首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ergosterol-deficient mutant of Ustilago maydis was compared to the wild type in regard to morphology, growth rate, lipid content, and sensitivity to ergosterol biosynthetic inhibitors. Morphology of mutant sporidia is abnormal and resembles that of fenarimol-treated wild-type sporidia. Doubling time of mutant sporidia is 6.3 hr compared to 2.5 hr for the wild type. The mutant produces 24-methylenedihydrolanosterol, obtusifoliol, and 14α-methylfecosterol; ergosterol is absent. The sterols of the mutant are the same as those which accumulate in wild-type sporidia treated with the sterol C-14 demethylation inhibitors fenarimol, etaconazole, and miconazole. The level of free fatty acids is higher in the mutant than in wild-type cells. Growth of mutant sporidia is not inhibited by fenarimol, etaconazole, and miconazole, or by the sterol Δ14-reductase inhibitor azasterol A25822B at low concentrations which inhibit growth of wild-type sporidia. The residual growth rate of wild-type sporidia treated with low concentrations of the sterol C-14 demethylation inhibitors is about the same as that of untreated mutant sporidia. Therefore, the mutant would not be recognized as resistant in a wild-type population. The mutant is deficient in sterol C-14 demethylation and is similar in all properties studied to wild-type sporidia treated with sterol C-14 demethylation inhibitors. These findings support the contention that inhibition of sterol C-14 demethylation in U. maydis is the primary mode of toxicity of fenarimol, etaconazole, and miconazole. A secondary mode of toxicity is evident for miconazole and etaconazole at higher concentrations but is doubtful for fenarimol.  相似文献   

2.
Resistance to DMI fungicides is a problem in both agriculture and medicine. Several mechanisms of resistance exist, but, as yet, few have been characterised in field resistant strains of plant pathogens. One approach to evaluating the role of mutations in the sterol 14α demethylase (14DM) target site requires cloning this gene and confirming its identity by complementation in an appropriate mutant. The azole‐resistant mutant, Erg 40, of Ustilago maydis which is totally blocked at the 14α demethylation step in sterol biosynthesis seems to be suitable for such expression studies. Transformation of Erg 40 with a plasmid containing the yeast 14α demethylase (CYP51A1) gene removed the block in sterol biosynthesis and generated azole‐sensitive transformants. Detailed analysis of these transformants failed to detect the presence of the yeast gene and suggested, instead, that changes in sterol biosynthesis resulted simply from the transformation protocol and not from the incorporation of extracellular DNA. Subsequent sequence analysis has revealed a mutation in the 14α demethylase gene of Erg 40. The results suggest that azole resistance in Erg 40 is not simply controlled by this mutation but involves some additional regulatory function, and consequently Erg 40 is not suitable for complementation studies with CYP51A1 genes. © 2000 Society of Chemical Industry  相似文献   

3.
Pyrifenox, a new pyridine derivative, proved to be an inhibitor of ergosterol biosynthesis, blocking the pathway at the C-14 demethylation step in Ustilago maydis (CD.) Cor da. In treated sporidia the incorporation of [1-14C]acetic acid into ergosterol and squalene was reduced and the incorporation into sterols which retain the C-14 methyl group, mainly 24-methylenedihydrolanosterol and obtusifoliol, was increased. In addition, treatment with pyrifenox markedly reduced the incorporation into sterol esters. It is possible that the methylated sterols may be unsuitable substrates for the esterification enzyme.  相似文献   

4.
Resistance to azole fungicides in Ustilago maydis (DC) Corda has been examined using the mutant erg 40, a newly isolated mutant TriR-1 and erg 40 revertants. Azole-induced growth arrest of the wild type did not support an obvious role for 3,6-diol in the mode of action has is clear for Saccharomyces cerevisiae Meyer ex Hansen. The level of microsomal P450 of erg 40 was identical to that of the parent, and reversion analysis showed no evidence of mutation in the sterol Δ5(6) desaturase, as would be expected for a S. cerevisiae mutant accumulating 14α-methylfecosterol. Resistance appeared to be due to a single mutation in P450 14αdm. It is proposed that the orthologous forms of fungal sterol Δ5(6) desaturases have varied responses when attempting to utilise 14α-methylated substrates.  相似文献   

5.
The ED50 values and resistance factors of 20 fungicides that all act as inhibitors of the C-14 demethylation of 24-methylenedihydrolanosterol were determined for one wild-type and four resistant strains of Ustilago avenae. All fungicides were cross-resistant to each other; however, the resistance factors varied considerably, ranging from 50 (triadimenol) to 2·2 (miconazole). A tentative structural requirement for low resistant factors was the presence of two phenyl rings separated from each other by at least three atoms. Labeling of lipids with [14C]acetate in the absence and presence of the inhibitors and subsequent sterol analysis revealed that the variable resistance factors were not related to the presence of a second target site. In spite of reported second modes of action of fenarimol, tebuconazole or miconazole, accumulation of C-14 sterol precursors in both sensitive and resistant isolates was necessary to accomplish growth inhibition.  相似文献   

6.
Joint action between a phosphorothiolate (PTL) fungicide, iprobenfos, and a sterol demethylation inhibitor (DMI), pefurazoate, was tested by crossed paper technique on three types of field isolates of Pyricularia oryzae Cavara that differed in PTL sensitivity and metabolism. Mutual antagonism in anti-fungal action between iprobenfos and pefurazoate was observed in a wild-type field isolate of the fungus sensitive to PTL and in an isolate moderately resistant to PTL, but not in a PTL-resistant isolate lacking the ability to metabolize PTL. Antagonism of the antifungal action of iprobenfos by pefurazoate seemed to be a result of inhibition of activation by cleavage of the P-S bond of iprobenfos mediated by mixed-function oxygenase (mfo) activity, while antagonism of the anti-fungal action of pefurazoate by iprobenfos may be caused by the binding of pefurazoate by large amounts of an iprobenfos-induced mfo which results in reduced inhibition of ergosterol biosynthesis. In the PTL-resistant isolate, the mutually antagonistic action was not observed, presumably because the induction of the mfo-metabolizing iprobenfos was lacking. Similar antagonism was also observed when another PTL, edifenphos, was used instead of iprobenfos, and when other DMIs, propiconazole, prochloraz and hexaconazole were used instead of pefurazoate. The results of the present experiment indicate that DMIs may also bind to and inhibit an inducible type of fungal mfo which metabolizes xenobiotics, and that PTLs may be activated by an mfo prior to their anti-fungal action.  相似文献   

7.
为明确甘肃省枸杞炭疽病菌对甾醇脱甲基抑制剂类药剂 (DMIs) 的敏感性,采用菌丝生长速率法测定了采自甘肃省靖远县3个地区及景泰县3个地区共102株枸杞炭疽病菌对苯醚甲环唑、戊唑醇、丙环唑及氟硅唑的敏感性,分别就不同年份、不同地区间胶孢炭疽复合种和尖孢炭疽复合种对4 种 DMIs 杀菌剂的敏感性差异进行了分析。结果表明:供试46 株枸杞胶孢炭疽复合种整体上对苯醚甲环唑、戊唑醇、丙环唑和氟硅唑仍表现为敏感,EC50值分别在0.28~1.20、0.11~2.98、0.32~2.84和0.35~3.85 μg/mL之间;而56株尖孢炭疽复合种对4种药剂的敏感性则出现了不同程度分化,部分菌株疑似已出现敏感性下降现象,其中,对苯醚甲环唑、戊唑醇、丙环唑和氟硅唑敏感性最低的菌株EC50值分别为1.63、3.80、6.21和4.74 μg/mL。不同年份间采集的枸杞胶孢炭疽复合种和尖孢炭疽复合种对4种杀菌剂的敏感性均存在显著差异,2017年采集的菌株敏感性相对更低,4种杀菌剂对胶孢炭疽复合种的平均EC50值分别为 (0.84 ± 0.03)、(1.23 ± 0.13)、(1.19 ± 0.09) 和 (1.69 ± 0.17) μg/mL,对尖孢炭疽复合种的平均EC50值分别为 (1.06 ± 0.03)、(2.25 ± 0.15)、(2.43 ± 0.20) 和 (2.85 ± 0.19) μg/mL。不同地区枸杞炭疽病菌对4种杀菌剂的敏感性表现不同,其中靖远县五合镇的胶孢炭疽复合种对4种杀菌剂敏感性最低,平均EC50值分别为 (0.79 ± 0.12)、(1.28 ± 0.87)、(1.39 ± 1.05) 和 (1.74 ± 1.04) μg/mL,景泰县草窝滩镇的胶孢炭疽复合种对苯醚甲环唑和丙环唑敏感性最高,平均EC50值为 (0.28 ± 0.10) 和 (0.46 ± 0.10) μg/mL,对戊唑醇和氟硅唑敏感性最高的胶孢炭疽复合种来自景泰县寺滩乡,平均EC50值为 (0.42 ± 0.16) 和 (0.65 ± 0.09) μg/mL;不同地区间采集的尖孢炭疽复合种对4种杀菌剂的敏感性则不存在显著差异。研究结果可为甘肃省枸杞炭疽病防治中杀菌剂的合理使用及延缓抗药性发展提供依据。  相似文献   

8.
 本文根据玉蜀黍黑粉菌(Ustilago maydis )的UmPep1、UmPit2和UmSee1基因各设计4套环介导等温扩增(LAMP)引物,从中筛选出1套引物对LAMP反应体系进行3因素(Bst DNA聚合酶浓度、Mg2+浓度、内外引物浓度比)3水平的优化试验。并对优化的U. maydis LAMP反应体系进行特异性、灵敏度及田间检测可行性试验。特异性试验表明,该方法能特异性检测U. maydis,而与其他病原菌的DNA没有交叉反应;灵敏度试验表明,该反应体系的最低检出限为44 fg·μL-1 pEasy-Pep质粒DNA,制作的标准曲线可对U. maydis进行定量分析。该方法也适用于在U. maydis侵染前或侵染早期对田间样品进行检测,对现场采集的172份田间样品进行检测,其中140个样品显示为阳性。本研究所建立的LAMP体系具有特异性好、灵敏度高、重复性好的特点,并能在45 min内完成对田间样品的检测,是快速、定量检测U. maydis的有效手段。  相似文献   

9.
10.
After nitrosoguanidine- or UV-mutagenesis, three different benzimidazole-resistant phenotypes were isolated on media containing benomyl or a mixture of carbendazim and diethofencarb from wild-type strains of Botrytis cinerea Pers. ex Fr. and Ustilago maydis (D.C.) Corda. Mutants of B. cinerea with moderate (MBr) or low (LBr) resistance to benzimidazoles and high resistance to diethofencarb (Dr) were isolated from the fungicide-mixture-containing medium in low frequency (7–1 × 10?8). Only benzimidazole-resistant strains highly sensitive to diethofencarb (HBrDs) were identified on benomyl-containing medium at a frequency of 6.6 × 10?6. Fitness-determining characteristics such as sporulation, germination and germ-tube elongation, were found to be reduced significantly in the mutants of B. cinerea that were resistant to both benzimidazoles and diethofencarb. However, pathogenicity of a MBrDr mutant strain on cucumber seedlings was equal to that of the wild type and a carbendazim + diethofencarb mixture was found to control grey mould caused by the wild type, but was not effective when the plant cotyledons were infected by the mutant strain. Three benzimidazole-resistant phenotypes (HBrDs, HBrDr, MBrDr) were isolated easily in U. maydis from a benomyl-containing medium. In contrast with B. cinerea, only one-tenth of the benzimidazole-resistant strains were sensitive to diethofencarb. Genetic analysis of benzimidazole resistance in U. maydis showed that the three benzimidazole-resistant phenotypes were due to three allelic mutations in a single gene and one of them was responsible for the negative cross-resistance between benzimidazoles and diethofencarb.  相似文献   

11.
Imazalil and fenpropimorph caused morphological changes in sporidia of Ustilago maydis and in germinating conidia of Penicillium italicum, as observed by fluorescence microscopy using an optical brightener. Sporidia of U. maydis appeared swollen, distorted, multicellular and, sometimes, branched; conidia of P. italicum swelled in size, and extension of the germ tubes was strongly inhibited. Mycelium of P. italicum, treated with fenpropimorph, showed much enlarged hyphal diameters and relatively short distances between septa. Imazalil and fenpropimorph also caused an irregular deposition of β–1,3 and β-1,4 polysaccharides, probably chitin, in U. maydis and P. italicum. The latter phenomenon is discussed in relation to the following observed effects of fungicides that inhibit ergosterol biosynthesis: differences in effect on the morphology of budding and filamentous fungi; preferential inhibition of yeast-hypha conversion in dimorphic fungi; disorganisation of septum formation in budding fungi; and inhibition of spheroplast formation from budding fungi.  相似文献   

12.
A variety of thiophene carboxamide compounds have been synthesized and tested on the succinate dehydrogenase complex (SDC) in mitochondria from a wild-type strain and carboxin-resistant strains of Ustilago maydis (corn smut). The site of action of thiophene carboxamides is identical to that of carboxin (5,6-dihydro-2-methyl-1,4-oxathiin-3-carboxanilide) and thenoyltrifluoroacetone, that is, the succinate-ubiquinone reductase (complex II) span in the mitochondrial electron transfer chain. This investigation reveals new molecular structures which are strong inhibitors of wild-type and carboxin-resistant SDCs. The 5-amino analog of the parent anilide, 3-methylthiophene-2-carboxanilide (I), proved to be an especially potent inhibitor of the wild-type SDC (I50, 0.019 μM). Analogs of (I) such as 4′-carboethoxy, 4′-nbutyl, 4′-phenyl, and 4′-benzoyl were negatively correlated in activity to the carboxanilide (I) with respect to resistance level. A number of structures showed considerable selectivity for mutated SDCs from both highly and (particularly) moderately carboxin-resistant SDCs of U. maydis, markedly lowering the resistance level, i.e., the degree of resistance. Thus, in addition to the oxathiins, specific structural groups of thiophene carboxamides can also alleviate or reverse the effect of carboxin-selected mutation with reference to inhibition of the SDC. Of important significance was the finding that molecular selectivity for mutated, carboxin-resistant SDCs can be influenced by replacement of an oxathiin by a thiophene heterocyclic ring as well as by the substitutive group on the amide nitrogen, permitting different categories of mutant types and even mutants within a single category to be distinguished from one another. With all the structural combinations available, it appears quite possible, in terms of inhibition, to overcome any type of mutation in a fungal SDC which arises through selection by carboxin or other carboxamide compounds. A reasonable correlation generally exists between inhibition by thiophene carboxamides of the SDC and sporidial growth of wild-type and carboxin-resistant strains of U. maydis. A permeability barrier to 4′-substituted analogs of (I) was encountered in the wild-type strain but not mutant strains. Excellent protectant activity against bean rust (Uromyces phaseoli) was obtained with the 3′-nhexyl, 3′-nhexyloxy, and 4′-phenoxy analogs of (I).  相似文献   

13.
The systemic fungicide carboxin (5,6-dihydro-2-methyl-1,4-oxathiin-3-carboxanilide) and structurally related analogs are powerful inhibitors of succinate oxidation in mitochondria isolated from a variety of sources. The site of action which is, apparently, also that for thenoyltrifluoracetone, is in the complex II (succinate-ubiquinone reductase) region of the mitochondrial electron transfer chain. The succinic dehydrogenase complex (SDC) in mitochondria from carbon-resistant mutant strains of Ustilago maydis and Aspergillus nidulans is resistant to the fungicide in vitro. The current study shows that certain oxathiin carboxamides are selectively active against particular mutated SDCs of U. maydis and A. nidulans. Molecular structures affecting the phenotypic expression of mutation to carboxin resistance in U. maydis do not appear to affect similarly such expression in A. nidulans and vice versa. Of particular interest was the discovery of oxathiin carboxamides, e.g., 4′-phenylcarboxin, which were more inhibitory to the enzyme complex from one category of carboxin-resistant mutants of U. maydis than from the wild-type strain. Although such negative correlation between carboxin and other carboxin analogs has not been observed in studies with other categories of mutants, structures which drastically lower the resistance level were found in all cases. It appears that for any given mutation affecting carboxin sensitivity of the SDC in fungi, a specific structural group of carboxamides (or even a specific carboxamide) may be found which will alleviate or reverse the effect of the mutation in terms of inhibition of the SDC. If the mutations alter a protein receptor site for carboxamides, such mutations might be expected to influence the binding of carboxins of different structure. In essence, then, different molecular structures can “recognize” different alterations in the mutated enzyme complex and inhibit effectively. With few exceptions, the inhibition by carboxamides of cell growth of wild-type and carboxin-resistant strains of U. maydis and A. nidulans closely paralleded the inhibition of their respective SDCs. Although the few analogs tested were found unable to control corn smut systemically in seedlings artificially inoculated with compatible carboxin-resistant strains, control of naturally occurring carboxin-resistant strains of pathogenic fungi may be possible using particular structural analogs of carboxin which selectively inhibit the mutant organisms.  相似文献   

14.
Pfeufer EE  Ngugi HK 《Phytopathology》2012,102(3):272-282
Orchard management practices, such as destroying of overwintered inoculum and limiting the number of fungicide applications, are often recommended as tactics for slowing the development of resistance to sterol demethylation-inhibitor (DMI) fungicides in populations of Venturia inaequalis. However, there is little quantitative evidence relating the use of such practices to levels of resistance in orchards. The aim of this study was to evaluate the sensitivity of V. inaequalis isolates from Pennsylvania to DMI fungicides, and to identify orchard management factors related to the incidence of resistant isolates. In total, 644 single-spore V. inaequalis cultures obtained from 20 apple orchards in 2008 or 2009 were tested for sensitivity to myclobutanil, fenbuconazole, or difenoconazole. Growers provided management history of the sampled plots. Widespread shifts toward resistance to the three fungicides were noted, with mean effective concentration for 50% inhibition (EC(50)) values of 2.136, 0.786, and 0.187 μg/ml for myclobutanil, fenbuconazole, and difenoconazole, respectively. Cross resistance to the three fungicides was documented in high correlation (Spearman's r > 0.6) between mean EC(50) values for 14 orchards. Based on a 0.5-μg/ml threshold, 66 and 26% of isolates were resistant to myclobutanil and fenbuconazole, respectively, and 22% were cross resistant to the two fungicides. A significant between-year shift toward increased resistance was noted in two of three orchards surveyed in both years. Failure to use dormant copper sprays, older trees, larger orchards, orchards with ≤10 cultivars, and application of >4 DMI sprays were positively correlated (0.0001 < P < 0.05) with the incidence of resistant isolates. Isolates from orchards with >4 DMI sprays were four times as likely to be resistant to fenbuconazole (odds ratio = 4.57; P = 0.015). Isolates from orchards without dormant copper sprays were twice as likely to be cross-shifted toward resistance to all three fungicides (odds ratio = 1.76; P = 0.048). Results identify management practices that can reduce the risk of V. inaequalis developing resistance to DMI fungicides.  相似文献   

15.
16.
The systemic fungicide, carboxin (5,6-dihydro-2-methyl-1,4-oxathiin-3-carboxanilide) and a variety of carboxamide compounds exhibit a marked specificity for Basidiomycete fungi. This unique specificity resides in the mitochondrial succinic dehydrogenase complex (SDC) of sensitive Basidiomycetes such as Ustilago maydis, the corn smut fungus. The present study examines in detail the structure-activity relationships of 93 carboxamide compounds and the SDC of two carboxin-sensitive organisms, U. maydis and a Basidiomycetous yeast, Cryptococcus laurentii. It has been possible to elucidate substantially the requirement in molecular structure needed for inhibition of the mitochondrial SDC. With few exceptions, a good correlation exists between the inhibitory activity of carboxamides towards the SDC of U. maydis and C. laurentii and the inhibition of growth of carboxamide-sensitive fungi, both in vitro and in vivo on the diseased plant. The structure-activity results were used as a basis for the synthesis of new, fungicidally-active carboxamides. The compounds found to be most active against the mycelial growth of Rhizoctonia solani were also tested on spore germination or mycelial growth of non-Basidiomycete fungi. Three carboxanilides (3-methyl-thiophene-2-carboxanilide, 3′-methyl-2-methylbenzanilide and 3′-methyl-2-ethylbenzanilide) had a fungitoxic spectrum which extended beyond Basidiomycetes. The spectrum of fungicidal activity of carboxanilides appears to be altered not only by substitution in the aniline ring, but by the nature of the ring attached to the carbonyl. No correlation was found between the inhibitory activity of oxathiins and benzanilides and their calculated partition coefficients.  相似文献   

17.
The fine structure and sterol composition of wild-type and triazole-resistant laboratory strains of Ustilago avenae was investigated by electron microscopic and biochemical methods. The growth rate of the mutants was only slightly affected by a fungicide (triadimefon) concentration of about 0.1 mg/ml, whereas the wild-type cells were completely inhibited. Biochemically the sterol composition of wild-type and triazole-resistant strains did not differ. In freeze-fracture electron microscopy no ultrastructural differences were observed between the different untreated strains (wild and resistant). Filipin labeling allowed the localization of ergosterol in the plasmalemma (PF and EF). Generally, wild-type samples and mutants exhibited a clear pattern of filipin-sterol (FS-) complexes. These results are in accord with the biochemical experiments. Neither a modification of the sterol composition nor an altered localization of sterols seemed to be the prime cause of resistance in U. avenae mutants. Alternative explanations for the resistance mechanism are discussed.  相似文献   

18.
The spectral interactions of 45 insecticide synergists and related compounds with oxidized and reduced cytochrome P-450 from microsomes of insecticide-resistant and -susceptible house flies were investigated. The type III interaction typical of piperonyl butoxide was the most common spectral interaction for the compounds studied. In addition to this, several other varients of the type III interaction were noted. In general these responses with house fly microsomes were similar to those reported for mammals, although some minor species and strain differences were observed. The cytochrome P-450 from susceptible house flies, although reported previously not to exhibit type I difference spectra with many xenobiotics, was found to elicit this spectral response with several methylenedioxyphenyl compounds.  相似文献   

19.
2-Hydroxy-5-methyl-6-ethoxycarbonylpyrazolo(1,5-a)pyrimidine (PP), a conversion product of pyrazophos, shows considerable toxicity toUstilago maydis, when administered to this fungus in a solution at pH<5. Evidence was obtained thatU. maydis may convert pyrazophos in to PP, and that the latter compound is the toxic principle responsible for the action of pyrazophos. By UV-irradiation of sporidia no PP-resistant mutants were obtained. This does not support the hypothesis that this toxicant acts by specific inhibition of one enzyme system.  相似文献   

20.
The strains of Botrytis cinerea or Ustilago maydis selected on fenarimol, triarimol, or triadimefon were also resistant to the other inhibitors of sterol C-14 demethylation; the sterol composition of the strains was normal. Among the isolates of U. maydis resistant to dodemorph, fenpropidin, fenpropimorph and tridemorph, some were resistant to the 15-azasteroid A 25822B and did not contain ergosterol. The other strains remained sensitive to A 25822B and had a normal sterol composition. All the resistant isolates and the wild-type were inhibited to the same extent by nystatin and pimaricin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号