首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A pressure-chamber technique was used to study the root uptake and xylem translocation of some fungicides, herbicides and an insecticide from different chemical classes in detopped soybean roots. Physiological parameters such as K+ leakage from roots, K+ concentrations in the xylem sap, and protein and ATP levels in the root cells were measured so as to evaluate any potential damage of this technique to the root system. HPLC was used to quantify the compounds in the xylem sap. The pressure-chamber technique has proved useful to study the root uptake and translocation of pesticides, does not damage the root system, and allows one to obtain appreciable volumes of xylem sap that can be analysed directly by HPLC, thus avoiding dependence on the availability of radio-labelled compounds. The concentration of each pesticide in the xylem sap showed a steady-state kinetic profile. Non-linear regression analysis was used to calculate the steady-state concentration and the time required to achieve 50% of the steady-state concentration (TSSC50). TSSC50 was well correlated with log Kow; the more lipophilic the compound the more time was required to reach the steady-state concentration. The efficiency of translocation was assessed by the transpiration stream concentration factor (TSCF) and a non-linear relationship between TSCF and log Kow was observed. The highest TSCF values were measured for those compounds with log Kow values around 3, a lipophilicity value similar to that reported earlier in an analogous experiment with detopped soybean plants but slightly higher than that reported in earlier experiments with intact barley plants. Lower TSCF values were obtained with chemicals with log Kow values below as well as above 3. © 1997 SCI.  相似文献   

2.
Reverse-phase high performance liquid chromatography (h.p.l.c.), using a C18 analytical column, has been applied to the determination of partition coefficients for a range of agrochemicals and industrial chemicals. Using a correlation plot of the logarithm of the capacity factor (k) with the logarithm of the n-octanol/water partition coefficient (Pow), partition coefficients were predicted with a 95% tolerance interval of ± log 0.80 of the literature ‘shake flask’ value for compounds of random structure over the log Pow range 0–6. Individual regression lines were fitted for compounds of comparable size and functional grouping, which reduced any bias and thereby enabled more accurate predictions to be made. The reverse-phase h.p.l.c. method has a number of advantages over the traditional ‘shake-flask’ method. Quantitative methods are not required or do not have to be developed and only the determination of the retention time is necessary. Quick and precise determinations of retention times are facilitated by h.p.l.c. and further improvement can be obtained by automation of solvent mixing, solute injection and data processing. H.p.l.c. was used to generate partition coefficient data for highly hydrophobic materials and, because of its resolving power, data for mixtures and solvent fractions. Dual detection, using u.v. and r.i. in series, was necessary for some compounds, particularly unknown mixtures and impure compounds. Calculations of log Pow based on the fragment-addition method using the structural data file, MACCS, was of considerable value in confirming experimentally derived values. In certain cases, calculated log Pow values were considered more trustworthy than experimental values.  相似文献   

3.
In hydroponic experiments, seed-dressing with the herbicide safener 1,8-naphthalic anhydride (NA), significantly enhanced the tolerance of maize, (Zea mays L., cv. Monarque) to the imidazolinone herbicide, AC 263222, (2-[4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl]-5-methylnicotinic acid). Uptake, distribution and metabolism studies where [14C]AC 263222 was applied through the roots of hydroponically grown maize plants showed that NA treatment reduced the translocation of radiolabel from root to shoot tissue and accelerated the degradation of this herbicide to a hydroxylated metabolite. Reductions in the lipophilicity and, therefore, mobility of this compound following hydroxylation may account for NA-induced retention of radiolabel in the root system. Hydroxylation of AC 263222 suggested that NA may stimulate the activity of enzymes involved in oxidative herbicide metabolism, such as the cytochrome P450 mono-oxygenases. In agreement with this theory, the cytochrome P450 inhibitor, 1-aminobenzotriazole (ABT), synergized AC 263222 activity and inhibited its hyroxylation in vivo. NA seed-dressing enhanced the total cytochrome P450 and b5 content of microsomes prepared from etiolated maize shoots. Isolated microsomes catalyzed AC 263222 hydroxylation in vitro. This activity possessed the characteristics of a cytochrome P450 mono-oxygenase, being NADPH-dependent and susceptible to inhibition by ABT. Activity was stimulated four-fold following NA seed treatment. Differential NA enhancement of AC 263222 hydroxylase and the cytochrome P450-dependent cinnamic acid-4-hydroxylase (CA4H) activity, suggested that separate P450 isozymes were responsible for each activity. These results indicate that the protective effects of NA result from enhancement of AC 263222 hydroxylation and concomitant reduction in herbicide translocation. This may be attributed to the stimulation of a microsomal cytochrome P450 system. © 1998 SCI.  相似文献   

4.
Reversed-phase high-pressure liquid chromatography (h. p. l. c.) and thin-layer chromatography (t. l. c.), on commercially available, reversed stationary phases, were used to determine the octan-1-ol/water partition coefficients (P) for 20 non-ionic organic chemicals, consisting mainly of known pesticides in common use. Good correlation was found between log P values and both the logarithms of the capacity factor (k′), obtained by h. p. l. c., and the Rm values derived from t. l. c. The methods were found to be applicable over a range of more than six orders of magnitude in P values. In addition, the relation is shown between the P values of organic chemicals and their solubilities in water and in octan-1-01.  相似文献   

5.
Twenty-five synthetic pyrethroids and related chemicals were assessed for their effects on the uptake of Ca2+ (as 45Ca2+) by crude homogenates prepared from crayfish (Procambarus clarkii) nerve cords and 20 were assessed on the uptake by homogenates prepared from lobster (Panulirus japonicus) axons. A parabolic relationship was demonstrated between inhibition of Ca2+ uptake for this series of chemicals and lipophilicity (log P) in both species when tested at 5 μM. Optimal log P for maximal inhibition was located at about 6.6 and 84(±6)% inhibition was obtained with resmethrin. Compounds of higher or lower log P were either weaker inhibitors, not inhibitors or occasionally resulted in slightly increased levels of Ca2+ uptake. No direct correlations between the potential for the pyrethroids to inhibit Ca2+ uptake and the potential for these agents to increase the frequency of spontaneous discharges in crayfish nerve cords, to induce repetitive firing in American cockroaches, or the lethality to cockroaches or to any other neurophysiological or toxicity parameter could be established. It was concluded that although some synthetic pyrethroids are moderately potent inhibitors of Ca2+ uptake into nerve cord and axonic preparations (i.e., I50 for trans-resmethrin equals 1 μM) this inhibition alone does not relate to the neurophysiological changes in isolated nerve preparations or to the toxicity of these agents in insects.  相似文献   

6.
Composition-concentration relationships between a series of C13/C14 polyoxyethylene primary alcohol (AE) surfactants and the foliar uptake enhancement of five model neutral organic compounds were examined in factorially designed experiments on wheat (Triticum aestivum L.) and field bean (Vicia faba L.) plants grown under controlled environment conditions. Model compounds were applied to leaves as c.0.2-μl droplets of 0.5 g litre?1 solutions in aqueous acetone in the absence or presence of surfactants at 0.2, 1 and 5g litre?1. Uptake of the highly water-soluble compound, methylglucose (log octanol-water partition coefficient (P) = - 3.0) was best enhanced by surfactants with high E (ethylene oxide) contents (AE15, AE20), whereas those of the lipophilic compounds, WL110547 (log P = 3.5) and permethrin (log P = 6.5), were increased more by surfactants of lower E contents, especially AE6. However, there was little difference between AE6, AE11, AE15 and AE20 in their ability to promote uptake of the two model compounds of intermediate polarity, phenylurea (log P = 0.8) and cyanazine (log P = 2.1). Absolute amounts of compound uptake were also influenced strongly by both surfactant concentration and plant species. Greatest amounts of uptake enhancement were often observed at high surfactant concentration (5 g litre?1) and on the waxy wheat leaves compared with the less waxy field bean leaves. The latter needed higher surfactant thresholds to produce significant improvements in uptake. Data from our experiments were used to construct a simple response surface model relating uptake enhancement to the E content of the surfactant added and to the physicochemical properties of the compound to be taken up. Qualitative predictions from this model might be useful in rationalising the design of agrochemical formulations.  相似文献   

7.
Radiolabelled deoxyglucose (DOG) and glyphosate were used to investigate the effects of certain non-ionic surfactants on the kinetics of foliar uptake in three species. ‘Silwet L-77’ (5 g litre?1), an organosilicone surfactant, enabled spray solutions to infiltrate stomata, providing uptake of DOG into Vicia bean (50%), oat (35%) and wheat (20%) within 10 min of application. ‘Silwet Y-12301’, another organosilicone, also induced stomatal infiltration but to a lesser extent; unlike L-77, this was attenuated by partial stomatal closure. A third organosilicone, ‘Silwet L-7607’, and two conventional surfactants, ‘Triton X-45’ (OP5) and ‘Agral 90’ (NP9), did not induce stomatal infiltration. The effective minimum concentration of L-77 required to enable infiltration of stomata was 2 g litre?1. The uptake of glyphosate into bean did not differ from that of DOG but the ‘Roundup’ formulation of glyphosate partially antagonised the infiltration provided by L-77. Addition of surfactants did not increase the rate of cuticular penetration of DOG into bean but total uptake was increased, except by NP9, either via infiltration (L-77 and Y-12301) or by extending the period during which penetration occurred (L-7607 and OP5). The surfactants had a variable effect on rates of penetration of DOG into wheat and oat. In general, foliar uptake followed an exponential timecourse which was largely complete within 6 h and only rarely approached 100% of the applied chemical. The stomatal infiltration provided by L-77 caused an increase in translocation of DOG in bean.  相似文献   

8.
The effects of octylphenol (OP) and four of its ethoxylated derivatives on uptake into, and distribution within, maize leaf of 2-deoxy-glucose (2D-glucose), atrazine and o, p′-DDT are reported. The surfactants and OP (2 g litre?1 in aqueous acetone) increased the uptake, at both 1.5 and 24 h, of the three model compounds (applied at 1 g litre?1) having water solubilities in the g, mg and μg litre?1 ranges. The uptake of 2D-glucose was positively correlated with the hygroscopicity of the surfactants. The uptake of DDT and atrazine increased with the uptake of the surfactants, being inversely related to their hydrophile:lipophile balance (HLB). Uptake of 2D-glucose and atrazine was enhanced at high humidity, the relative enhancement for atrazine increasing with increasing ethylene oxide (EO) content of the surfactants. A significant proportion of the atrazine and DDT entering the leaf was recovered from the epicuticular wax, the amount of atrazine recovered from the wax increasing with the EO content of the surfactants. The proportion of the surfactants taken up which was recovered from the epicuticular wax was minimal at an EO content of 12.5–16 mole equivalents. The appearance of the deposits on the leaf surface differed markedly among the surfactants, with similar trends for all three chemicals and without visible evidence for infiltration of the stomatal pores. The total quantities of glucose and atrazine translocated were increased by all surfactants but that of DDT was not, despite increases in uptake of up to 7.5-fold. Relative translocation (export from treated region of leaf as a percentage of chemical penetrating beyond the epicuticular wax) was reduced in all cases in the presence of surfactant. Up to 30% of the applied [14C]chemicals was not recovered from the treated leaf after 24 h. The reduced recovery of 2D-glucose, but not that of atrazine and DDT, was largely attributable to movement out of the treated leaf, with approximately 70% of the chemical taken up being translocated basipetally. Loss of atrazine and DDT was a result of volatilisation. There was no evidence that either [14C]2 D-glucose or [14C]atrazine was metabolised to [14C]carbon dioxide.  相似文献   

9.
Structure-concentration–foliar uptake enhancement relationships between commercial polyoxyethylene primary aliphatic alcohol (A), nonylphenol (NP), primary aliphatic amine (AM) surfactants and the herbicide glyphosatemono(isopropylammonium) were studied in experiments with wheat (Triticum aestivum L.) and field bean (Vicia faba L.) plants growing under controlled-environment conditions. Candidate surfactants had mean molar ethylene oxide (EO) contents ranging from 5 to 20 and were added at concentrations varying from 0·2 to 10 g litre?-1 to [14C]glyphosate formulations in acetone–water. Rates and total amounts of herbicide uptake from c. 0·2–μl droplet applications of formulations to leaves were influenced by surfactant EO content, surfactant hydrophobe composition, surfactant concentration, glyphosate concentration and plant species, in a complex manner. Surfactant effects were most pronounced at 0·5 g acid equivalent (a.e.) glyphosate litre?-1 where, for both target species, surfactants of high EO content (15–20) were most effective at enhancing herbicide uptake: surfactants of lower EO content (5–10) frequently reduced, or failed to improve, glyphosate absorption. Whereas, at optimal EO content, AM surfactants caused greatest uptake enhancement on wheat, A surfactants gave the best overall performance on field bean; NP surfactants were generally the least efficient class of adjuvants on both species. Threshold concentrations of surfactants needed to increase glyphosate uptake were much higher in field bean than wheat (c. 2 g litre?-1 and < 1 g litre?-1, respectively); less herbicide was taken up by both species at high AM surfactant concentrations. At 5 and 10 g a.e. glyphosate litre?-1, there were substantial increases in herbicide absorption and surfactant addition could cause effects on uptake that were different from those observed at lower herbicide doses. In particular, the influence of EO content on glyphosate uptake was now much less marked in both species, especially with AM surfactants. The fundamental importance of glyphosate concentration for its uptake was further emphasised by experiments using formulations with constant a.i./surfactant weight ratios. Any increased foliar penetration resulting from inclusion of surfactants in 0·5 g litre?-1 [14C]glyphosate formulations gave concomitant increases in the amounts of radiolabel that were translocated away from the site of application. At these low herbicide doses, translocation of absorbed [14C]glyphosate in wheat was c. twice that in field bean; surfactant addition to the formulation did not increase the proportion transported in wheat but substantially enhanced it in field bean.  相似文献   

10.
Determinations were made of the distribution of two series of non-ionised chemicals, O-methylcarbamoyloximes and substituted phenylureas, in barley shoots, following uptake by the roots from solution. The concentrations in basal and central shoot sections became constant after 24 to 48 h for all but the most lipophilic chemical studied, and were then greatest for the more lipophilic chemicals. Amounts in the leaves generally increased up to 72 or 96 h, when degradation balanced translocation. The accumulation of chemical in the lower section of shoots can be ascribed to a partitioning process similar to that in roots, the chemical being partitioned between the shoot and the xylem transpiration stream; this uptake could be estimated from the octan-1-01/water distribution coefficients, and was predicted to be greatest for compounds for which log Kow=4. 5.  相似文献   

11.
The uptake by roots from solution, and subsequent translocation to shoots in barley, of two series of non-ionised chemicals, O-methylcarbamoyloximes and substituted phenylureas, were measured, Uptake of the chemicals by roots was greater the more lipophilic the chemical, and fell to a lower limiting value for polar chemicals. Translocation to the shoots was a passive process, and was most efficient for compounds of intermediate polarity. Both processes had reached equilibrium within 24h of treatment. The reported behaviour of many pesticides in various plant species agrees with the derived relationships, but the detailed mechanisms of these processes are unknown.  相似文献   

12.
The uptake of four (14)C-labelled non-ionised compounds, the methyl carbamoyloxime insecticide/nematicide oxamyl and three model phenylureas, from solution by rooted stems of the aquatic plant parrot feather [Myriophyllum aquaticum (Vell.) Verdc], together with translocation to the emergent shoots, was measured over periods of 24 and 48 h. Uptake into the submerged tissues of roots and stem base could be ascribed to two processes: movement into the aqueous phase of cells and then partitioning onto the plant solids. This latter process was related to lipophilicity (as measured by the l-octanol/water partition coefficient, K(ow)) and gave rise to high uptake rates of the most lipophilic compounds. Translocation to shoots was passive and was optimal at log K(ow) approximately 1.8, at which the efficiency of translocation of compound was about 40% of that of water. This optimum log K(ow) was identical to that observed previously in barley, although the translocation efficiency was somewhat less in parrot feather. Solvation parameters were applied to model uptake and translocation of a set of ten compounds by barley with the particular objective of understanding why translocation efficiency is lower at log K(ow) > 1.8.  相似文献   

13.
The uptake, movement and metabolism of fluroxypyr* is compared in two contrasting weed species, Stellaria media (susceptible) and Viola arvensis (moderately resistant). Similar rates of uptake occurred in both species, with a rapid cuticular uptake of 50% of that applied within 4 h. Total uptake by the underlying leaf tissue reached 66.6% and 70.8% in S. media and V. arvensis after 7 days. In translocation studies, in which 14C-fluroxypyr was applied to previously sprayed plants, 5.1% of applied 14C-activity was translocated from the treated leaves of S. media after 1 day, which increased to 42.2% after 7 days, recovered mainly from the stem tissue. In V. arvensis translocation was similar after 24 h however, after 7 days over 40% of applied 14C-activity remained in the treated leaves and only 9.7% was translocated, mainly to the developing leaves and apical tissue. 14C-activity extracted from the cuticle was the methylheptyl ester of fluroxypyr in both species. In the treated leaves and apical tissue, 14C-activity was the free acid of fluroxypyr and polar conjugates with a significantly greater proportion of the acid in S. media. It is concluded that the resistance or V. arvensis is partially due to reduced translocation and greater conjugation than in the susceptible S. media.  相似文献   

14.
为探讨关中平原小麦-玉米水分高效利用的栽培技术方式,采用田间定点观测方法,研究秸秆还田+接种蚯蚓处理对土壤含水量的影响。设置CK(对照)、S1(秸秆还田3 000 kg·hm-2)、S2(秸秆还田6 000 kg·hm-2)、E(接种蚯蚓)、S1E(秸秆还田3 000 kg·hm-2+接种蚯蚓)、S2E(秸秆还田6 000 kg·hm-2+接种蚯蚓)共6个处理。结果表明:各处理较CK处理均提高了土壤含水量,S1、S2、E、S1E、S2E处理下土壤含水量分别增加0.21%~27.47%、0.43%~32.85%、1.00%~15.53%、3.25%~36.52%、2.97%~51.24%。CK、S1、S2、E、S1E、S2E处理下土壤含水量分...  相似文献   

15.
The absorption, translocation and metabolism of the selective pre- or early post- emergence herbicide epronaz (N-ethyl-N-propyl-3-propylsulphonyl-1,2,4-triazole-1-carboxamide) were investigated using selected crop and weed species. The pattern of tolerance to epronaz of both germinating seeds and 10-day-old plants grown in nutrient solution, was found to be soybean (Glycine max L.) > maize (Zea mays L.) > cotton (Gossypium hirsutum L.) > rice (Oryza sativa L.) > barnyard grass [Echinochloa crus-galli (L.) Beauv.]. In all species, absorption and translocation of 14C from a nutrient solution containing [14C]epronaz (0.02 μCi ml?1) increased with time. Autoradiographic and liquid scintillation analysis indicated the presence of radioactivity in the apical regions of all species after 4 h. Interspecies variation in uptake and distribution did not appear to be a major factor explaining selectivity, although the resistance of cotton may be partly due to compartmentalisation of 14C in the lysigenous glands in stem and leaves. Analysis of extracts from plants treated with [14C]epronaz indicated the presence of epronaz, its major degradation product [3-propylsulphonyl-l,2,4-triazole (BTS 28 768)] and certain unknown radio-labelled compounds. The major metabolite (Unknown I) was believed to be a conjugate of certain plant components with either epronaz or BTS 28 768. The rate of formation of Unknown I corresponded to the relative resistance and susceptibility to epronaz of soybean, rice and barnyardgrass. The level of the herbicide remained much higher in cotton than in the other species, possibly reflecting compartmentalisation and inactivation of epronaz in the lysigenous glands. For maize, high levels of uptake, exudation and degradation in the nutrient solution were recorded.  相似文献   

16.
《EPPO Bulletin》2017,47(3):445-451

Specific scope

The purpose of the EPPO Standard on Castanea is to recommend to EPPO Member Governments the phytosanitary measures which they should use or require for Castanea plants and plant products moving in international trade to prevent the introduction and spread of quarantine pests. Some of these recommendations are addressed to all EPPO Member Governments, others are addressed only to countries considered to face a certain level of risk from the introduction and spread of the regulated pests concerned. All these recommendations were derived from:
  • EPPO Standards PM 1/2 (EPPO A1 and A2 Lists) and the former EPPO Standards PM 2 (pest‐specific phytosanitary measures), or
  • Pest Risk Analysis (PRA) carried out or reviewed by EPPO, or
  • the Working Party on Phytosanitary Regulations.
For wood packaging material, recommendations are based on ISPM 15 Regulation of wood packaging material in international trade.

Specific approval and amendment

First approved in 2010‐09 as PM 8/3 Quercus and Castanea. Revised and approved as a separate Standard PM 8/4 in 2017‐09  相似文献   

17.
《EPPO Bulletin》2017,47(3):452-460

Specific scope

The purpose of the EPPO Standard on Quercus is to recommend to EPPO Member Governments the phytosanitary measures which they should use or require for Quercus plants and plant products moving in international trade to prevent the introduction and spread of quarantine pests. Some of these recommendations are addressed to all EPPO Member Governments, others are addressed only to countries considered to face a certain level of risk from the introduction and spread of the regulated pests concerned. All these recommendations were derived from:
  • EPPO Standards PM 1/2 (EPPO A1 and A2 lists) and the former EPPO Standards PM 2 (pest‐specific phytosanitary measures), or
  • Pest Risk Analysis (PRA) carried out or reviewed by EPPO, or
  • the Working Party on Phytosanitary Regulations.
For wood packaging material, recommendations are based on ISPM 15 Regulation of wood packaging material in international trade.

Specific approval and amendment

First approved in 2010‐09 as PM 8/3 Quercus and Castanea. Revised and approved as a separate Standard PM 8/5 in 2017‐09  相似文献   

18.
The uptake by barley roots from nutrient solution and subsequent transport to shoots of two series of amine bases were measured over 6 to 72 h. The compounds were chosen to span systematically ranges of lipophilicity (assessed using 1-octanol/water partition coefficients, Kow) and pKa that would include commercial pesticide amines. In a series of six substituted phenethyl amines, strong bases with pKa∽9·5, all the compounds were strongly taken up by roots from solutions of pH 8·0; uptake declined substantially as the pH was lowered to 5·0, especially for the compounds of intermediate lipophilicity (log Kow 2 to 3). This uptake could be ascribed to three processes: (i) accumulation of the cation inside the root cells due to the negative charge on the plasmalemma, as given by the Nernst equation and important only for the polar compounds which have low permeation rates through membranes; (ii) accumulation into the vacuole by ion-trapping, which was the dominant process at high pH for all compounds and at all pH values for the compounds of intermediate lipophilicity; (iii) partitioning on to the root solids, substantial only for the most lipophilic compounds. Translocation to shoots was proportional to uptake by roots, this ratio being independent of external pH for each compound and being optimal for the compounds of intermediate lipophilicity. Such proportionality was also observed in a series of three weaker bases of intermediate lipophilicity, in which compounds of pKa 7·4 to 8·0 were also well taken up and translocated whereas the very weak base 4-ethylaniline (pKa 5·03) was much less so. Tests with quaternised pyridines confirmed that organic cations move only slowly through membranes. The observed behaviour of the amines could be modelled reasonably well assuming that transport within the plant was dominated by movement across membranes of the non-ionised species, and this appeared to be true even for the most lipophilic phenethylamine (log Kow 4·67) studied, though its long-distance movement would be as the protonated species. © 1998 Society of Chemical Industry  相似文献   

19.
The ability of the herbicide safeners, BAS-145138 (1-dichloroacetyl-hexahydro-3,3,8a-trimethyl-pyrrolo(1,2a)pyrimidin-6(2H)-one), dichlormid (N,N-diallyl-2,2-dichloroacetamide), flurazole (phenylmethyl ester), and MG-191 (2-dichloromelhyl-2-methyl-1,3-dioxolane) for preventing metazachlor injury to maize (Zea mays L.) and sorghum (Sorghum bicolor L.) seedlings were compared with their effects on 14C-metazachlor metabolism to a glutathione (GSH) conjugate, effects on non-protein thiol contents (mainly GSH) and effects on Glutathione S-transferase (GST) activity in these two species. Sorghum shoot growth was reduced by 41% and maize shoot growth was reduced by 54%, by metazachlor concentrations in vermiculite nutrient culture of 0·6 μM and 7·5μM, respectively. In this system, all four compounds had significant activity as safeners for metazachlor in both sorghum and maize seedlings. BAS-145138 and flurazole were the most effective safeners in maize and sorghum, respectively. In the absence of safeners, the rate of non-enzymatic conjugation of metazachlor and GSH was much greater than the enzymatic rate. However, the rate of enzymatic conjugation of metazachlor with GSH was increased by safener treatment in both maize and sorghum. Safener effectiveness was highly correlated with increases in 14C-metazachlor uptake and metabolism in both species. Safener effectiveness was more highly correlated with safener effects on GST activity in maize or sorghum when 14C-metazachlor was used as the substrate than when the non-specific CDNB (1-chloro-2,4-dinitrobenzene) was used as the substrate. Safener effectiveness was also strongly correlated with safener effects on GSH levels in sorghum, but not in maize, possibly because of the greater importance of non-enzymatic conjugation of metazachlor with GSH in sorghum as compared to maize.  相似文献   

20.
为了揭示还田玉米秸秆在不同施氮水平下的腐解及养分释放特征,在马铃薯田间定位试验中,设置了6个不同施氮水平(T1:0 kg·hm-2;T2:75 kg·hm-2;T3:150 kg·hm-2;T4:225 kg·hm-2;T5:300 kg·hm-2; T6:375 kg·hm-2),研究其对还田玉米秸秆腐解及养分释放特征的影响。研究表明:还田玉米秸秆的腐解主要发生在前90 d,在此期间玉米秸秆腐解较快,T1~T6处理的玉米秸秆腐解率分别为37.3%、40.3%、44.8%、45.0%、50.8%、48.4%,以T5处理为最高,处理间差异显著(P<0.05);同时,T1~T6处理的玉米秸秆碳、氮释放率分别为48.2%~56.6%、33.8%~44.4%,T5处理下秸秆的碳、氮释放率均显著高于其他处理(P<0.05),而秸秆磷、钾的释放率分别为43.1%~49.2%、90.5%~93.0%,处理间无显著性差异。还田150 d后,玉米秸秆的腐解率为5...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号