at depths greater than 8 cm. The addition of maize straw caused a linear reduction in seedling emergence, although the rate of reduction varied among the populations. The results of this study have contributed to understanding the requirements of A. tauschii germination and emergence and optimising an integrated management system for this weed in Huang–Huai–Hai Plain of China. In addition, our study provides data for development of models to predict the geographical distribution of this weed.  相似文献   

12.
Controlled growth chamber experiments were conducted to determine factors affecting seed germination and emergence of the troublesome weed Gomphrena perennis. The objective of this research was to examine the effects of temperature, light, moist chilling, osmotic potential, dry storage and depth of seed burial on G. perennis germination and emergence. The optimum temperature for germination was around 15–20°C. Seeds showed germination rates above 90% under 20/10 and 25/15°C temperature regimes. The minimum exposure to light needed to stimulate germination was 1 min. However, the light requirement was reduced after a long storage period. Furthermore, germination was high (>90%) in all moist‐chilling treatments tested. Germination was highly sensitive to increasing osmotic stress. The highest germination percentage (94%) was achieved at 0 MPa, and decreasing osmotic potential from 0 to ?0.3 MPa reduced germination to 11%. The highest seedling emergence occurred for seeds placed from 0 to 1 cm deep, and no seedlings emerged from a 5‐cm burial depth. Gomphrena perennis has a suitable environment in a no‐till soybean field, where seeds remaining on the surface have the required temperature, light and depth needed for germination.  相似文献   

13.
Seeds of Avena fatua L. and )A. sterilis L. were germinated under a wide range of temperatures (5–30°C) and osmotic potentials (?25 to ?1400 KPa) in order to characterize their responses to these two environmental factors. Although both species behaved similarly at moderate temperatures, different responses were observed at the two extremes. )A. sterilis germinated and emerged in a higher proportion than A. fatua at temperatures below 10°C but the opposite was true at temperatures above 20°C. Although the rates of these two processes were similar in both species up to 18°C, above this temperature the germination and emergence of )A. sterilis was considerably delayed in comparison with that of A. fatua. The effect of decreasing osmotic potentials in reducing the germination was more pronounced in A. sterilis than in A. fatua. However, no differences were observed in the emergence responses of either species. The adaptative advantages of these characteristics and their relationship with the geographic distribution of the two species is discussed.  相似文献   

14.
Iresine diffusa has become more abundant under no‐till soyabean in Argentina. The influence of temperature, light, cold‐wet storage, osmotic potential, dry storage and depth of seed burial on germination and emergence of I. diffusa was examined in a growth chamber experiment. Iresine diffusa seeds germinated at the highest proportion (>0.80) in all fluctuating day/night temperatures tested. Conversely, under a constant temperature regime, maximum germination rates occurred at 15 (0.78) and 20°C (0.82), and minimum germination rates occurred at 10 (0.19) and 30°C (0.36). Seed germination was not influenced by light exposure. However, germination decreased after 12 (0.76) and 16 (0.65) weeks in cold‐wet storage. To reduce germination significantly, ?0.4 MPa of osmotic potential (induced by PEG‐6000) or 120 mmol L?1 of salt (NaCl) concentration was required. Seeds of I. diffusa showed high viability (0.85) after 720 days of dry storage. Low emergence was recorded for seeds buried at 2 cm, and seedling emergence was completely inhibited when seeds were buried at 5 and 10 cm. Iresine diffusa seeds had high viability and were capable of emerging in a broad range of environmental conditions. The thermal germination conditions, shallow soil depths and high moisture conditions in germination phase for I. diffusa are congruent with the conditions in Argentina no‐tillage soyabean. Thus, no‐tillage could provide better conditions for germination than conventional tillage systems. However, due to the fact that I. diffusa can reproduce by rhizomes, further research should be conducted to understand the relative importance of the vegetative reproductive strategy in relation to the presence and persistence of this weed in fields.  相似文献   

15.
Maximum arrowleaf sida (Sida rhombifolia L.) germination occurred at 35°C, whereas prickly sida (Sida spinosa L.) germinated to the same extent at 35 or 40°C. Arrowleaf sida germinated better than prickly sida at 20 and 25°C, but did not germinate at 40°C. Less than 50% of seed from both species were viable at 45°C after 21 days of exposure. Both species exhibited more than 75% germination at a range of pH from 5.0 to 8.0. Arrowleaf sida germinated to a greater extent than prickly sida from 0 to —800 kPa, and an osmotic stress of —200 kPa reduced prickly sida germination, whereas —400 kPa was necessary to reduce arrowleaf sida germination. Prickly sida emergence was optimal at a planting depth of 0.5 cm, and declined rapidly at deeper planting depths. However, arrowleaf sida emergence was equivalent at planting depths of 0.5–2.0 cm, with declining emergence below 2.0 cm. Neither species emerged from depths exceeding 5.0 cm. Light did not influence the germination of arrowleaf sida or prickly sida. Sida rhombifolia et Sida spinosa: germination et levee Le maximum du germination pour Sida rhombifolia L. a été atteint à 35°C tandis que Sida spinosa L. a germé de facon équivalente à 35 ou 40°C. S. rhombifolia a mieux germé que S. spinosaà 20 et 25°C, mais n'a pas germéà 40°C. Moins de 20% de graines des deux espèces étaient encore viables à 45°C après 21 jours dèxposition. Les deux especes ont germéà plus de 75% dans des niveaux de pH allant de 5 à 8. S. rhombifolia a mieux germe que S. spinosa de 0 à 800 kPa, et un stress osmotique de —200 kPa a réduit la germination de S. spinosa, tandis que —400 kPa ont été nécessaires pour réquire la germination de S. rhombifolia. La levée de S. spinosaétait optimale à une profondeur de semis de 0,5 cm, et décroissait rapidement à des profondeurs plus élevées. Cependant la levée de S. rhombifoliaétait équivalente pour des profondeurs de 0,5 à 2 cm, avec une baisse à partir de 2 cm. Aucune des deux espèces n'a levéà des profondeurs supérieurs à 5 cm. La lumière n'a pas d'influence sur la germination des 2 espèces. Keimung und Auflaufen der Sidafaserpflanze (Sida rhombifolia L.) und der Stacheligen Samtmalve (Sida spinosa L.) Die stärkste Keimung lag bei der Sidafaserpflanze (Sida rhombifolia L.) bei 35 °C vor, während Samen der Stacheligen Samtmalve (Sida spinosa L.) bei 35 oder 40 °C gleich gut keimten. Samen der Sidafaserpflanze keimten bei 20 und 25 °C besser als die der Stacheligen Samtmalve, keimten jedoch nicht bei 40 °C. Nach Lagerung bei 45 °C für 21 Tage waren die Samen beider Arten zu < 20% keimfähig. Bei pH-Werten zwischen 5 und 8 keimten beide Arten zu >75%. Bei osmotischen Drücken zwischen 0 und —800 kPa keimte die Sidafaserpflanze besser als die Stachelige Samtmalve, deren Keimung ab —200 kPa gehemmt wurde, wahrend bei der Sidafaserpflanze —400 kPa erforderlich waren, die Keimung zu verringern. Samen der Stacheligen Samtmalve keimten am besten in 0,5 cm Tiefe, in gröβerer Ablagetiefe schnell schlechter. Bei der Sidafaserpflanze jedoch waren Aussaattiefen zwischen 0,5 und 2,0 cm gleich gut, erst bei Tiefen unter 2 cm ging der Auflauf zurück. Aus Tiefen unter 5 cm keimte keine der beiden Arten. Durch Licht wurde die Keimung der beiden Sida Arten nicht beeinflußt.  相似文献   

16.
Phelipanche ramosa is a generalist parasitic weed known to cause yield losses in various crops, especially in winter oilseed rape, its new preferred host in France. This parasitic plant is also able to complete its life cycle on many Brassicaceae weeds, which are thus important alternative hosts. We studied a set of 14 common Brassicaceae weeds and characterised their ability to induce the germination of three genetically distinct pathovars of P. ramosa, based on in vitro experiments. We then investigated whether phylogenetic relatedness among Brassicaceae weeds could inform on their ability to induce germination of P. ramosa by testing for a phylogenetic signal in the germination rate of the parasite. In the presence of some phylogenetic signal, phylogenetic distances among species might be used as a surrogate to predict the ability to induce germination of potential additional Brassicaceae hosts. The three pathovars studied showed different germination patterns. Moreover, we found substantial variation in the germination rate of P. ramosa among the different Brassicaceae species, with a significant effect of the clustering of species into two ancient phylogenetic lineages. However, no significant phylogenetic signal was detected overall, that is we could not exclude that germination rates were randomly distributed over the phylogeny. We suggest that further analyses should be conducted across wider sets of potential hosts to better characterise the existence of a phylogenetic signal of the ability of weeds to induce the germination of P. ramosa.  相似文献   

17.
The effects of temperature and photoperiod on Emex australis and E. spinosa were studied in a pot experiment. E. spinosa was more precocious than E. australis in terms of earlier flowering, runner and seed formation under conditions similar to those of daylength and mean daily temperatures in the field and it produced three times more seeds. Optimum day/night temperatures for both species, however, were between 15/10 and 20/15°C. Both the lowest (10/5°C) and highest (30/25°C) temperatures tested delayed flowering and there was a terminal necrosis of runners at high temperatures. Flowering in both species also was generally hastened and seed production greater at the longest photoperiod (16 h) compared with the shortest (8 h). The results are discussed in terms of the distribution of E. australis, the similar environmental requirements of both species and the possible encroachment of the less desirable E. spinosa, which is as yet more restricted in distribution in Australia, into areas already colonised by E. australis.  相似文献   

18.
Effects of environmental factors on the germination and seedling emergence of glyphosate‐resistant (R) and ‐susceptible (S) biotypes of Eleusine indica (L.) Gaertn. were examined under laboratory and greenhouse conditions. The R biotype exhibited a higher germination percentage compared with the S biotype at constant temperatures of 20 and 35°C under dark conditions, and alternating temperatures of 30/25°C, and 35/25°C during a 12 h photo period. For both biotypes, germination was optimal at alternating temperatures of 30/20°C and 35/20°C. However, there was no significant difference (P > 0.05) in the germination between the R and S biotypes at these temperature regimes. The germination of both biotypes was inhibited by osmotic stress imposed by a water potential of ?0.80 MPa. When the moisture stress was released and the seeds were subsequently transferred to distilled water, the germination was enhanced to approximately 90% and 16% for the R and S biotype seeds, respectively. Higher emergence rates were obtained in shallow seed depths (0 or 2 cm) compared to deep depths. Emergence percentage of the R biotype was higher than that of the S biotype at 0 cm and 2 cm depths. The maximum emergence percentage of the R biotype was higher than that of S biotype when seeds were sown on the surface of either loamy or clay loam soil taken from three different sites.  相似文献   

19.
Perennial weeds are often controlled by mechanical means, which aim at stimulating axillary and adventitious buds to sprout. This happens when the apical dominance of the main shoot is removed by defoliation or when the underground system is fragmented. By repeating the measures, the result is a depletion of storage compounds, which weakens the plants and reduces their capacity to grow and reproduce. However, timing is critical. Earlier research has indicated that emergence from fragments of Sonchus arvensis cease during a period in autumn, while the seasonal pattern of sprouting in Cirsium arvense appears to be inconsistent. We studied the emergence pattern of defoliated plants with undisturbed root systems, from late summer to early spring. Potted plants grown outdoors were exhumed at regular intervals, put under forcing conditions for 4 weeks, after which shoots above and below soil level were counted and weighed together with the remaining root systems. In both species, the number and weight of emerged shoots decreased during a period in the autumn. In C. arvense, underground shoots were constantly produced during the same period, while fewer underground shoots were present in S. arvensis. For the latter species, apical dominance does not fully explain the effect; thus, endodormancy might be involved. Root weight increased until withering and did not explain the lack of emergence. Our results suggest an impaired sprouting capacity of undisturbed root systems of C. arvense and S. arvensis during September–October, which has implications for the timing and method of control of these species.  相似文献   

20.
在实验室和温室条件下研究不同温度、光照、水势、盐分对鹅观草种子萌发以及埋土深度对鹅观草出苗的影响。结果表明,鹅观草种子萌发的昼/夜温度范围为20℃/10℃~35℃/25℃,最适昼/夜温度为25℃/15℃;黑暗条件下,鹅观草种子萌发率较光照下略有提高,说明鹅观草萌发不需要光照;鹅观草种子对水势胁迫较敏感,水势从0下降至-0.8 MPa时,发芽率从93%直线下降至0;鹅观草种子对盐分胁迫具有一定耐受性,当NaCl浓度≤50 mmol/L时,种子均能保持80%以上的萌发率。50%萌发抑制率时的水势和NaCl浓度分别约为-0.4 MPa和100 mmol/L。埋土深度为0.5 cm时,鹅观草出苗率最高,埋土深度≥3 cm时出苗率显著下降。表明鹅观草种子萌发具有较强的环境适应性,通过耕作将其种子带入4 cm以下土层,可有效抑制鹅观草的危害。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号