首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 130 毫秒
1.
The effect of fungicide spray droplet density (droplet cm-2), droplet size, and proximity of the spray droplet deposit to fungal spores was investigated with Mycosphaerella fijiensis ascospores on the banana (Musa AAA) leaf surface for two contact fungicides: chlorothalonil and mancozeb. When droplet size was maintained at a volume median diameter (VMD) of 250 μm while total spray volume per hectare changed, M. fijiensis ascospore germination on the leaf surface fell below 1% for both fungicides at a droplet deposit density of 30 droplet cm-2. At a droplet deposit density of 50 droplet cm-2, no ascospores germinated in either fungicide treatment. When both droplet size and droplet cm-2 varied while spray volume was fixed at 20 litre ha-1, ascospore germination reached 0% at 10 droplet cm-2 (VMD=602 μm) for both fungicides. At lower droplet densities (2–5 droplet cm-2 VMD=989 μm and 804 μm respectively), ascospore germination on the mancozeb-treated leaves was significantly lower than on the chlorothalonil-treated leaves. The zone of inhibition surrounding a fungicide droplet deposit (VMD=250 μm) on the leaf surface was estimated to extend 1·02 mm beyond the visible edge of the spray droplet deposit for chlorothalonil and 1·29 mm for mancozeb. The efficacy of fungicide spray droplet deposit densities which are lower than currently recommended for low-volume, aerial applications of protectant fungicides was confirmed in an analysis of leaf samples recovered after commercial applications in a banana plantation. Calibrating agricultural spray aircraft to deliver fungicide spray droplets with a mean droplet deposit density of 30 droplet cm-2 and a VMD between 300 and 400 μm will probably reduce spray drift, increase deposition efficiency on crop foliage, and enhance disease control compared to aircraft calibrated to spray finer droplets. © 1997 SCI.  相似文献   

2.
Abstract

Efficiency of pesticide application can be improved if more consideration is given to where and when the active ingredient is most needed, and the optimum droplet size selected for a given target. Even when minimal volumes of spray are applied concentrate sprays are not justified as a greater proportion of the spray is collected on the target. Sprays with a narrow range of droplet size can be produced from ligaments thrown from centrifugal energy nozzles; droplet size being inversely proportional to the rotational speed.  相似文献   

3.
BACKGROUND: Water-soluble polymers are increasingly added to herbicide and pesticide formulations at very low concentrations (100-1000 mg L(-1)) in order to control the spray characteristics, notably to reduce spray drift and influence droplet bounce. The incorporation of polymeric adjuvants improves the efficacy of the spray solutions, thus enabling crop growers to maximise the performance of agrochemical sprays at lower dose rates of active ingredient. It is important to establish a fundamental understanding of how polymers influence the processes involved in droplet deposition.RESULTS: The shear and extensional viscosities of a series of high molecular mass (M(w)) poly(acrylamides) (M(w) approximately 10(6)-10(7)) have been determined at very low concentrations (100-1000 mg L(-1)). The polymer solutions demonstrated typical shear thinning characteristics under shear, and strain hardening behaviour under extension above a critical strain rate. The presence of the polymers was shown to increase the size of droplets produced in atomisation using an agricultural spray nozzle, as measured by laser diffraction. This was attributed to the increase in the extensional viscosity at the strain rates generated under pressure in the spray nozzle and was a function of both polymer concentration and M(w). In addition, the presence of polymer was found to have a significant influence on droplet bounce.CONCLUSIONS: The presence of very low concentrations of high molecular mass poly(acrylamides) significantly influences the size of droplets formed on atomisation and subsequent bounce characteristics. Large extensional viscosities generated above a critical strain rate are responsible for both processes.  相似文献   

4.
Effects of droplet size and carrier volume on foliar uptake and translocation of gibberellic acid (GA3) and 2,4-D were investigated. Simulated spray droplets were applied to primary leaves of 10-day-old Phaseolus vulgaris (cv Nerina) in droplet sizes and carrier volumes ranging from 0.5 to 10 μl and 10 to 200 μl per leaf, respectively. Doses of GA3 (2 μg per leaf) and 2,4-D (100 μg per leaf) were held constant. Total uptake of GA3 approached a penetration equilibrium within 24 h after application, but uptake of 2,4-D continued to increase. Decreasing droplet size and/or increasing carrier volume increased GA3 and 2,4-D uptake. Translocation to stem and roots was positively related to total uptake. A positive linear relationship between the logarithm of the total droplet/leaf surface interface area and 2,4-D uptake or translocation was found, but for GA3 this relationship was quadratic. Potential mechanisms of the effects of spray application factors on foliar uptake are discussed. © 1999 Society of Chemical Industry  相似文献   

5.
The addition of 20% molasses to water did not reduce the rate of evaporation of water from spray droplets. The 20% molasses droplets evaporated at the same rate as water droplets until ca 20% of their volume was left. When sprayed under field conditions at 30% relative humdity (r.h.) the volume median diameter (v.m.d.) of the 20% molasses spray (132 μm) was larger than the v.m.d. of the water spray (116 μm) and more droplets smaller than 19 μm were captured on magnesium oxide slides than with the water spray. The addition of molasses improved the impaction efficiency of droplets by increasing their density, and increased the minimum size to which a given droplet could evaporate.  相似文献   

6.
Background: The efficacy of aerial electrostatic‐charged sprays was evaluated for spray deposit characteristics and season‐long control of sweet potato whitefly (SWF), Bemisia tabaci Genn. biotype B (aka B. argentifolii Bellows & Perring), in an irrigated 24 ha cotton field. Treatments included electrostatic‐charged sprays at full and half active ingredient (AI) label rate, uncharged sprays and conventional sprays applied with CP nozzles at full label rate with several different insecticides. Results: Spray droplet size was significantly smaller for electrostatic‐charged sprays than for conventional sprays in top‐ and mid‐canopy locations. The seasonal mean numbers of viable eggs and live large nymphs on cotton treated with electrostatic‐charged sprays were comparable with those on cotton treated with conventional applications. Lethal concentration (LC50) for adults for electrostatic‐charged sprays was comparable with that for conventional sprays. Conclusion: The amenability of electrostatic‐charged sprays to a wide array of pesticides with different chemistries should be a useful tool in combating insect resistance. Results reported here suggest that the potential exists for obtaining increased efficacy against whiteflies using an electrostatic spray charging system, and that additional research will be required to improve charge‐to‐mass (Q/M) ratio in order to increase deposition of pest control materials to the lower surfaces of cotton leaves where the whiteflies reside. Copyright © 2009 Society of Chemical Industry  相似文献   

7.
The formation of a spray is the result of interaction between the nozzle type and the spray liquid. When adjuvants lower the surface tension, a shift to a finer spray quality might be expected. Increases in viscosity might cause coarser sprays. The spray pressure, nozzle type and spray liquid determine spray performance. Adjuvants that cause droplets of oil in the spray mixture, for example crop oils, petroleum oils and even some water-insoluble emulsifiers and surfactants, may unexpectedly increase the spray droplet size. In cases where a finer spray is obtained, the volume fraction of drops smaller than 100 microm diameter, V(100), is expected to increase, but for some adjuvants a decrease in V(100) is observed. Finally, spray droplets may also differ when the concentration of the applied adjuvants changes. An overview based on reports in the literature is given of the effects of different classes of adjuvants used for agricultural cropping on spray droplet spectra. The effects of these adjuvants on spray formation depend on the type of nozzle in combination with the applied pressure.  相似文献   

8.
Off-target drift and deposition of aerially applied deltamethrin sprays in an agricultural situation were determined using stainless steel (20 × 40 cm) ground deposit samplers and ‘Rotorods’. Off-target spray deposition decreased exponentially with distance in situations where applications were made in winds with speeds equal to, or just above, maximum label limits for aerial application (8 km h?1). The results are compared with those of previous studies. The effectiveness of a 100-m ‘no spray’ buffer zone in reducing off-target deposit is evaluated.  相似文献   

9.
A non-volatile oil-based spray mix of a low-vapour-pressure insecticide, aminocarb, containing an oil-soluble red dye was applied at a dosage rate of 70 g AI in 1-5 litre ha?1, using a fixed wing aircraft equipped with four ?Micronair’?® AU3000 atomizers, over a 1000 × 500 m spray block selected in Bathurst, New Brunswick, Canada. Spray was applied twice, at an interval of five days, to provide a total dosage rate of 140 g AI in 3.0 litre ha?1. Spray mass recovery was assessed on glass plates and droplets were collected on ?Kromekote’?® cards, both at ground level. The stain sizes were grouped into different categories. The area containing the stains was excised, and the aminocarb present was quantified by gas-liquid chromatography (GLC). The mass of aminocarb per droplet in each stain size category was evaluated. From the mass, the spherical droplet diameter (d), number and volume median diameters (DN.5 and Dv.5 respectively), a new parameter [mass (of aminocarb) median diameter] (DM.5), and the droplet size spectra were calculated. The DM.5 for the first application was 56 μm, which was identical to the Dv.5. whereas the DN.5 was smaller at 45 μm. The corresponding values for the second application were: DM.5 = Dv.5 = 63 μm, but the DN.5 was 53 μm. Because the spray mix was non-volatile, all the droplet size spectra parameters were identical both at spray release height and at ground level. The present study has provided, for the first time in the literature, a novel method to determine directly the spherical diameters of the droplets deposited on artificial samplers, without having to go through the tedious procedures of spread factor measurements under laboratory conditions. In fact, the present study has made it possible to calculate spread factors under field conditions, by using the stain diameters measured and the spherical diameters calculated from the aminocarb concentration levels.  相似文献   

10.
The distribution and biological activity of spray deposits resulting from aerial applications of diluted and undiluted Bacillus thuringiensis, ‘Dipel 64AF’ against the gypsy moth, Lymantria dispar L., were examined in oak stands in south-eastern Ontario, Canada. The sprays were applied by fixed-wing aircraft equipped with four ‘Micronair AU4000’ atomizers. Application of diluted formulation at 30 BIU ha?1 in 6.0–6.4 litre generally resulted in a higher droplet density (10–28 cm ?2 leaf) than application of undiluted product at the same dosage rate in 1.8 litre ha?1 (4–10 cm ?2). However, spray deposits of undiluted product with a volume median diameter (Dv.5) of 90–130 μm caused as much mortality of gypsy moth larvae in bioassays of sprayed foliage as deposits of diluted product with a Dv.5 of 150–350 μm despite a two- to three-fold reduction in droplet density. Our data suggest that by using fine spray atomization, undiluted application of these formulations can offer the same efficacy against gypsy moth as coarsely atomized sprays of diluted product.  相似文献   

11.
Field experiments have revealed that some species of spiders are more sensitive to insecticides than others. Among many factors influencing their susceptibility, foraging mode seems to play an important role. Aspects of foraging mode that appear to be relevant are whether the spider is diurnal or nocturnal, a hunter or a web-maker. Six spider species, Araniella opisthographa, Clubiona neglecta, Dictyna uncinata, Pardosa agrestis, Philodromus cespitum and Theridion impressum were used in the study. P agrestis and P cespitum are diurnal hunters that may come into direct contact with insecticide. C neglecta is nocturnal and so is exposed to residues only. The remaining three species are web-makers building webs that vary in the extent to which they can protect the spider from direct spray. The effect of sprays was tested under laboratory conditions (Potter tower) with three commercial insecticides, an insect growth regulator (hexaflumuron), a selective organophosphorus (phosalone) and a non-selective pyrethroid insecticide (permethrin) using a four-day exposure period. Data were analysed using bootstrap method and randomization tests. The results obtained showed that hunting spiders were more susceptible to the insecticides tested than web-makers (in their webs). Diurnal hunting spiders (Philodromus and Pardosa) were severely affected only by permethrin. A high mortality was observed for the nocturnal hunter, Clubiona, after application of phosalone and permethrin. This species appears to be very sensitive to residues of both insecticides. Comparing the effect on web-making spiders, with and without webs, it was observed that the sparse orb-web of Araniella did not protect its owner at all, but the dense cribellate and frame-webs of Dictyna and Theridion, respectively, reduced the mortality caused by permethrin significantly in comparison with specimens without webs. Of other factors studied, posture (normal and upside-down position) did not influence the susceptibility. Mortality increased slightly with body size after permethrin application. © 1999 Society of Chemical Industry  相似文献   

12.
Summary. Difficulties of access met with in Britain when applying dalapon to emergent water weeds in drainage channels led to work starting in 1964 on the development of a method of accurate aerial application of aqueous solutions of herbicide. The narrow, sinuous nature of the targets and the proximity of susceptible crops made it necessary to minimize spray drift and maintain a constant height and a slow speed. Nozzles designed to give large droplets were tested for droplet size and distribution. Selected nozzles were then tested from a helicopter in the field and the effect of their spray characteristics on the biological performance of dalapon was assessed. No daman occurred as a result of spray drift and satisfactory control of Phragmites communis, Typha angustifolia and T. latifolia was achieved with a lower dose of dalapon in a lower volume of spray than previously considered necessary for ground applications.
Une nouvelle technique pour l'application précise d'herbicides par voie aérienne sur les canaux de drainage, avec des risques négligeables d'entrainement  相似文献   

13.
为提高草甘膦防治空心莲子草Alternanthera philoxeroides时药剂的有效利用率,用丽春红S为示踪剂研究了草甘膦药液在空心莲子草叶片的沉积特性。结果表明,用体积中径(VMD)149.5~233.7 μm的雾滴喷雾,草甘膦在空心莲子草叶片上的沉积量在体积中径为157.3 μm时最多,随着雾滴体积中径增大,沉积量减少。雾滴体积中径157.3 μm与施药液量339 L/hm2处理的沉积量是雾滴体积中径233.4 μm与施药液量694.5 L/hm2处理的1.54倍。施药液量超过382.5 L/hm2时,草甘膦药液的流失明显增多。800 mg/L草甘膦药液在空心莲子草叶片上的最大稳定持留量约为 4.92 μg/cm2。结果表明,喷雾施药时采用小雾滴和较低施药液量,可大幅度提高草甘膦在空心莲子草上的沉积量。  相似文献   

14.
The amount of agricultural spray that drifts into a wetland from an adjacent crop field is influenced by vegetation along the field boundary or any intentional setback distance (buffer zone) between the sprayer and the edge of the arable field. In this study, spray tracer drift deposits were measured in a simulated wetland area under different conditions of wind speed and buffer zone width. The effect of an artificial windbreak at the upwind edge of the simulated wetland was also evaluated. A level of tolerance of 0.1% of the in-swath spray deposition was established as a no-effect level for the response of aquatic plants to common herbicides. Our results indicate that a vegetated 10-m field margin (eg a fencerow) alone provides adequate protection from herbicide drift into a wetland area under wind conditions normally considered acceptable for spraying. For high winds (> 4m s(-1)) when field spraying would not normally be advised, adequate protection was afforded by the same 10-m margin plus a dense windbreak (25% porosity) or by the margin plus a 20-m buffer zone.  相似文献   

15.
Experiments have been carried out in northern Nigeria to study the deposition and drift of the small spray droplets (70–130 μ v.m.d.), utilised in the application of carbaryl plus an indicating dye, to cotton, at very low volume rates (6–12 litre/ha) using water-based formulations and at ultralow volume rates (3 litre/ha) using waterless formulations. The character of the deposition and extent of drift have been shown to relate to spray droplet size, formulation and a combination of meteorological factors. Practical recommendations have been evolved for very low volume and ultralow volume techniques in which the time of application is restricted to those periods of the day which favour high recovery.  相似文献   

16.
Conidia of the fungus Metarhizium flavoviride were formulated in a paraffinic oil, ‘Shellsol’ T, and sprayed using the Francome MkII exhaust nozzle sprayer. Germination of the conidia collected from the spray was reduced by 30% as compared to unsprayed conidia. However, in bioassays, there was no detectable difference in virulence with conidia collected from the spray samples and unsprayed formulation. This indicated that, despite the recorded reduction in the concentration of active conidia, the efficacy of the formulation remained unchanged after passing through the exhaust nozzle sprayer. The droplet size spectra produced by the sprayer were investigated using the Malvern series 2600cc particle size analyser. The optimum droplets for locust control produced by this sprayer were generated by the number 1 nozzle (internal diameter 2·5 mm) with the number 1 restrictor ring (internal diameter 12.5 mm) sprayed at a pressure of 0·2 bar. The droplets thus produced had a volume median diameter of 58 μm when the nozzle protruded between 1 and 2 mm above the level of the restrictor ring. Of the droplets in the spray plume created by these conditions, 33% were between 50 and 100 μm, a range recommended as an achievable optimum for the ultra-low-volume application of Metarhizium flavoviride. The role of the exhaust nozzle sprayer as a tool for the application of M. flavoviride for locust control is discussed with reference to other vehicle-mounted ultra-low-volume sprayers. © 1997 SCI  相似文献   

17.
Various agricultural spray adjuvants are available which are classified as anti-evaporants. This quality has the potential to aid in reducing drift and chemical evaporation and so improving coverage. Numerous other adjuvants not claiming these benefits may have these characteristics which are not being exploited. In order to assess these qualities, a simple, rapid assay was devised for measuring relative evaporation rates from individual drops. This method was then used to measure the evaporation rates of a variety of adjuvants under controlled temperature and humidity conditions. The droplet producing device uses a microliter syringe to dispense a droplet of known size. After a given period of time, the drop is taken back into the syringe and the volume lost to evaporation calculated. Modifications to the original device include suspending the drop inside a temperature- and humidity-controlled chamber. The original device was used for determining the rate of evaporation from water drops later than 0.3 mm. We have extended the use of the device to measure the rates of evaporation from a range of adjuvant solutions under controlled temperature and humidity conditions. The data reported here suggest that this method (a) is suitable for measuring evaporation from drops of many (but not all) adjuvant formulations, (b) is capable of discerning differences in relative rates of evaporation and (c) may be used for an array of adjuvant, drop size, and meteorological conditions. Major limitations appear to be (1) equilibrium surface tension, solutions having values less than c.35 mN m ?1 are difficult to analyze and (2) a lower limit on drop-size of c.300 μm.  相似文献   

18.
多旋翼植保无人机喷施新烟碱类杀虫剂对蜜蜂的飘移风险   总被引:2,自引:0,他引:2  
为明确植保无人机喷施新烟碱类杀虫剂对非靶标生物蜜蜂的飘移风险,在田间试验场景下,比较分析多旋翼植保无人机和背负式电动喷雾器喷施新烟碱类杀虫剂时的雾滴飘移量及对蜜蜂的影响。结果表明:应用背负式电动喷雾器和多旋翼植保无人机进行施药作业时,距离施药区下风向5 m处的雾滴飘移率分别为0.50%和23.98%;而多旋翼植保无人机施药时,即使距离施药区下风向17 m处的雾滴飘移率仍高达2.79%,且多旋翼植保无人机施药时的飘移总量显著高于背负式电动喷雾器。喷施新烟碱类杀虫剂时,应用背负式电动喷雾器作业时距离下风向5 m处的蜜蜂在施药后1 d内的死亡数量为75头,分别是距离下风向17 m处和对照组的2.4倍和1.8倍,施药后2~8 d内蜜蜂的死亡数量与对照组无明显差异;应用多旋翼植保无人机作业时距离下风向5 m处的蜜蜂在施药后1 d内的死亡数量为4 721头,分别是距离下风向17 m、29 m处和对照组的3.0倍、6.1倍和112.4倍,施药后2~8 d内蜜蜂的死亡数量明显降低,但距离施药区较近的蜜蜂其死亡数量明显高于对照组,表明多旋翼植保无人机喷施新烟碱类杀虫剂对蜜蜂存在较高的飘移风险。  相似文献   

19.
风洞环境下喷头及助剂对植保无人飞机喷雾飘移性的影响   总被引:2,自引:0,他引:2  
为探究和减少植保无人飞机喷雾施药过程中的雾滴飘移,采用由单个旋翼与喷头组成的喷雾单元,在可控风洞环境条件下进行了模拟飞行喷雾试验,控制风洞条件为风速5 m/s、喷雾压力0.3 MPa及旋翼转速2300 r/min不变,对比研究了11种喷头、4种代表性助剂以及不同温度/相对湿度条件对雾滴飘移的影响,采用飘移潜在指数(DIX)及相对减飘率(DPRP)两项指标进行对比评估。结果表明:在温度/相对湿度为20℃/RH 80%条件下,不同类型喷头喷雾药液在空中垂直面和水平距离上的飘移沉积量分布均呈现显著的规律性变化趋势,与对照喷头F110-03相比,喷头飘移潜在性从大到小依次为:TR80-0067>ST110-0067>XR110-01>ST110-015>TR80-01>ST110-02>XR110-03>对照F110-03>IDK系列,其中IDK120-01与IDK120-015喷头的减飘移效果相近并为最好;在30℃/RH 40%条件下,采用XR110-01喷头,分别添加助剂0.5%Silwet DRS-60、1.0%"迈飞"(MF)和1.0%Y-20079后,与不添加助剂的对照相比,平均减飘率分别为43.3%、15.6%和5.2%,表明不同助剂对飘移的影响不同,需考虑助剂类型及其减飘效果合理选用;在20℃/RH 40%、20℃/RH 80%、30℃/RH 40%和30℃/RH 60%条件下,XR110-01喷头与添加1.0%MF助剂组合有利于空中飘移的减少,尤其是高温/低湿条件下,添加助剂的减飘移效果较好。该研究结果可为植保无人飞机的喷头选择、喷雾助剂筛选和实际应用提供参考和指导,并为进一步研究喷头及助剂的减飘技术提供数据基础。  相似文献   

20.
There is a pressing need to quantify more fully the fate of ULV spray droplets dispersed over agricultural crops. For this purpose, field experiments were performed under various meteorological conditions of wind speed and turbulence level. Quantified atomizers were employed, giving known droplet diameter spectra. Vertical profiles of droplets impacting onto thin cylindrical collectors were measured at many stations up to 160 m downwind and at heights up to 12 m; they are presented in graphical form. They are also compared with available diffusion theories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号