首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to determine which plant growth parameters enhanced the competitive ability of corn ( Zea mays ) against weeds, a field study was conducted at the Agricultural Research Farm, Razi University, Kermanshah, Iran. A factorial experiment based on a randomized complete block design with four replications was used. The factors consisted of weed treatments (including weedy and weed-free during all of the growing season) and corn cultivars (including KSC 260, KSC 302, KSC 500, KSC 647, KSC 700, and KSC 704). The plant growth parameters under study consisted of height, plant dry weight, the number of tillers, leaf area index, specific leaf area, crop growth rate, relative growth rate, and net assimilation rate. The results indicated that the cultivars, KSC 700 and KSC 704, had the highest competitive ability and the cultivars, KSC 302 and KSC 260, had the lowest competitive ability. The competitive ability of the cultivars, KSC 500 and KSC 647, was intermediate. All of the growth parameters under study, except the number of tillers, indicated a positive and significant correlation with competitive ability, and the relative growth rate showed the highest correlation. Variable selection using the stepwise multiple linear regression method revealed that, among the growth parameters under study, both the relative growth rate and the specific leaf area were the best predictors of corn cultivar competitiveness.  相似文献   

2.
The effects of a range of herbicide doses on crop–multiple weed competition were investigated. Competitivity of Galium aparine was approximately six times greater than that of Matricaria perforata with no herbicide treatment. Competitivities of both weeds decreased with increasing herbicide dose, being well described by the standard dose–response curve with the competitivity of M. perforata being more sensitive than that of G. aparine to a herbicide mixture, metsulfuron‐methyl and fluroxypyr. A combined model was then developed by incorporating the standard dose–response curve into the multivariate rectangular hyperbola competition model to describe the effects of multiple infestation of G. aparine and M. perforata and the herbicide mixture on crop yield. The model developed in this study was used to predict crop yield and to estimate the herbicide dose required to restrict crop yield loss caused by weeds to an acceptable level. At the acceptable yield loss of 5% and the weed combination of 120 M. perforata plants m?2 and 20 G. aparine plants m?2, the model recommends a mixture of 1.2 g a.i. ha?1 of metsulfuron‐methyl and 120 g a.i. ha?1 of fluroxypyr.  相似文献   

3.
采取随机区组试验,根据农田杂草群落的生态学原理 ,运用生态学方法,通过玉米苜蓿间种与玉米清种相对照,探讨了间种抗旱植物苜蓿对玉米田杂草群落与生长发育的影响.结果表明:清种玉米田中稗草和红蓼的重要值较高,为优势种,间种苜蓿田中的优势种有红蓼、稗草、苘麻、反枝苋、龙葵、藜;在玉米各生育期,间种苜蓿田中的杂草生物量均低于清种玉米田处理,杂草株高大部分低于清种玉米处理;间种苜蓿穗长、穗行数、行粒数、穗重、穗粒重、百粒重和产量较清种玉米分别增加了6.6%、7.6%、2.2%、 12.28%、9.9%、7.8%和4.3%.认为间种苜蓿能够控制杂草数量,抑制杂草生物量增加,苜蓿有抗旱保水的作用,使玉米产量有所提高.  相似文献   

4.
K Rasmussen 《Weed Research》2002,42(4):287-298
Summary Injection of liquid manure (slurry) into the soil is an alternative to the traditional surface application. By the injection method, it is possible to place nutrients closer to the crop sown, thus offering the crop a competitive advantage over weeds. This study compares the response in crop yield, weed density and weed biomass to injection vs. surface application of liquid manure through three growing seasons in barley and oats. The manure applications were combined with treatments of weed harrowing or herbicide spraying or no treatment at all. The levels of weed control and crop yield obtained by harrowing and herbicides were larger when slurry was injected compared with surface application. Without any weed control treatments, the injection method decreased the final weed biomass in barley. The influence of nutrient injection on yield and weed control seemed to be modulated by the time of emergence and the early growth rate of the crop relative to weeds. Thus, because of its early root growth and development, barley responded more quickly to the injection treatment than oats. Consequently, barley became a more competitive crop.  相似文献   

5.
6.
The critical period of weed interference in one variety of chickpea was determined in field experiments carried out at two sites, Tabriz 2002 and Kermanshah 2003, Iran. Chickpea culture was either kept free of weeds for 0, 12, 24, 36, 48 and 60 days after crop emergence (DAE) or weeds were allowed to grow for 0, 12, 24, 36, 48 and 60 DAE. In these experiments, chickpea yield increased with increasing duration of weed-free period and was reduced by increasing duration of weed-infested period. Unweeded conditions for the entire growing season caused 66.4% and 48.3% seed yield reduction when compared with the treatment that was weed-free throughout the growing season, at Tabriz 2002 and Kermanshah 2003, respectively. The results indicated that chickpea must be kept weed-free between the five-leaf and full flowering stages (24–48 DAE) and from the four-leaf to beginning of flowering stages (17–49 DAE) at the two sites, respectively, in order to prevent >10% seed yield loss. At both sites, reduction in seed yield, because of the increased weed interference period, was accompanied by simultaneous reduction in plant dry weight, number of branches, pods per plant and 100-seed weight. This was supported by significant and positive correlations between these traits and chickpea seed yield. There was no significant correlation between the number of seeds per pod and seed yield. A linear regression model was used to describe the relationship between weed dry weight and seed yield loss.  相似文献   

7.
Common lambsquarters (Chenopodium album) is one of the world's worst weeds. In order to study the competitive potential of single‐cross 704 corn (Zea mays) in competition with common lambsquarters at different relative times of emergence and density levels of the weed, an experiment was conducted in 2006 at the farm of the Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran. This experiment was designed as a split plot based on a randomized complete block design with three replications. The emergence time of the weed was considered at three levels (7 days and 14 days earlier than corn and simultaneously with corn) as the main plot, while the density of the weed was considered at six levels (0, 4, 8, 12, 16, and 20 plants per m2) as the subplot. The results showed a decrease in the grain yield and biomass of corn, as the emergence time of corn was delayed in comparison with the weed in a way that the maximum reduction was observed at the earlier emergence of the weed, compared to corn, and also at a high density of the weed. As the weed emerged earlier than corn, the rate of yield loss resulting from the first flush of weeds was not that high. However, with every few days that the weed emerged earlier than corn, the rate of yield loss became higher as the density of the weed increased to its maximum. The maximum reduction in the yield components was observed at 14 days earlier emergence of the weed, compared to corn, and at high densities, as the corn plants were overshadowed by the weed canopy and no ear was produced.  相似文献   

8.
Summary Differential competitive ability of six winter wheat cultivars and traits that confer such attributes were investigated for a range of seed rates in the presence or absence of weeds for a naturally occurring weed flora in two successive years in split-plot field experiments. Crop height and tillering capacity were considered suitable attributes for weed suppression, although competitiveness is a relative rather than an absolute characteristic. Maris Huntsman and Maris Widgeon were the most competitive cultivars whereas Fresco was the least competitive. Manipulation of seed rate was a more reliable factor than cultivar selection for enhancement of weed suppression, although competitiveness of cultivars Buster, Riband and Maris Widgeon was not enhanced by increased seed rate. Crop densities ranging between 125 and 270 plants m−2 were found to offer adequate weed suppression. Linear relationships were observed between individual and total weed species dry weight and reproductive structures per unit area.  相似文献   

9.
B Bukun 《Weed Research》2004,44(5):404-412
Field studies were conducted over 4 years in south‐eastern Turkey in 1999–2002 to establish the critical period for weed control (CPWC). This is the period in the crop growth cycle during which weeds must be controlled to prevent unacceptable yield losses. A quantitative series of treatments of both increasing duration of weed interference and of the weed‐free period were applied. The beginning and end of CPWC were based on 5% acceptable yield loss levels which were determined by fitting logistic and Gompertz equations to relative yield data representing increasing duration of weed interference and weed‐free period, estimated as growing degree days (GDD). Total weed dry weight increased with increasing time prior to weed removal. Cotton heights were reduced by prolonged delays in weed removal in all treatments in all 4 years. The beginning of CPWC ranged from 100 to 159 GDD, and the end from 1006 to 1174 GDD, depending on the weed species present and their densities. Practical implications of this study are that herbicides (pre‐emergence residual or post‐emergence), or other weed control methods should be used in Turkey to eliminate weeds from 1–2 weeks post‐crop emergence up to 11–12 weeks. Such an approach would keep yield loss levels below 5%.  相似文献   

10.
Critical periods of weed competition in cotton in Greece   总被引:1,自引:0,他引:1  
Four experiments were conducted in central Greece during 1997 and 1998 to determine the late-season presence of weeds in cotton (Gossypium hirsutum L.) and the critical times for removing weeds. Experiments were conducted in natural, heavily infested cropland. The presence of weeds for more than 3 weeks after crop emergence caused significant reductions in crop growth and lint yields. However, weeds that emerged 11 weeks or more after crop emergence did not adversely impact yields. Total weed biomass increased with increasing time prior to weed removal. A weed-free period of 11 weeks after crop emergence was needed to prevent significant reductions in cotton height, biomass, number of squares, and yield. These results indicated that postemergence herbicides or other control measures should be initiated within 2 weeks after crop emergence to avoid significant yield reduction. For greater efficiency, soil-applied herbicides in cotton should provide effective weed control for at least 11 weeks. Curvilinear regression equations were derived to describe the relationship between critical periods of weed presence and cotton growth and fruit development.  相似文献   

11.
Cover crops grown in the period between two main crops have potential as an important component of a system‐oriented ecological weed management strategy. In late summer and autumn, the cover crop can suppress growth and seed production of weeds, whereas the incorporation of cover crop residues in spring may reduce or retard weed emergence. Based on these two criteria, six cover crop species were evaluated for their weed suppressive potential in 2 years of experimentation in the Netherlands. Fodder radish, winter oilseed rape and winter rye had the strongest competitive ability in autumn; the competitive strength of Italian ryegrass was intermediate and white lupin and lucerne were poor competitors. Competitiveness was strongly correlated to early light interception. Surprisingly, doubling the recommended sowing density did not increase weed suppressive ability. Although a poor competitor in the fall, after incorporation in spring, lucerne had the strongest inhibitory effect on seedling establishment, followed by winter oilseed rape and white lupin. Winter rye and fodder radish did not affect seedling establishment, whereas Italian ryegrass was not evaluated because of re‐growth after incorporation. Competition in autumn and subsequent residue‐mediated suppression of weed establishment in spring varied among the cover crop species, with winter oilseed rape offering relatively strong effects during both periods.  相似文献   

12.
The effects of cover crops on weeds and the underlying mechanisms of competition, physical control and allelopathy are not fully understood. Current knowledge reveals great potential for using cover crops as a preventive method in integrated weed management. Cover crops are able to suppress 70–95% of weeds and volunteer crops in the fall‐to‐spring period between two main crops. In addition, cover crop residues can reduce weed emergence during early development of the following cash crop by presenting a physical barrier and releasing allelopathic compounds into the soil solution. Therefore, cover crops can partly replace the weed suppressive function of stubble‐tillage operations and non‐selective chemical weed control in the fall‐to‐spring season. This review describes methods to quantify the competitive and allelopathic effects of cover crops. Insight obtained through such analysis is useful for mixing competitive and allelopathic cover crop species with maximal total weed suppression ability. It seems that cover crops produce and release more allelochemicals when plants are exposed to stress or physical damage. Avena strigose, for example, showed stronger weed suppression under dry conditions than during a moist autumn. These findings raise the question of whether allelopathy can be induced artificially. © 2019 Society of Chemical Industry  相似文献   

13.
The effects of a range of herbicide doses on crop:weed competition were investigated by measuring crop yield and weed seed production. Weed competitivity of wheat was greater in cv. Spark than in cv. Avalon, and decreased with increasing herbicide dose, being well described by the standard dose–response curve. A combined model was then developed by incorporating the standard dose–response curve into the rectangular hyperbola competition model to describe the effects of plant density of a model weed, Brassica napus L., and a herbicide, metsulfuron‐methyl, on crop yield and weed seed production. The model developed in this study was used to describe crop yield and weed seed production, and to estimate the herbicide dose required to restrict crop yield loss caused by weeds and weed seed production to an acceptable level. At the acceptable yield loss of 5% and the weed density of 200 B. napus plants m–2, the model recommends 0.9 g a.i. metsulfuron‐methyl ha–1 in Avalon and 2.0 g a.i. in Spark.  相似文献   

14.
A glasshouse experiment was carried out to investigate the influence of increasing levels of nitrogen and phosphorus on the growth of six common weed species growing alone or in competition with spring barley (Hordeum vulgare). Capsella bursa‐pastoris, Chenopodium album, Papaver rhoeas, Sinapis arvensis, Spergula arvensis, Viola arvensis and spring barley were grown in pots with different levels of nitrogen (0, 30, 60, 90, 120 and 150 kg N ha?1) or phosphorus (0, 10, 20, 30, 40 and 60 kg P ha?1). The aboveground parts of the plants were harvested after 7 weeks and the dry weight of shoots, percentage N and P content of the shoot and uptake of N and P were determined. A linear or a polynomial model was used to describe the data. Growing alone, Spergula arvensis was the only weed species that increased its dry weight at the same rate as barley. Weed species with low dry weight increase had larger increases in percentage N or P content than barley, indicating a luxury accumulation of nutrients. The uptake of N and P per pot did not differ much between weeds and barley. V. arvensis and P. rhoeas accumulated least nutrients (per cent of dry matter) and Spergula arvensis accumulated most. Weeds grew poorly in competition with barley. The percentage N and P content in barley did not change when they grew in competition with weeds.  相似文献   

15.
Information on phosphorus (P) fertilizer affecting crop–weed competitive interactions might aid in developing improved weed management systems. A controlled environment study was conducted to examine the effect of three P doses on the competitive ability of four weed species that were grown with wheat. Two grass and two broad-leaved weed species were chosen to represent the species that varied in their growth responsiveness to P: wild oat (medium), Persian darnel (low), round-leaved mallow (high), and kochia (low). Wheat and each weed species were grown in a replacement series design at P doses of 5, 15, and 45 mg P kg−1 soil. The competitive ability of the low P-responsive species, Persian darnel and kochia, decreased as the P dose increased, supporting our hypothesis that the competitiveness of species responding minimally to P would remain unchanged or decrease at higher P levels. As expected, the competitiveness of the high P-responsive species, round-leaved mallow, progressively improved as the P dose increased. However, wild oat's competitive ability with wheat was not affected by the P fertilizer. The results suggest that fertilizer management strategies that favor crops over weeds might deserve greater attention when weed infestations consist of species known to be highly responsive to higher soil P levels. The information gained in this study could be used to advise farmers of the importance of strategic fertilizer management in terms of both weed management and crop yield.  相似文献   

16.
17.
McDonald  & Riha 《Weed Research》1999,39(5):355-369
A complex set of interactions among crops, weeds and their environment determines the impact of weed interference on crop productivity. These interactions can be simulated with dynamic crop:weed competition models, such as ALMANAC. In this study, ALMANAC was modified to simulate maize: Abutilon theophrasti competition. In the modified ALMANAC model, daily increases in leaf area index (LAI), height and rooting depth are attenuated on the basis of accumulated above-ground biomass and by environmental stress. Also, a simple, flexible method is adopted to partition radiation in a mixed canopy. A maize: A. theophrasti competition study conducted near Aurora, NY, in which a range of weed densities (0–16 plants m−2) were established in a maize crop, was used to evaluate the model. The modified ALMANAC proved to be a useful tool for segregating the maize response to competition in 1991 (simulated loss of 35% at the highest weed density) from those in 1992–94 (simulated losses not greater than 16%). Based on these findings, the modified ALMANAC model is judged to be capable of distinguishing between environmental conditions that facilitate large yield losses and those that allow maize to outcompete A. theophrasti .  相似文献   

18.
盐胁迫对玉米种子萌发及幼苗生长的影响   总被引:57,自引:1,他引:57  
用不同浓度的 Na Cl溶液及相同浓度不同比例、不同盐分的混合溶液处理玉米 ,实验结果表明 ,盐胁迫对玉米种子发芽有抑制作用 ,Na Cl的抑制作用最显著。混合不同盐分有一定的减轻 Na Cl对玉米种子萌发的抑制作用。盐胁迫对玉米幼苗生长有抑制作用 ,对地上部分生长的抑制程度大于对根生长的抑制。不同的单盐处理均出现单盐毒害现象 ,不同价数的阴离子之间的拮抗作用不明显。  相似文献   

19.
Rasmussen  Rasmussen 《Weed Research》2000,40(2):219-230
Two field experiments investigated the influences of crop seed vigour on the effect of weed harrowing and crop:weed interactions in spring barley. Artificially reduced seed vigour, which was similar to the variation within commercial seed lots, caused a reduction in germination rate, delayed time of emergence and, consequently, caused reduced competitive ability against weeds. During both years, the reduced seed vigour increased the average weed biomass by 169% and 210%, and reduced the average crop yield by 16% and 21%. Without the influence of weeds, the yield reduction was estimated to be 8% and 10%. A three‐times harrowing strategy reduced the weed biomass by 75% and 72% on average. However, it also caused damage to the crop and reduced yield. There was no clear interaction between barley seed vigour and weed harrowing in the experiments but, in one year, reduced seed vigour tended to decrease the effect of weed harrowing and also increased crop damage. Results in both years, however, indicate potential possibilities for successful integrated weed control by adding the use of high seed quality to a weed harrowing strategy.  相似文献   

20.
Plant nitrophily plays a key role in weed community assembly. To date, the determinants of the success of nitrophilic weeds and of the decline of oligotrophic weeds in intensive cropping systems are not fully understood. This study investigated which ecophysiological traits related to carbon and N nutrition explain plant nitrophily in field annual species. Twelve species (consisting of monocotyledonous and dicotyledonous species, as well as crops and weeds) covering the oligotrophic‐nitrophilic continuum were grown in a glasshouse experiment at two contrasted conditions of soil‐nitrogen supply. From measured plant growth variables, ecophysiological traits were calculated to account for plant nutritional strategies. Globally, whatever the soil‐nitrogen supply, increased nitrophily was associated with a decreased allocation of carbon to root vs. shoot. At high soil‐nitrogen only, increased nitrophily was also generally associated with an increased nitrogen uptake activity per unit of root biomass, pointing to a trade‐off between oligotrophic species with a preferential carbon investment in root structure and nitrophilic species with a preferential carbon investment in root activity. Beyond these global trends explaining nitrophily, results also show that different strategies are possible for plant species to be considered as nitrophilic. This study provides evidence on why adjusting N fertilisation in quantity, in space (with nitrogen fertiliser placement on the row) or in time can be useful strategies to manage the most nitrophilic weeds, which are also the most problematic in intensive cropping systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号