首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Impacts of pH and sorption-desorption of ‘Pegosperse’ 100-O (PEG. 100-O; diethylene glycol monooleate, containing 15% diester) surfactant by apple (Malus pumila M.) leaf cuticles on surfactant-enhanced cuticular penetration of 2,4-D [(2,4-dichlorophenoxy)acetic acid] were studied. Glass cylinders were affixed to enzymatically isolated adaxial apple leaf cuticles after the cuticle segments had been soaked in 10 ml liter?1 PEG 100-O solution and washed for 20 and 120 min, respectively. Quantities of [14C]2,4-D in the glass-cuticle chambers passing through the cuticles at pH values from 1 to 6 5 were determined. PEG 100-O significantly increased cuticular penetration of dissociated 2,4-D at pH 4–5; the surfactant had no effect on penetration of undissociated 2,4-D at pH 10. Surfactant-enhanced penetration of 2,4-D occurred only when the surfactant was in the cuticles, while the process of surfactant sorption-desorption alone had no effect on penetration. These results support a ‘hydrophilic channel’ hypothesis, i.e. that surfactants may create hydrophilic channels or increase the area of the channels in the cuticle and, consequently, enhance the passing of polar molecules like dissociated 2,4-D through the cuticle.  相似文献   

2.
The effects of several nonionic surfactants on [14C]glyphosate mono(isopropylammonium) diffusion across isolated tomato fruit cuticles (Lycopersicon esculentum Mill.) were compared under controlled atmospheric conditions (25°C; 65% R.H.) using a model system consisting of 1-μl droplets applied to isolated cuticles on agar blocks. Rates of diffusion for glyphosate (10 g acid equivalent litre?1 in the applied solution) and overall amounts recovered in underlying agar blocks were influenced by the ethylene oxide (EO) chain length for a homologous nonylphenol surfactant series (10 g litre?1). Glyphosate uptake increased with EO content, reaching an optimum at a mean of 17 EO, then decreasing below control values for surfactants with 40 EO. There was a strong influence of the hydrophobe on glyphosate penetration for different surfactants with similar mean EO content (10 EO). The primary aliphatic amine enhanced penetration the most, followed by the nonylphenol while the aliphatic alcohol showed no improvement on glyphosate transfer across cuticles. Water soprtion was greatly enhanced by a primary aliphatic amine (10 EO) and by a nonylphenol (17 EO). The aliphatic alcohol (10 EO) and a shorter-chained nonylphenol (4 EO) did not significantly enhance water sorption. Comparison of water sorption with glyphosate diffusion across cuticles suggests a strong relationship between the two. Change in solution pH over a limited range had no significant effect. Promotion of cuticular hydration by surfactants may thus play an important role in the enhancement of foliar uptake of water-soluble herbicides such as glyphosate.  相似文献   

3.
Sorption and desorption of ‘Pegosperse’ 100-O(PEG 100-O; diethylene glycol monooleate, containing 15% diester) surfactant by unaltered (CM) and dewaxed (DCM) adaxial cuticle membranes isolated from apple (Malus pumila M.) leaves were studied. The aim of this study was to understand interactions between surfactants and cuticles. Enzymatically isolated cuticles were soaked in buffer or PEG 100-O solution (pH 7–0). and the weight changes of cuticles were measured to determine the amount of surfactant sorbed or desorbed by the cuticles. For very low surfactant concentrations, sorption was measured by changes in the surface tension of the solutions. PEG 100-O sorption by both the CMs and the DCMs occurred mainly in the first three hours and was concentration-dependent. The DCMs always sorbed more surfactant than the CMs. Desorption of PEG 100-O from both CMs and DCMs was rapid in the first few hours and then decreased to a relatively low rate until the surfactant was totally desorbed from the cuticles after about two months. The sorption and complete desorption of the surfactant by both CMs and DCMs show that PEG 100-O interacts with both cutins and waxes of the cuticles and the interactions are reversible.  相似文献   

4.
A survey is presented of the use of isolated leaf and fruit cuticles in studying foliar penetration. Isolated cuticles, which represent the prime barrier to penetration, provide a physical system with which transport studies can be conducted under well-defined and highly controlled conditions while avoiding the physiological effects of biologically active compounds on the system. Most studies with isolated cuticles have focused on sorption, desorption and infinite-dose cuticular transport of compounds in aqueous systems. Partition coefficients can be calculated for pesticides from sorption data, thereby yielding information on the solubility of the compounds in the cuticle. Permeance and diffusion coefficients can be calculated from cuticular transport studies. These transport parameters provide for a better understanding of the mechanisms of cuticular penetration. Further, they are useful in comparing both the penetration characteristics of selected compounds and permeability of cuticles. Transport systems, using isolated cuticles, may be used to quantify the effects of spray additives on pesticide penetration. A finite-dose system is described that may be useful in studying spray droplet/deposit interactions with the cuticle and, concurrently, following transcuticular penetration from droplets/deposits on the surface. These systems may prove useful in optimizing spray formulations and spray parameters, leading to more efficient pesticide development and application.  相似文献   

5.
Penetration of four herbicides (atrazine, diclofop-methyl, dinoseb and glyphosate-mono(isopropylammonium) salt) was followed through isolated pear leaf cuticles into agar and across intact cuticles of Argenteum (ARG) mutant pea leaves from monosized droplets (300 μ diam.) during 48 h following application. Penetration into pea leaves ranged from low for glyphosatemono(isopropylammonium) (5% of amount applied) and atrazine (14%) to rapid for dinoseb (91%) and diclofop-methyl (82%). A major proportion (90%) of the dinoseb retained in the tissues underlying the site of droplet application migrated across the cuticle and the epidermal layer of cells. In contrast, only a small proportion (13%) of the dinoseb entering the leaf was transported to the tissues surrounding the treatment zone. Corresponding values for diclofop-methyl were 61% and 4% respectively. Initially, dinoseb also penetrated rapidly through isolated pear leaf cuticles, 36% of the applied dose being recovered in an agar receiver disc 4 h after treatment, but subsequent uptake was slower. Penetration of glyphosate-mono(isopropylammonium) also decreased after 4 h whereas atrazine and diclofop-methyl diffused steadily through isolated cuticles up to 216 h after treatment. The incorporation of ‘Tween 20’ or ‘Agral 90’ (1 g litre?1) into the formulation reduced the penetration of glyphosate-mono(isopropylammonium) through isolated pear leaf cuticles.  相似文献   

6.
A finite dose diffusion system was employed to study cuticular penetration of 2‐(1‐naphthyl) [1−14C]acetic acid (NAA) from simulated spray droplets through enzymatically isolated tomato fruit cuticles (Lycopersicon esculentum Mill cv Pik Red). Isolated cuticles were mounted on diffusion half‐cells with the cell wall surfaces facing a 20 mM citric acid receiver solution (pH 3.2, volume 2.9 ml, prepared with deionized water). A 5‐µl donor droplet containing NAA at 100 µM in 20 mM citric acid buffer (pH 3.2) was applied to the outer surface. Penetration was monitored by repeated sampling of the receiver solution. NAA penetration was characterized by (1) an initial lag phase of about 2.3 h, (2) a phase of nearly constant maximum rate of penetration averaging 6.3% of applied NAA h−1 (equivalent to 0.032 nmol h−1) and (3) a plateau phase approaching an asymptote at 81.2% of applied NAA (equivalent to 0.406 nmol) at 120 h. Within 1 h after application droplets appeared dry on visual inspection. Immediately after droplet drying, 7.0% of the applied NAA was sorbed to the cuticle, but only 0.5% penetrated into the receiver solution, indicating that penetration occurred almost exclusively from the apparently dry deposit. At 120 h, 5.2% of the NAA applied was associated with the deposit and 4.3% with the cuticle. The distribution of maximum rates of penetration was log‐normal, but penetration at 120 h followed a normal distribution. Cuticle thickness (estimated 5–25 µm) had no significant effect on NAA penetration. Maximum rates of penetration through pepper fruit and citrus and ficus leaf cuticles were 4.9‐, 2.6‐ and 0.1‐times that through tomato fruit cuticles. At 120 h, penetration averaged 85.5, 79.5 and 34.7% for pepper, citrus and ficus cuticles, respectively. Extracting epicuticular and embedded waxes increased NAA penetration rates through tomato fruit cuticle more than three‐fold, but had little effect on penetration at 120 h (71.0 vs 87.7% for cuticular vs dewaxed cuticular membranes). The maximum penetration rate and total penetration were found to be useful parameters in describing the penetration time‐course. © 2000 Society of Chemical Industry  相似文献   

7.
Surfactants are used to increase the efficiency of herbicide formulations mainly because they wet out leaf surfaces, thereby stabilising and increasing the contact area of droplets on the surface. Herbicide penetration through the cuticle may also be facilitated. The work described eliminates effects on wetting and contact area in order to study the effect of surfactants on the penetration and movement of paraquat in cocksfoot. Surfactants were various types of alcohols and amine oxides condensed with 2 to 30 moles of ethylene oxide used at 0.1 to 0.5%. An adult leaf of cocksfoot (Dactylis glomerata) was immersed briefly to constant area in paraquat solutions containing surfactant and uptake and movement of paraquat is recorded. Uptake was little affected by differences in surfactant structure except where surface activity was low and solutions failed to wet out the leaf surface. Percentage movement with 0.5% surfactant was often less than that with 0.1% and a high ethylene oxide content also reduced percentage movement. Paraquat activity was influenced by both the degree of uptake and movement, but movement was the greater influence. Amine oxide surfactants reduced movement less than those based on alcohols. The action of surfactants is discussed in terms of a hydrophobic/hydrophilic balance in the surfactant molecule.  相似文献   

8.
The mobility of chlorfenvinphos in isolated pear (Pyrus communis cv. Bartlett) leaf cuticular membranes (CM) was studied as a function of concentration of chlorfenvinphos sorbed in the cuticle. Mobilities of chlorfenvinphos increased approximately 9-fold when the amount sorbed increased from 1 to 100 μg cm−2 pear leaf cuticle. From the amounts per area, average volume fractions of chlorfenvinphos in the cuticle were calculated ranging from 2×10−3 to 5·1×10−2. The increase in mobilities was steepest at the lower and levelled off at higher volume fractions. This correlation could be described for the whole range of volume fractions investigated by an equation which assumes homogeneously dispersed chlorfenvinphos. Temperature dependence of mobilities was studied at 17, 25 and 35°C and chlorfenvinphos volume fractions of 5·5×10−3 and 0·12, respectively. Arrhenius graphs were linear for both volume fractions, showing that cuticles did not undergo a phase transition due to the high amount of sorbed chlorfenvinphos. However, at a volume fraction of 0·12, the activation energy of diffusion, ED, was significantly lower (83·6 kJ mol−1) than at 5·5×10−3 (135 kJ mol−1). We interpret these findings as evidence for a plasticising effect on cuticular waxes by chlorfenvinphos. So far, such an effect had been demonstrated only for certain adjuvants (ethoxylated alcohols) but not for active ingredients. Chlorfenvinphos not only increased its own mobility in pear leaf cuticles, but also that of 2,4-D in Citrus leaf cuticles. This would be expected if plasticising of waxes was the sole mechanism responsible for increased mobilities. From these data we predict that permeabilities of cuticles to chlorfenvinphos are not constant. Depending on temperature as well as types and amounts of adjuvants, rates of foliar penetration of chlorfenvinphos can be higher if its concentration in the spray liquid is increased.  相似文献   

9.
A theory of cuticular penetration of crop protection agents (CPAs) is presented, which incorporates properties of cuticles and cuticular waxes as well as properties of active ingredients and adjuvants. Based on this theory, two models are developed which are analytical in the sense that they help to quantify and understand (i) differences in permeability among cuticles from different species, (ii) effects of properties of CPAs on permeabilities of cuticles and rates of uptake and (iii) the effects of adjuvants on properties of cuticles and rates of uptake of CPAs. The models can be used to predict rates of uptake of CPAs as affected by properties of cuticular waxes, active ingredients and adjuvants. However, before this can be done, a constant, two parameters and at least two variables must be estimated. Properties of cuticles are accounted for by the constant D0x and the parameter β′. The former, the ratio of the mobility of a hypothetical molecule having zero molar volume (D0x) divided by the path length (Δx) across the cuticle, has the dimension of velocity (ms?1) and is independent of the solubility of the CPA. The latter is a measure of size selectivity of the cuticle. Differences in permeabilities of cuticles from different species increase with increasing size of active ingredients due to size selectivity (β′). Removing cuticular waxes from Citrus cuticles increased D0x by a factor of 2042, while β was not affected. Differential solubility of CPAs is considered part of the driving force and at least two different partition coefficients are needed to account for differences in solubilities in cuticular waxes, cutin, water and the formulation residue on the surface of the cuticles. Adjuvants are solvents in the formulation residue on the leaf surface once the carriers (water and other volatile solvents) have evaporated and certain adjuvants also act as accelerators; they penetrate the cuticle and increase D0x. Thus, accelerators increase rates of uptake and this effect depends on two factors, (i) the intrinsic activity of the accelerator and (ii) rate of penetration into the cuticle, because the active ingredients follow the accelerator front across the cuticle. Since accelerators penetrate from the formulation residue into the cuticle, the volume of the formulation residue decreases with time. This maintains high concentrations of CPAs in the formulation residue and, thus, maximum driving forces and rates of penetration. To utilise fully this dual accelerator effect, it is necessary to match velocities of penetration of accelerators and active ingredients accurately.  相似文献   

10.
The penetration of two model seed oil compounds, [14C]triolein (TRI) and [14C]methyl oleate (MEO) through plant cuticles and their effects on the penetration of [14C]quizalofop-ethyl and [14C]fenoxaprop-ethyl were investigated. Experiments were carried out using isolated cuticles from rubber plant (Ficus elastica Roxb.) leaves and from tomato (Lycopersicon esculentum Mill,) and pepper (Capsicum annuum L.) fruits. Chemicals were deposited in droplets on to cuticle discs maintained on agar blocks under controlled conditions. TRI and MEO were used at 1% (V/V). The transfer of radiolabel through cuticles was negligible for TRI and varied from 6 to 13% after 72 h, according to species, for MEO, The penetration results obtained for quizalofop-ethyl (0.084 mg mL-1) and fenoxaprop-ethyl (0.189 mg mL-1) were very similar and varied according to species. The greatest diffusion intoagar was observed for pepper (12.8% and 10.7% after 72 h, for quizalofop-ethyl and fenoxaprop-ethyl respectively), the lowest for rubber plant cuticles (1.4 and 1.3% respectively). Addition of MEO produced significant increases in the penetration of quizalofop-ethyl and fenoxaprop-ethyl through rubber plant and tomato cuticles. TRI had an enhancing effect on the two herbicides only with rubber plant cuticles. Results are discussed with particular consideration of the variations between plant species and the possible mode of action of seed oil adjuvants.  相似文献   

11.
Polydisperse ethoxylated fatty alcohol (EFA) surfactants can improve the performance of crop protection agents. At the cuticular level they act as accelerators of penetration by increasing the mobility of active ingredients in the cuticle, the barrier properties of which are mainly caused by cuticular waxes. Polydisperse Genapol C-050 (GP C-050, average formula C12.5E5.8) was also found to increase mobility in wax-extracted polymer matrix membranes (MX) of bitter orange and pear, indicating that sorption of surfactants increased segmental mobility of polymethylene chains in cutin and wax. Sorption into MX of the active fraction of GP C-050 from 5g litre−1 micellar solutions was in equilibrium in less than 1 h after establishing contact. This is almost 100-fold faster than with cuticular membranes (CM). Temperature dependence of solute mobilities in CM was studied in order to measure activation energies (ED) of diffusion in the presence and absence of aqueous surfactant solutions. Monodisperse fatty alcohol ethoxylates C8E3, C8E4 and C12E6, and (non-surface-active) tributylphosphate decreased ED of the model compounds WL 110547 and bifenox in Citrus, Pyrus and Stephanotis CM by more than 100 kJ mol−1. This corresponds to 50 to 275-fold increases of mobilities at 15 °C. Our data suggest that the decrease in activation energies with the concomitant accelerating effect on mobility contributes considerably to the effects of so-called activator surfactants. High temperature and accelerators act similarly on barrier properties of CM. It is shown that effects of both monodisperse and polydisperse EFA surfactants on solute mobility are reversible and that radiolabelled C12E8 penetrated pear CM rapidly. However, rates of penetration were lowered by excess amounts of WL 110547 and especially phenylurea. Partition coefficients of seven organic solutes between Capsicum fruit cuticles and GP C-050 were very low and, with the exception of methylglucose, smaller than 1. They decreased with lipophilicity and differed about 100-fold. Especially for the lipophilic compounds they were orders of magnitude lower than octanol/water or cuticle/water partition coefficients, which indicates the limited usefulness of these values for an understanding of penetration of active ingredients from formulation residues. © 1999 Society of Chemical Industry  相似文献   

12.
Removal of waxes from the upper pear leaf cuticle by chloroform extraction greatly increased sorption of naphthaleneacetic acid (NAA) into the cuticle. Penetration of NAA through isolated upper pear leaf cuticle was likewise increased following wax removal by chloroform extraction. Plating pear leaf wax back onto dewaxed cuticle surfaces reduced sorption and penetration.  相似文献   

13.
The plant cuticle is a highly complex membrane which forms the outer surface of the aerial portion of plants. The nature of the plant cuticle is reviewed with particular regard to its action as a potential barrier to the penetration of pesticide molecules; the role of the cuticular waxes is highlighted. The physicochemical properties of the cuticle influence the behaviour of spray droplets and, in turn, may affect the rate and efficiency of cuticle penetration. The permeation of active ingredients is influenced by their solubility characteristics as indicated by octanol/water (log Kow) and cuticle/water (Kcw) partition coefficients. Penetration of hydrophilic compounds (low log Kow) may be enhanced by hydration of the cuticle, while transcuticular transport of non-polar solutes (high log Kow) is increased by factors which reduce wax viscosity. The use of in-vitro models involving isolated cuticle membranes, isolated cuticle waxes, or isolated leaves has helped to focus on the activities of the cuticle in the absence of other physiological factors. Using these systems, the role of the waxes as a transport-limiting barrier has been identified and the factors influencing sorption, permeance and desorption examined. The action of surfactants, in vitro and in vivo, has been briefly addressed in regard to their role in facilitating cuticle penetration; other steps involving surfactant/solute/cuticle are complex, and synergy appears to depend on a number of factors including test species, concentration of active ingredient, surfactant type and concentration. Adjuvants may greatly influence the surface properties of the droplet, predispose the cuticle to solute transport, and enhance pesticide activity. The nature of these complex inter-relationships is discussed. © 1999 Society of Chemical Industry  相似文献   

14.
The influence of a number of commercial nonionic polyoxyethylene surfactants on the foliar penetration and movement of two systemic fungicides, ethirimol and diclobutrazol, was studied in outdoor-grown wheat plants at different growth stages and post-treatment temperatures in two consecutive growing seasons. Both fungicides were applied as ca 0·2 μl droplets of aqueous suspension formulations containing 0·5 g litre?1 of 14C-labelled active ingredient; surfactants were added to these suspensions at concentrations ranging from 0·2-10 g litre?1. To achieve optimum uptake of each fungicide the use of surfactants with different physicochemical properties was required. For diclobutrazol, a lipophilic compound, uptake of radiolabel was best with surfactants of low mean molar ethylene oxide (E) content (5-6) but it was necessary to use concentrations of ca 5 g litre?1 to attain this. The surfactant threshold concentration for uptake enhancement of radiolabel from ethirimol formulations (< 2 g litre?1) was much lower than that for diclobutrazol but surfactants with E contents > 10 induced the greatest amount of uptake. For both fungicides, surfactants with an aliphatic alcohol hydrophobe were generally more efficient in promoting their uptake than those with a nonylphenol moiety. The sorbitan-based surfactant ‘Tween 20’ proved to be an effective adjuvant only for the ethirimol formulation; the uptake enhancing properties of the block copolymer ‘Synperonic PE/F68’ were weak. Uptake performance could not be related to the spreading properties of the respective formulations on the wheat leaf surface or to differences in solubilisation of the two fungicides by the surfactants. Although surfactants could substantially increase the amount of acropetal transport of radiolabel from both fungicides, none of those tested specifically promoted it; a constant proportion of the radioactive dose absorbed by a treated leaf was usually exported away from the site of application. The results are discussed in the light of current theories about the mode of action of surfactants as spray adjuvants.  相似文献   

15.
The effects of octylphenol (OP) and four of its ethoxylated derivatives on uptake into, and distribution within, maize leaf of 2-deoxy-glucose (2D-glucose), atrazine and o, p′-DDT are reported. The surfactants and OP (2 g litre?1 in aqueous acetone) increased the uptake, at both 1.5 and 24 h, of the three model compounds (applied at 1 g litre?1) having water solubilities in the g, mg and μg litre?1 ranges. The uptake of 2D-glucose was positively correlated with the hygroscopicity of the surfactants. The uptake of DDT and atrazine increased with the uptake of the surfactants, being inversely related to their hydrophile:lipophile balance (HLB). Uptake of 2D-glucose and atrazine was enhanced at high humidity, the relative enhancement for atrazine increasing with increasing ethylene oxide (EO) content of the surfactants. A significant proportion of the atrazine and DDT entering the leaf was recovered from the epicuticular wax, the amount of atrazine recovered from the wax increasing with the EO content of the surfactants. The proportion of the surfactants taken up which was recovered from the epicuticular wax was minimal at an EO content of 12.5–16 mole equivalents. The appearance of the deposits on the leaf surface differed markedly among the surfactants, with similar trends for all three chemicals and without visible evidence for infiltration of the stomatal pores. The total quantities of glucose and atrazine translocated were increased by all surfactants but that of DDT was not, despite increases in uptake of up to 7.5-fold. Relative translocation (export from treated region of leaf as a percentage of chemical penetrating beyond the epicuticular wax) was reduced in all cases in the presence of surfactant. Up to 30% of the applied [14C]chemicals was not recovered from the treated leaf after 24 h. The reduced recovery of 2D-glucose, but not that of atrazine and DDT, was largely attributable to movement out of the treated leaf, with approximately 70% of the chemical taken up being translocated basipetally. Loss of atrazine and DDT was a result of volatilisation. There was no evidence that either [14C]2 D-glucose or [14C]atrazine was metabolised to [14C]carbon dioxide.  相似文献   

16.
The distribution of 2.5 mM-[14C]MCPA
  • 1 MCPA = (2-methyl-4-chlorophenoxyacetic acid).
  • and [14C]MCPB
  • 2 MCPB = (4-(2-methyI-4-chlorophenoxy) butyric acid).
  • formulated as sodium salts with 0.05% tergitol, have been investigated when applied to an isolated leaf/agar block sink system of Vicia faba L. Results are presented which show the effect on absorption and translocation of method of application, age of treatment leaf, treatment period, pretreatment with 5 μM ATP and removal of cuticle wax by chloroform wipe treatment. Significant negative correlations between cuticle wax fixation/translocation and leaf tissue content/translocation were recorded for both compounds, particularly MCPB, suggesting the involvement of both physicochemical and metabolic components in the process of absorption and translocation. The nature of the mechanisms involved was further investigated using isolated cuticle/epidermal systems and tightly-coupled mitochondria isolated from roots of V. faba L. The results suggest that non-movement of MCPB in this species is largely due to its enhanced retention within the cuticle and to the fact that it is a more effective uncoupler of oxidative phosphorylation than MCPA. The importance of these findings in terms of the relative efficiency of translocation of MCPA and MCPB when applied in vivo is discussed.  相似文献   

    17.
    J. CORET  A. CHAMEL 《Weed Research》1994,34(6):445-451
    The effect of several ethoxylated octylphenols (OP), nonylphenols (NP) and alcohols (AA) on the penetration of [14C]chlorotoluron through isolated box-tree (Buxus sempervirens L.) leaf cuticles was investigated. The herbicide solution was deposited as droplets onto cuticle discs maintained on agar blocks acting as receivers. The effects on chlorotoluron transfer across the cuticles depended on the degree of ethoxylation of the surfactant. For each series, the chlorotoluron transfer was considerably increased by surfactants with low ethylene oxide (EO) content (3 to 6 EO). This effect appeared 24 h after droplet application, then increased with time. It decreased with further increase in the ethoxylation number, and surfactants with a long ethylene oxide chain (OP16, NP20, NP40 and AA20) had no effect. Surfactant concentration (OP5) had a large influence on chlorotoluron transfer; penetration increased sevenfold when OP5 concentration was raised from 0.01 to 10 g l?1. Diffusion of the two tritiated octylphenols, [3H]OP5 and [3H]OP16, was measured simultaneously during chlorotoluron transfer. The diffusion rate of the two surfactants across the cuticles was similar, but a higher amount of OP5 was retained within the cuticle during transfer. Study of the effect of surfactants on the cuticular waxes using differential scanning calorimetry showed that wax begins to melt at a lower temperature in the presence of the nonylphenols NP9 and NP4. Fusion enthalpy was close to -30 J g?1. Effet de quelques alkylphénols et alcools éthoxylés sur la pénétration du [14C]chlortoluron à travers des cuticules végétales isolées Nous avons testé l'effet de plusieurs octylphénols (OP), nonylphénols (NP) et alcools éthoxylés (AA) sur la pénétration du [14C]chlortoluron à travers des cuticules isolées de feuilles de buis. L'herbicide en solution était déposé sous forme de gouttelettes sur des disques de cuticules plaées sur agar. Les effets observés dépendaient du degré d'ethoxylation du surfactant. Pour chaque série, le transfert du chlortoluron à travers les cuticules était considérablement accru avec les surfactants faiblement éthoxylés (3 à 6 oxydes d'éthylène). Cet effet apparaissait 24 h après l'application des gouttelettes puis augmentait avec le temps. Il diminuait avec l'accroissement du nombre d'éthoxylation et aucun effet n'était observé avec les surfactants à longue chaine d'oxydes d'éthylène (OP16, NP20, NP40 et AA20). La concentration en surfactant (OP5) avait une grande influence sur le transfert du chlortoluron dans l'agar, il augmentait sept fois entre 0.01 et 10 g l?1. La diffusion des deux octylphénols (3H-OP5 et 3H-OP16) a été mesurée simultanément durant le transfert du chlortoluron. La vitesse de diffusion des deux surfactants à travers les cuticules était comparable, mais une quantité plus élevée d'OP5 était retenue dans les cuticules durant le transfert. L'étude par analyse calorimètrique à balayage de l'effet des surfactants sur les cires cuticulaires a montré que la fusion des cires commence à plus faible température en présence des nonylphénols NP9 et NP4. L'enthalpie de fusion était en général voisine de -30 J g?1. Wirkung einiger ethoxylierter Alkylphenole und Alkohole auf den Transfer von [14C]Chlortoluron durch die Pflanzen-Cuticula Die Wirkung verschiedener ethoxylierter Octylphenole (OP), Nonylphenole (NP) und Alkohole (AA) auf die Penetration von [14C]Chlortoluron durch die isolierte Blatt-Cuticula von Buxbaum (Buxus sempervirens L.) wurde untersucht. Die Herbizidlösung wurde als Tröpfchen auf Cuticula-Scheiben, die auf Agarblöcken als Empfänger ausgelegt worden waren, ausgebracht. Die Wirkung auf den Chlortoluron-Transfer durch die Cuticula hing von der Ethoxylierung des Zusatzstoffes ab. In allen Serien wurde der Transfer durch Zusatzstoffe mit niedrigem Gehalt an Ethyloxiden (EO) erheblich gesteigert (3 bis 6 EO). Diese Wirkung trat 24 h nach der Applikation der Tröpfchen ein und nahm dann mit der Zeit zu. Mit dem Anstieg der Ethoxylierungszahl nahm die Wirkung ab, und Zusatzstoffe mit einer langen Ethylenoxidkette (OP16, NP20, NP40 und AA20) waren wirkungslos. Die Konzentration des OP5-Zusatzstoffes hatte großen Einfluß auf den Chlortolurontransfer; die Penetration war versiebenfacht, wenn die OP5-Konzentration von 0,01 auf 10 g l?1 angehoben wurde. Die Diffusion der Octylphenole [3H]OP5 und [3H]OP16 wurde während des Chlortolurontransfers gemessen; die Diffusionsrate war ähnlich, aber von OP5 wurde ein größerer Anteil in der Cuticula zuückgehalten. Die Wirkung der Zusatzstoffe auf das Cuticularwachs wurde calorimetrisch untersucht, und es zeigte sich, daß das Wachs in Gegenwart der Nonylphenole NP9 und NP4 bei niedriger Temperatur zu schmelzen beginnt. Die Fusionsenthalpie lag bei -30 J g?1  相似文献   

    18.
    Structure-concentration–foliar uptake enhancement relationships between commercial polyoxyethylene primary aliphatic alcohol (A), nonylphenol (NP), primary aliphatic amine (AM) surfactants and the herbicide glyphosatemono(isopropylammonium) were studied in experiments with wheat (Triticum aestivum L.) and field bean (Vicia faba L.) plants growing under controlled-environment conditions. Candidate surfactants had mean molar ethylene oxide (EO) contents ranging from 5 to 20 and were added at concentrations varying from 0·2 to 10 g litre?-1 to [14C]glyphosate formulations in acetone–water. Rates and total amounts of herbicide uptake from c. 0·2–μl droplet applications of formulations to leaves were influenced by surfactant EO content, surfactant hydrophobe composition, surfactant concentration, glyphosate concentration and plant species, in a complex manner. Surfactant effects were most pronounced at 0·5 g acid equivalent (a.e.) glyphosate litre?-1 where, for both target species, surfactants of high EO content (15–20) were most effective at enhancing herbicide uptake: surfactants of lower EO content (5–10) frequently reduced, or failed to improve, glyphosate absorption. Whereas, at optimal EO content, AM surfactants caused greatest uptake enhancement on wheat, A surfactants gave the best overall performance on field bean; NP surfactants were generally the least efficient class of adjuvants on both species. Threshold concentrations of surfactants needed to increase glyphosate uptake were much higher in field bean than wheat (c. 2 g litre?-1 and < 1 g litre?-1, respectively); less herbicide was taken up by both species at high AM surfactant concentrations. At 5 and 10 g a.e. glyphosate litre?-1, there were substantial increases in herbicide absorption and surfactant addition could cause effects on uptake that were different from those observed at lower herbicide doses. In particular, the influence of EO content on glyphosate uptake was now much less marked in both species, especially with AM surfactants. The fundamental importance of glyphosate concentration for its uptake was further emphasised by experiments using formulations with constant a.i./surfactant weight ratios. Any increased foliar penetration resulting from inclusion of surfactants in 0·5 g litre?-1 [14C]glyphosate formulations gave concomitant increases in the amounts of radiolabel that were translocated away from the site of application. At these low herbicide doses, translocation of absorbed [14C]glyphosate in wheat was c. twice that in field bean; surfactant addition to the formulation did not increase the proportion transported in wheat but substantially enhanced it in field bean.  相似文献   

    19.
    ‘Sylgard® 309’ organosilicone surfactant is a very effective adjuvant for broadleaf weed control with a number of herbicides. It is also effective in providing rainfastness lo these post-emergence herbicide applications. To elucidate the basis for herbicide activity enhancement and rainfastness, the absorption of [14C]acifluorfen, [14C]bentazone and [14C]‘Sylgard 309’ were studied. Non-ionic surfactants and crop oil concentrates were used as adjuvants with [14C]acifluorfen and [14C]bentazone, respectively, for purposes of comparison. Maximum absorption of [14C]acifluorfen and [14C]bentazone was obtained within 15 min after herbicide application with the organosilicone, versus ≥ 24 h with the convenlional adjuvants. [14C]-Organosilicone absorption closely paralleled that of the [14C]-herbicides. The organosilicone appears to exert its action by increasing greatly herbicide absorption. The enhancement effect did not appear to be a function of reduced surface tension. Rainfastness appeared to be a result of greatly accelerated herbicide penetration through the leaf cuticle in the presence of the organosilicone.  相似文献   

    20.
    The effect of non-ionic nonylphenol (NP) surfactants containing 4–14 ethylene oxide (EO) molecules on the distribution of asulam and diflufenican was investigated in Pteridium aquilinum L. Kuhn and Avena fatua L. The distribution of the herbicides was dependent on the EO content and concentration of surfactant and differed between plant species and herbicide. The surface properties of contact angle, droplet diameter and surface tension were examined. For solutions of asulam, the greatest reductions in contact angle, surface tension and greatest droplet diameter were obtained with surfactants of EO 6.5–10 (at 0.001–0.1%). For solutions of diflufenican, these responses were greatest when applied with surfactant of EO 4. Surfactants of EO 6.5–10 increased the uptake and translocation of [14C]asulam in P. aquilinum, particularly at surfactant concentrations of 0.01 % and 0.1 %. All surfactants increased uptake of [14C]asulam in A. fatua with no significant effects of surfactant EO number or concentration. For both species, there was a positive correlation between the optimum surface characteristics of the herbicide droplets and the uptake of asulam. With diflufenican, greatest uptake and translocation by mature frond tissue of P. aquilinum occurred at the highest concentration of surfactant EO 4; in A. fatua, however, uptake and translocation were not significantly affected by any of the surfactants.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号