首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ObjectiveThe purpose of this systematic review is to summarize the results of studies which have determined the minimum alveolar concentration (MAC) of isoflurane and sevoflurane in domestic cats.Study DesignSystematic review.AnimalsCats.Methods usedA comprehensive search of research literature was performed without language restriction. The search utilized the Pubmed, Google Scholar, and CAB Abstracts electronic databases using a combination of free text terms ‘Minimum alveolar concentration’, ‘sevoflurane’, ‘isoflurane’, ‘anesthetic’, ‘cat’, ‘cats’ or ‘feline’. The search was conducted from November 2010 to June 2012.ResultsThe MAC for isoflurane ranged from 1.20 ± 0.13% to 2.22 ± 0.35% and the MAC for sevoflurane ranged from 2.5 ± 0.2% to 3.95 ± 0.33%. The average MAC for isoflurane was 1.71 ± 0.07% and for sevoflurane was 3.08 ± 0.4%.Conclusions &; Clinical RelevanceThe average MAC for isoflurane was 1.71 ± 0.07% and for sevoflurane was 3.08 ± 0.4%. Methodology differed among studies, and particular attention should be paid in the future to appropriate reporting of methods to allow sound conclusions to be made from the results.  相似文献   

2.
ObjectiveTo compare the recovery after anaesthesia with isoflurane, sevoflurane and desflurane in dogs undergoing magnetic resonance imaging (MRI) of the brain.Study designProspective, randomized clinical trial.AnimalsThirty‐eight dogs weighing 23.7 ± 12.6 kg.MethodsFollowing pre‐medication with meperidine, 3 mg kg?1 administered intramuscularly, anaesthesia was induced intravenously with propofol (mean dose 4.26 ± 1.3 mg kg?1), the trachea was intubated, and an inhalational anaesthetic agent was administered in oxygen. The dogs were randomly allocated to one of three groups: group I (n = 13) received isoflurane, group S (n = 12) received sevoflurane and group D (n = 13) received desflurane. Parameters recorded included cardiopulmonary data, body temperature, end‐tidal anaesthetic concentration, duration of anaesthesia, and recovery times and quality. Qualitative data were compared using chi‐squared and Fisher's exact tests and quantitative data with anova and Kruskal–Wallis test. Post‐hoc comparisons for quantitative data were undertaken with the Mann–Whitney U‐test.ResultsThe duration of anaesthesia [mean and standard deviation (SD)] in group I was: 105.3 (27.48) minutes, group S: 120.67 (19.4) minutes, and group D: 113.69 (26.68) minutes (p = 0.32). Times to extubation [group I: 8 minutes, (interquartile range 6–9.5), group S: 7 minutes (IQR 5–7), group D: 5 minutes (IQR 3.5–7), p = 0.017] and to sternal recumbency [group I: 11 minutes (IQR 9.5–13.5), group S: 9.5 minutes (IQR 7.25–11.75), group D: 7 minutes (range 3.5–11.5), p = 0.048] were significantly different, as were times to standing. One dog, following sevoflurane, had an unacceptable quality of recovery, but most other recoveries were calm, with no significant difference between groups.Conclusions and clinical relevanceAll three agents appeared suitable for use. Dogs’ tracheas were extubated and the dogs recovered to sternal recumbency most rapidly after desflurane. This may be advantageous for animals with some neurological diseases and for day case procedures.  相似文献   

3.
OBJECTIVE: To examine the accuracy and precision of isoflurane and sevoflurane anesthetic vaporizers. SAMPLE POPULATION: 5 identical isoflurane and 5 identical sevoflurane vaporizers. PROCEDURES: Oxygen flow rates from 0.02 to 10 L/min were used with different vaporizer dial settings. Agent concentrations were measured at the common gas outlet by use of a refractometer. Accuracy was defined as the difference between measured agent concentrations, and dial settings were expressed as a percentage of the applied dial settings. Precision was defined as SD of the measured agent concentrations for each combination of dial setting and flow. RESULTS: Isoflurane values were generally greater than the dial settings. Accuracy of the isoflurane vaporizer was > 20% when 0.6% and 1% was dialed. Accuracy of the sevoflurane vaporizer was always within +/- 20% but decreased at 0.02 L/min flow and at combinations of high flow and high dial settings. Overall precision of the isoflurane vaporizer was better than that of the sevoflurane vaporizer. CONCLUSIONS AND CLINICAL RELEVANCE: A possible explanation for the inaccuracy of the isoflurane vaporizer may be that it was manufactured to be accurate with air but not oxygen, which must be accounted for when using the vaporizer with oxygen, especially with nonrebreathing systems. The sevoflurane vaporizer may not deliver accurate agent concentrations at high flow and high dial settings. Both vaporizers are suitable for clinical use with a wide range of oxygen flow rates if these precautions are properly addressed.  相似文献   

4.
ObjectiveTo determine the effects of age, sevoflurane and isoflurane on atracurium-induced neuromuscular blockade in 3–16 week-old lambs.Study designProspective randomized experimental trial.AnimalsTwenty-six Scottish blackface ewe-lambs were anaesthetized for spinal surgery when either 3–6 (mean age 4.6 weeks; n = 18) or 12–16 weeks (mean age 13.7 weeks; n = 15) of age; seven animals were anaesthetized at both ages.MethodsAfter intramuscular injection of medetomidine (10 μg kg?1) anaesthesia was induced in the younger lambs either with isoflurane or sevoflurane in oxygen delivered by mask, and in the older lambs with ketamine (4 mg kg?1), and midazolam (0.2 mg kg?1) administered intravenously (IV). In both groups anaesthesia was maintained with fixed end-tidal concentrations of either sevoflurane (2.8%) or isoflurane (1.8%) delivered in oxygen. Before surgery meloxicam (0.6 mg kg?1), morphine (0.5 mg kg?1) and ketamine (1 mg kg?1 followed by 10 μg kg?1 minute?1) were administered IV. The lungs were ventilated mechanically to maintain normocapnia. Neuromuscular block was achieved with a loading dose (LD) of atracurium (0.5 mg kg?1 IV). The peroneal nerve was stimulated (train-of-four every 12 seconds). Evoked responses in the digital extensor muscles were evaluated by palpation and observation. Maintenance doses (MD) of atracurium (0.17 mg kg?1 IV) were administered when the first twitch (T1) returned. The onset and duration of LD action (T1 absent) and the duration of MD were recorded. Data were analysed using Student's t test, Mann–Whitney U test, repeated–measures anova, Wilcoxon's matched pairs test or Pearson correlation coefficient as relevant (p < 0.05).ResultsOnset of LD action developed significantly (p < 0.05) more rapidly in isoflurane compared with sevoflurane-anaesthetized lambs (55 ± 18 cf. 80 ± 37 seconds). Duration of action of LDs and MDs was longer (p < 0.05) in lambs aged 12–16 than 3–6 weeks (33 ± 5.4 cf. 25 ± 6.4 and 26 ± 4.2 cf. 18 ± 5.5 minutes) but were independent of the anaesthetic used.Conclusions and clinical relevanceThe effect of atracurium is age-dependent in lambs being prolonged in older animals. The onset of neuromuscular blockade is more rapid in isoflurane compared with sevoflurane-anaesthetized lambs.  相似文献   

5.
ObjectiveTo evaluate and compare the cardiopulmonary effects of induction of anesthesia with isoflurane (Iso), ketamine–diazepam (KD), or propofol–diazepam (PD) in hypovolemic dogs.Study designProspective randomized cross–over trial.AnimalsSix healthy intact, mixed breed, female dogs weighing 20.7 ± 4.2 kg and aged 22 ± 2 months.MethodsDogs had 30 mL kg?1 of blood removed at a rate of 1.5 mL kg?1 minute?1 under isoflurane anesthesia. Following a 30–minute recovery period, anesthesia was reinduced. Dogs were assigned to one of three treatments: isoflurane via facemask using 0.5% incremental increases in the delivered concentration every 30 seconds, 1.25 mg kg?1 ketamine and 0.0625 mg kg?1 diazepam intravenously (IV) with doses repeated every 30 seconds as required, and 2 mg kg?1 propofol and 0.2 mg kg?1 diazepam IV followed by 1 mg kg?1 propofol increments IV every 30 seconds as required. Following endotracheal intubation all dogs received 1.7% end–tidal isoflurane in oxygen. Cardiopulmonary variables were recorded at baseline (before induction) and at 5 or 10 minute intervals following endotracheal intubation.ResultsInduction time was longer in Iso (4.98 ± 0.47 minutes) compared to KD (3.10 ± 0.47 minutes) or PD (3.22 ± 0.45 minutes). To produce anesthesia, KD received 4.9 ± 2.3 mg kg?1 ketamine and 0.24 ± 0.1 mg kg?1 diazepam, while PD received 2.2 ± 0.4 mg kg?1 propofol and 0.2 mg kg?1 diazepam. End–tidal isoflurane concentration immediately following intubation was 1.7 ± 0.4% in Iso. Arterial blood pressure and heart rate were significantly higher in KD and PD compared to Iso and in KD compared to PD. Arterial carbon dioxide partial pressure was significantly higher in PD compared to KD and Iso immediately after induction.Conclusions and clinical relevanceIn hypovolemic dogs, KD or PD, as used in this study to induce anesthesia, resulted in less hemodynamic depression compared to isoflurane.  相似文献   

6.
ObjectiveTo evaluate agreement with central systemic arterial pressure of an oscillometer and two cuff widths placed on the thoracic or pelvic limbs.Study designProspective experimental study.AnimalsA group of nine New Zealand White rabbits weighing 3.5 ± 0.3 kg.MethodsRabbits were sedated with dexmedetomidine and midazolam, then anesthetized with ketamine and sevoflurane. The femoral artery was surgically exposed and a 20 gauge, 5 cm catheter inserted to measure systolic (SAP), mean (MAP) and diastolic (DAP) blood pressure at the iliac artery and caudal aorta junction. Adjustments of vaporizer dial and dobutamine infusion provided a range of invasive blood pressure (IBP). Two measurements of IBP were recorded during the oscillometer cycling phase, and the mean value was used in analyses. Oscillometer cuffs of bladder width 2.0 cm (S1) and 2.5 cm (S2) were placed proximal to the carpus and tarsus. Cuff width to circumference ratio was calculated. Oscillometer SAP, MAP and DAP were paired with corresponding IBP values. Agreement was assessed using linear mixed models (p < 0.05).ResultsCuff ratios for both limbs were 41% (S1 cuff) and 50% (S2 cuff) and 122–139 paired observations were obtained. There was significant limb × cuff interaction with SAP and MAP. The oscillometer overestimated SAP and MAP on the pelvic limb and underestimated SAP and MAP on the thoracic limb. For SAP, the oscillometer overestimated by constant bias (–19 ± 2 mmHg) and proportional bias (0.28 ± 0.02 mmHg per 1 mmHg increase). For MAP, the oscillometer underestimated by constant bias (4 ± 2 mmHg) and was worse with S2 on the thoracic limb. Overestimation was similar between cuffs on the pelvic limb. For DAP, the oscillometer underestimated by constant bias (15 ± 2 mmHg).Conclusions and clinical relevanceCuff S1 on the thoracic limb provided best estimation of MAP.  相似文献   

7.
ObjectivesTo evaluate the agreement between high-definition oscillometry (HDO) used on the metatarsus or tail base with invasive arterial blood pressures measured in the dorsal pedal artery in anaesthetised cheetahs.Study DesignProspective clinical study.AnimalsA group of 13 captive adult cheetahs.MethodsCheetahs were immobilised with medetomidine (32–45 μg kg–1) and tiletamine/zolazepam (0.93–1.39 mg kg–1) administered intramuscularly, and anaesthesia was maintained with either isoflurane in oxygen or continuous propofol infusion. Invasive blood pressure was measured via a 20 gauge intra-arterial catheter in the dorsal pedal artery in the metatarsus and used as a reference method for pressures simultaneously estimated using HDO on the contralateral metatarsus and tail base. Bland–Altman plots (for repeated measurements) and criteria defined by the American College of Veterinary Internal Medicine (ACVIM) were used to compare agreement according to the anatomical location of the cuff, the anaesthetic maintenance agent and magnitude of the blood pressure.ResultsA total of 147 paired measurements were obtained with HDO on the metatarsus and 135 on the tail. Agreement with invasive pressures was better when HDO was used on the tail (rather than on the metatarsus) with all ACVIM criteria being met. Mean bias (a positive bias meaning that HDO overestimated the invasively measured pressures) ± standard deviation of differences for systolic, diastolic and mean arterial pressures were –7.0 ± 13.9, 4.2 ±12.1 and 4.6 ±11.2 mmHg, respectively, for HDO on the tail, and –11.9 ±15.1, 2.8 ±16.5 and 2.1 ±13.2 mmHg, respectively, for HDO on the metatarsus. Agreement was better during isoflurane anaesthesia than propofol, and at lower blood pressures than at higher.Conclusions and clinical relevanceWhen used on the tail base of anaesthetised cheetahs, HDO met the ACVIM validation criteria for a noninvasive device, as compared to invasively measured pressures in the dorsal pedal artery.  相似文献   

8.
Objective To compare isoflurane and sevoflurane in lambs undergoing prolonged anaesthesia for spinal surgery. Study design Prospective randomised clinical study. Animals Eighteen Scottish blackface lambs 3–6 weeks of age and weighing 10–17 kg. Methods After intramuscular medetomidine, anaesthesia was induced and maintained with either isoflurane (group I) or sevoflurane (group S) delivered in oxygen. Meloxicam, morphine, a constant rate infusion of ketamine and atracurium were given intravenously (IV) during surgery. Lungs were ventilated to maintain normocapnia. with peak inspiratory pressures of 20–25 cmH2O. Ephedrine or dextran 40% was administered when mean arterial pressure (MAP) was <55 mmHg. Intrathecal morphine, and IV meloxicam and edrophonium were injected before recovery. Time to loss of palpebral reflex (TLPR) upon induction, cardiorespiratory variables, time at first swallowing and other movement, tracheal extubation, vocalisation, spontaneous head lifting (>1 minute), reunion with the ewe, and the number of MAP treatments were recorded. Statistical analysis utilised anova , Mann–Whitney, t‐test or Pearson’s correlation test as relevant. p < 0.05 was considered significant. Results End‐tidal carbon dioxide (mean ± SD) was significantly lower in group S (5.5 ± 0.6 kPa) than in group I (5.8 ± 0.5 kPa) while MAP (70 ± 11 mmHg) and diastolic arterial blood pressure (60 ± 11 mmHg) were higher in group S than in group I (65 ± 12 and 54 ± 11 mmHg, respectively). No differences were found with TLPR and MAP treatments. Time (median, range) from end of anaesthesia to ewe‐lamb reunion was briefer (p = 0.018) in group S (48, 20–63 minutes). Conclusion Isoflurane and sevoflurane are both suitable for maintaining general anaesthesia in lambs although sevoflurane, as used in this study, allows a more rapid reunion with the ewe. Clinical relevance The principal advantage of sevoflurane over isoflurane during prolonged anaesthesia in lambs is a more rapid recovery.  相似文献   

9.
Objective To compare isoflurane, sevoflurane and desflurane for inhalant anesthesia in red‐tailed hawks (Buteo jamaicensis) in terms of the speed and characteristics of induction; cardiovascular and respiratory parameters while anesthetized; and speed and quality of recovery. Study design Prospective, cross over, randomized experimental study. Animals 12 healthy adult red‐tailed hawks. Methods Anesthesia was induced with isoflurane, sevoflurane or desflurane in oxygen via face mask in a crossover, randomized design with a 1 week washout period between each treatment. Hawks were tracheally intubated, allowed to breathe spontaneously, and instrumented for cardiopulmonary monitoring. Data collected included heart rate, respiratory rate, end‐tidal CO2, inspired and expired agent, SpO2, temperature, systolic blood pressure, time to intubation and time to recovery (tracking). Recovery was subjectively scored on a 4 point scale as well as a summary evaluation, by a single blinded observer. Results No significant difference in time to induction and time to extubation was noted with the administration of isoflurane, sevoflurane or desflurane. Time to the ability of the bird to follow a moving object with its eyes (tracking) was significantly faster with the administration of sevoflurane and desflurane. All recoveries were scored 1 or 2 and were assessed as good to excellent. No significant difference was noted in heart rate, blood pressure and temperature among the three inhalants. Administration of isoflurane resulted in lower respiratory rates. Conclusions and clinical relevance Overall, although isoflurane remains the most common inhaled anesthetic in avian practice, sevoflurane and desflurane both offer faster time to tracking, while similar changes in cardiopulmonary function were observed with each agent during anesthesia of healthy red‐tailed hawks.  相似文献   

10.
ObjectiveTo determine the magnitude and duration of sevoflurane minimum alveolar concentration (MAC) reduction following a single intravenous (IV) dose of methadone in cats.Study designProspective experimental study.AnimalsEight (four females and four males) healthy mixed-breed adult (1–2 years) cats weighing 5.82 ± 0.42 kg.MethodsAnesthesia was induced and maintained with sevoflurane. Intravenous catheters facilitated administration of methadone and lactated Ringer’s solution. After baseline MAC determination in triplicate using a tail clamp technique, 0.3 mg kg?1 of methadone was administered IV. End-tidal sevoflurane concentration (e′SEVO) was reduced and MAC was redetermined. In an effort to determine the duration of MAC reduction, measurements were repeated in a stepwise manner until MAC values returned to baseline. After the last stimulation, the e′SEVO was increased to 1.2 individual MAC for 15 minutes, then sevoflurane was discontinued and cats were allowed to recover from anesthesia.ResultsBaseline sevoflurane MAC was 3.18 ± 0.06%. When compared with baseline the sevoflurane MAC after methadone administration was significantly reduced by 25, 15 and 7% at 26, 76 and 122 minutes, respectively. The final MAC value (3.09 ± 0.07%) determined 156 minutes after methadone administration was not significantly different from baseline.Conclusions and clinical relevanceIntravenous methadone (0.3 mg kg?1) significantly decreased MAC of sevoflurane in cats but the effect was short-lived.  相似文献   

11.
ObjectiveTo determine the agreement of high definition oscillometry (HDO) with direct arterial blood pressure measurements in normotensive, hypotensive and hypertensive horses during general anaesthesia.Study designExperimental study.AnimalsSeven healthy warmblood horses, aged 3–11 years, weighing 470–565 kg.MethodsMeasurements from a HDO device with the cuff placed around the base of the tail were compared with pressures measured invasively from the facial artery. High blood pressures were induced by intravenous (IV) administration of dobutamine (5 μg kg−1 minute−1) over ten minutes followed by norepinephrine (0.1 mg kg−1 IV) and low pressures by increasing the inspired fraction of isoflurane and administration of nitroglycerine (0.05 mg kg−1 IV). For analysis three pressure levels were determined: high (MAP>110 mmHg), normal (60 mmHgResultsA total of 245 paired measurements of systolic (SAP), mean (MAP) and diastolic (DAP) pressures were obtained. The HDO device underestimated blood pressure at hypertensive and normotensive levels and overestimated blood pressure at hypotensive levels. Best agreement was obtained for SAP and MAP within normotensive limits. At normotension, bias ± standard deviation for SAP, MAP and DAP were 0.1 ± 19.4 mmHg, 0.5 ± 14.0, 4.7 ± 15.6, respectively. At high pressure levels bias and SD were 26.1 ± 37.3 (SAP), 4.2 ± 19.4 (MAP), 1.5 ± 16.8 (DAP) and at low pressures -20.0 ± 20.9 (SAP), -11.4 ± 19.6 (MAP), -4.7 ± 20.1 (DAP), with HDO measurements at a MAP <50 mmHg often failing.Conclusion and clinical relevanceGood agreement with invasive arterial blood pressures was obtained with HDO at normotensive levels in horses. At high and low pressure ranges HDO was unreliable. Therefore, if haemodynamic instability is expected, invasive measurement remains preferable.  相似文献   

12.
ObjectiveTo compare the effects of cuff size/position on the agreement between arterial blood pressure measured by Doppler ultrasound (ABPDoppler) and dorsal pedal artery catheter measurements of systolic (SAPinvasive) and mean arterial pressure (MAPinvasive) in anesthetized cats.Study designProspective study.AnimalsA total of eight cats (3.0–3.8 kg) for neutering.MethodsDuring isoflurane anesthesia, before surgery, changes in end-tidal isoflurane concentrations and/or administration of dopamine were performed to achieve SAPinvasive within 60–150 mmHg. Cuff sizes 1, 2 and 3 (bladder width: 20, 25 and 35 mm, respectively) were placed on distal third of the antebrachium, above the tarsus and below the tarsus for ABPDoppler measurements. Agreement between ABPDoppler and SAPinvasive or between ABPDoppler and MAPinvasive was compared with reference standards for noninvasive blood pressure devices used in humans and small animals.ResultsMean bias and precision (±standard deviation) between ABPDoppler and SAPinvasive met veterinary standards (≤10 ± 15 mmHg), but not human standards (≤5 ± 8 mmHg), with cuffs 1 and 2 placed on the thoracic limb (7.4 ± 13.9 and –5.8 ± 9.5 mmHg, respectively), and with cuff 2 placed proximal to the tarsus (7.2 ± 12.4 mmHg). Cuff width-to-limb circumference ratios resulting in acceptable agreement between ABPDoppler and SAPinvasive were 0.31 ± 0.04 (cuff 1) and 0.42 ± 0.05 (cuff 2) on the thoracic limb, and 0.43 ± 0.05 (cuff 2) above the tarsus. ABPDoppler showed no acceptable agreement with MAPinvasive by any reference standard.Conclusions and clinical relevanceThe agreement between ABPDoppler and SAPinvasive can be optimized by placing the occlusive cuff on the distal third of the antebrachium and above the tarsus. In these locations, cuff width should approach 40% of limb circumference to provide clinically acceptable estimations of SAPinvasive. Doppler ultrasound cannot be used to estimate MAPinvasive in cats.  相似文献   

13.
ObjectiveTo evaluate the agreement between oscillometric blood pressure (OBP) measured from the tongue and invasive blood pressure (IBP), and to compare OBPs measured from the tongue with OBPs measured from the pelvic limb and tail.Study designProspective experimental study.AnimalsA total of eight adult Beagle dogs weighing 11.1 ± 1.2 kg.MethodsAnimals were premedicated with intravenous (IV) acepromazine (0.005 mg kg–1). Anesthesia was induced with alfaxalone (3 mg kg–1) IV and maintained with isoflurane. The dorsal pedal artery was catheterized for IBP measurements. Systolic (SAP), diastolic (DAP) and mean (MAP) arterial pressure were simultaneously measured from the tongue, pelvic limb and tail. Based on invasive SAP, hypertension (>140 mmHg), normotension (90–140 mmHg) and hypotension (<90 mmHg) were induced by controlling end-tidal isoflurane concentrations and/or dobutamine/dopamine administration. Agreement between paired IBP and OBP measurements was analyzed with reference standards for noninvasive blood pressure devices used in small animals and humans.ResultsRegardless of cuff placement, the mean bias ± standard deviation between IBP and OBP met veterinary (≤10 ± 15 mmHg) and human (<5 ± 8 mmHg) standards for MAP and DAP. SAP measurements provided by the OBP device showed unacceptable agreement with IBP, and the bias between methods increased at higher blood pressures, regardless of cuff site. During hypotension, tongue OBP showed the largest percentage of absolute difference <10 mmHg in relation to IBP for SAP (90%), MAP (97%), and DAP (93%), compared with pelvic limb (60%, 97% and 82%, respectively) and tail OBP (54%, 92% and 77%, respectively).Conclusions and clinical relevanceThe tongue is a clinically useful site for measuring OBP in anesthetized Beagle dogs, providing reliable estimates of MAP and DAP. The tongue could replace other cuff placement sites and may be a relatively suitable site for assessing hypotension.  相似文献   

14.
ObjectiveTo use American College of Veterinary Internal Medicine (ACVIM) criteria to evaluate a high-definition oscillometric (HDO) blood pressure monitoring device versus invasive blood pressure (IBP) measurement in normotensive rabbits anaesthetized with two different anaesthetic protocols.Study designProspective experimental study.AnimalsA group of 20 healthy adult New Zealand White rabbits weighing 4.36 ± 0.37 kg (mean ± standard deviation).Materials and methodsRabbits were premedicated with butorphanol 0.5 mg kg–1 and midazolam 0.5 mg kg–1 subcutaneously (SC, group BMA) or ketamine 25 mg kg–1 and medetomidine 0.4 mg kg–1 SC (group KM). Anaesthesia was induced with alfaxalone administered intravenously (group BMA) or isoflurane by face mask (group KM) and maintained with isoflurane in oxygen. IBP was measured from the central auricular artery. The cuff for the HDO monitor was placed distal to the left elbow and distal to the left tarsus. Agreement between invasive and HDO measurements was evaluated using Bland–Altman method.ResultsIn group KM there was better agreement between the HDO device and IBP when the cuff was placed on the thoracic limb, with 100% and 91% of the readings for mean (MAP) and diastolic arterial pressure (DAP), respectively, within 10 mmHg of the IBP measurements. The agreement, although worse, also met the ACVIM criteria for systolic arterial pressure (SAP; 53% of the readings within 10 mmHg). In group BMA, the device met the criteria with the cuff on the thoracic limb only, and only for MAP and DAP (73% and 75% of the measurements within 10 mmHg of the IBP, respectively) but not for SAP (12%).Conclusion and clinical relevanceThe HDO device met most of the ACVIM criteria for noninvasive blood pressure measurement in anaesthetized rabbits, specifically when the cuff was placed distal to the elbow and the anaesthetic protocol included ketamine and medetomidine.  相似文献   

15.
ObjectiveTo assess the effect of two intravenous (IV) doses of lidocaine on the minimum anesthetic concentration (MAC) of isoflurane in chickens.Study designBlinded, prospective, randomized, experimental crossover study.AnimalsA total of six adult female chickens weighing 1.90 ± 0.15 kg.MethodsChickens were anesthetized with isoflurane and mechanically ventilated. Isoflurane MAC values were determined (T0) in duplicate using an electrical noxious stimulus and the bracketing method. After MAC determination, a low dose (LD; 3 mg kg–1 followed by 3 mg kg–1 hour–1) or high dose (HD; 6 mg kg?1 followed by 6 mg kg?1 hour–1) of lidocaine was administered IV. MAC determination was repeated at 1.5 (T1.5) and 3 (T3) hours of lidocaine administration and blood was collected for analysis of plasma lidocaine and monoethylglycinexylidide (MEGX) concentrations. Pulse rate, peripheral hemoglobin oxygen saturation, noninvasive systolic arterial pressure and cloacal temperature were recorded at T0, T1.5 and T3. Treatments were separated by 1 week. Data were analyzed using mixed-effects model for repeated measures.ResultsMAC of isoflurane (mean ± standard deviation) at T0 was 1.47 ± 0.18%. MAC at T1.5 and T3 was 1.32 ± 0.27% and 1.26 ± 0.09% (treatment LD); and 1.28 ± 0.06% and 1.30 ± 0.06% (treatment HD). There were no significant differences between treatments or times. Maximum plasma lidocaine concentrations at T3 were 496 ± 98 and 1200 ± 286 ng mL–1 for treatments LD and HD, respectively, and were not significantly different from T1.5. With treatment HD, plasma concentration of MEGX was significantly higher at T3 than at T1.5. Physiological variables were not significantly different among times with either treatment.Conclusions and clinical relevanceAdministration of lidocaine did not significantly change isoflurane MAC in chickens. Within treatments, plasma lidocaine concentrations were not significantly different at 1.5 and 3 hours.  相似文献   

16.
ObjectiveTo evaluate the cardiovascular, respiratory, electrolyte and acid–base effects of a continuous infusion of dexmedetomidine during propofol–isoflurane anesthesia following premedication with dexmedetomidine.Study designProspective experimental study.AnimalsFive adult male Walker Hound dogs 1–2 years of age averaging 25.4 ± 3.6 kg.MethodsDogs were sedated with dexmedetomidine 10 μg kg?1 IM, 78 ± 2.3 minutes (mean ± SD) before general anesthesia. Anesthesia was induced with propofol (2.5 ± 0.5 mg kg?1) IV and maintained with 1.5% isoflurane. Thirty minutes later dexmedetomidine 0.5 μg kg?1 IV was administered over 5 minutes followed by an infusion of 0.5 μg kg?1 hour?1. Cardiac output (CO), heart rate (HR), ECG, direct blood pressure, body temperature, respiratory parameters, acid–base and arterial blood gases and electrolytes were measured 30 and 60 minutes after the infusion started. Data were analyzed via multiple linear regression modeling of individual variables over time, compared to anesthetized baseline values. Data are presented as mean ± SD.ResultsNo statistical difference from baseline for any parameter was measured at any time point. Baseline CO, HR and mean arterial blood pressure (MAP) before infusion were 3.11 ± 0.9 L minute?1, 78 ± 18 beats minute?1 and 96 ± 10 mmHg, respectively. During infusion CO, HR and MAP were 3.20 ± 0.83 L minute?1, 78 ± 14 beats minute?1 and 89 ± 16 mmHg, respectively. No differences were found in respiratory rates, PaO2, PaCO2, pH, base excess, bicarbonate, sodium, potassium, chloride, calcium or lactate measurements before or during infusion.Conclusions and clinical relevanceDexmedetomidine infusion using a loading dose of 0.5 μg kg?1 IV followed by a constant rate infusion of 0.5 μg kg?1 hour?1 does not cause any significant changes beyond those associated with an IM premedication dose of 10 μg kg?1, in propofol–isoflurane anesthetized dogs. IM dexmedetomidine given 108 ± 2 minutes before onset of infusion showed typical significant effects on cardiovascular parameters.  相似文献   

17.
ObjectiveTo evaluate the effects of combined infusions of vatinoxan and dexmedetomidine on inhalant anesthetic requirement and cardiopulmonary function in dogs.Study designProspective experimental study.MethodsA total of six Beagle dogs were anesthetized to determine sevoflurane minimum alveolar concentration (MAC) prior to and after an intravenous (IV) dose (loading, then continuous infusion) of dexmedetomidine (4.5 μg kg–1 hour–1) and after two IV doses of vatinoxan in sequence (90 and 180 μg kg–1 hour–1). Blood was collected for plasma dexmedetomidine and vatinoxan concentrations. During a separate anesthesia, cardiac output (CO) was measured under equivalent MAC conditions of sevoflurane and dexmedetomidine, and then with each added dose of vatinoxan. For each treatment, cardiovascular variables were measured with spontaneous and controlled ventilation. Repeated measures analyses were performed for each response variable; for all analyses, p < 0.05 was considered significant.ResultsDexmedetomidine reduced sevoflurane MAC by 67% (0.64 ± 0.1%), mean ± standard deviation in dogs. The addition of vatinoxan attenuated this to 57% (0.81 ± 0.1%) and 43% (1.1 ± 0.1%) with low and high doses, respectively, and caused a reduction in plasma dexmedetomidine concentrations. Heart rate and CO decreased while systemic vascular resistance increased with dexmedetomidine regardless of ventilation mode. The co-administration of vatinoxan dose-dependently modified these effects such that cardiovascular variables approached baseline.Conclusions and clinical relevanceIV infusions of 90 and 180 μg kg–1 hour–1 of vatinoxan combined with 4.5 μg kg–1 hour–1 dexmedetomidine provide a meaningful reduction in sevoflurane requirement in dogs. Although sevoflurane MAC-sparing properties of dexmedetomidine in dogs are attenuated by vatinoxan, the cardiovascular function is improved. Doses of vatinoxan >180 μg kg–1 hour–1 might improve cardiovascular function further in combination with this dose of dexmedetomidine, but beneficial effects on anesthesia plane and recovery quality may be lost.  相似文献   

18.
ObjectiveTo determine the accuracy of an oscillometric blood pressure monitor in anesthetized sheep.Study designProspective study.AnimalsTwenty healthy adult sheep, 11 males and nine females, weighing 63.6 ± 8.6 kg.MethodsAfter premedication with buprenorphine or transdermal fentanyl, anesthesia was induced with ketamine‐midazolam and maintained with isoflurane and ketamine, 1.2 mg kg?1 hour?1, ± lidocaine, 3 mg kg?1 hour?1. Invasive blood pressure measurements were obtained from an auricular arterial catheter and noninvasive measurements were from a cuff on the metatarsus or antebrachium. Simultaneous invasive and noninvasive measurements were recorded over a range (55–111 mmHg) of mean arterial pressures (MAP). Isoflurane concentration was increased to decrease MAP and decreasing the isoflurane concentration and infusing dobutamine achieved higher pressures. Invasive and noninvasive measurements were compared.ResultsCorrelation (R2) was good between the two methods of measurement (average of three consecutive readings) for systolic (SAP) (0.87), diastolic (DAP) (0.86), and mean (0.90) arterial pressures (p < 0.001). Bias ± SD between noninvasive and invasive measurements for SAP was 3 ± 8 mmHg, for DAP was ?10 ± 7 mmHg, and MAP was ?7 ± 6 mmHg. There was no significant difference between the average of three measurements and use of the first measurement. Correlations using the first measurement were SAP (0.82), DAP (0.84), and MAP (0.89). Bias ± SD for SAP was 3 ±10 mmHg, for DAP was ?11 ± 7 mmHg, and MAP was ?7 ± 6 mmHg. The oscillometric monitor slightly overestimated SAP and underestimated DAP and MAP for both average values and the first reading.Conclusions and clinical relevanceThis oscillometric model provided MAP measurements that were acceptable by ACVIM standards. MAP measurements with this monitor were lower than those found with the invasive technique so a clinical diagnosis of hypotension may be made in sheep that are not hypotensive.  相似文献   

19.
ObjectiveTo determine the effect of experimentally induced hypothyroidism on isoflurane (ISO) minimum alveolar concentration (MAC) in dogs.Study designProspective experimental study.AnimalsEighteen adult female mongrel dogs, age 2–4 years and weighing 8.2–13.1 kg.MethodsHypothyroidism was induced in nine dogs by the intravenous administration of 1 mCi kg−1 of 131Iodine. The remaining nine dogs served as controls. Dogs were studied 9–12 months after the induction of hypothyroidism. Anesthesia was induced with ISO in oxygen via a mask. The trachea was intubated, and anesthesia was maintained using ISO in oxygen using a semi-closed rebreathing circle system. The dogs were mechanically ventilated to maintain an end-tidal carbon dioxide concentration between 35 and 45 mmHg. End-tidal ISO concentrations were measured with an infrared gas analyzer. The MAC was determined in duplicate using a tail clamp technique. The mean values for the groups were compared using a two sample t-test.ResultsThe mean ± SD MAC of isoflurane in the hypothyroid and euthyroid dogs was 0.98 ± 0.31% and 1.11 ± 0.26%, respectively. The mean MAC of isoflurane in hypothyroid dogs was not significantly different from the mean MAC of isoflurane in the control dogs (p=0.3553).Conclusion and clinical relevanceThe MAC of ISO in dogs was not significantly affected by experimentally induced hypothyroidism. The dose of ISO in dogs with hypothyroidism does not need to be altered.  相似文献   

20.
ObjectiveTo test if the addition of butorphanol by constant rate infusion (CRI) to medetomidine–isoflurane anaesthesia reduced isoflurane requirements, and influenced cardiopulmonary function and/or recovery characteristics.Study designProspective blinded randomised clinical trial.Animals61 horses undergoing elective surgery.MethodsHorses were sedated with intravenous (IV) medetomidine (7 μg kg?1); anaesthesia was induced with IV ketamine (2.2 mg kg?1) and diazepam (0.02 mg kg?1) and maintained with isoflurane and a CRI of medetomidine (3.5 μg kg?1 hour?1). Group MB (n = 31) received butorphanol CRI (25 μg kg?1 IV bolus then 25 μg kg?1 hour?1); Group M (n = 30) an equal volume of saline. Artificial ventilation maintained end-tidal CO2 in the normal range. Horses received lactated Ringer’s solution 5 mL kg?1 hour?1, dobutamine <1.25 μg kg?1 minute?1 and colloids if required. Inspired and exhaled gases, heart rate and mean arterial blood pressure (MAP) were monitored continuously; pH and arterial blood gases were measured every 30 minutes. Recovery was timed and scored. Data were analyzed using two way repeated measures anova, independent t-tests or Mann–Whitney Rank Sum test (p < 0.05).ResultsThere was no difference between groups with respect to anaesthesia duration, end-tidal isoflurane (MB: mean 1.06 ± SD 0.11, M: 1.05 ± 0.1%), MAP (MB: 88 ± 9, M: 87 ± 7 mmHg), heart rate (MB: 33 ± 6, M: 35 ± 8 beats minute?1), pH, PaO2 (MB: 19.2 ± 6.6, M: 18.2 ± 6.6 kPa) or PaCO2. Recovery times and quality did not differ between groups, but the time to extubation was significantly longer in group MB (26.9 ± 10.9 minutes) than in group M (20.4 ± 9.4 minutes).Conclusion and clinical relevanceButorphanol CRI at the dose used does not decrease isoflurane requirements in horses anaesthetised with medetomidine–isoflurane and has no influence on cardiopulmonary function or recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号