首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
【目的】大麦坚黑粉菌(Ustilago hordei)和裸黑粉菌(Ustilago nuda)是引起青藏高原青稞黑穗病的主要病原菌,建立快速、简便、特异性强的大麦坚黑粉菌和裸黑粉菌环介导等温扩增技术(LAMP)检测体系,检测青稞种子的带菌量,再依据带菌程度进行播前种子处理,是控制青稞黑穗病的重要技术手段。【方法】根据大麦坚黑粉菌(Ustilago hordei)和裸黑粉菌(Ustilago nuda)的ITS基因序列与其他对照菌株同源性低的区段设计并获得有效引物1组,建立LAMP检测体系,并选取影响LAMP反应体系的5个主要因素dNTPs、甜菜碱、镁离子、Bst DNA聚合酶及温度进行单因素试验对其进行优化,最后对优化后的LAMP检测体系进行灵敏度和特异性检测。【结果】建立了青稞黑穗病菌的LAMP检测体系,其优化后dNTPs浓度为1.8 mmol/L、甜菜碱浓度为0.8 mmol/L、镁离子浓度为10 mmol/L、Bst DNA聚合酶浓度为320 U/mL,反应温度为65℃。应用该体系在45 min内能检测出2×10~(-4)ng/μL的裸黑粉菌,在60 min内能检测出2×10~(-4) ng/μL的大麦坚黑粉菌,即在60 min内可检测出2×10~(-4)ng/μL的大麦坚黑粉菌和裸黑粉菌。建立的青稞黑穗病菌LAMP检测体系对大麦坚黑粉菌和祼黑粉菌具有特异性。【结论】建立了青稞黑穗病菌的LAMP检测体系,该体系能在1 h内检测出2×10~(-4)ng/μL的裸黑粉菌和大麦坚黑粉菌。  相似文献   

2.
大通县青稞丰产栽培技术   总被引:1,自引:1,他引:0  
介绍大通县青稞的主要栽培品种,包括北青9号、柴青1号、肚里黄青稞、昆仑13号等,总结青稞的主要栽培技术,包括整地施肥、播前土壤处理、选种、药剂拌种、播种、田间管理和收获等方面内容,以为青稞的栽培提供指导。  相似文献   

3.
【背景】在青藏高原及周边高海拔地区,青稞是当地唯一的小禾谷类粮食作物,也是主要饲草来源。穗腐病是近年来仅在青藏高原青稞种植区发现的一种新真菌病害,病原菌为禾生指葡孢霉(Dactylobotrys graminicola),它能侵染多种麦类作物及禾本科杂草,给青稞安全生产带来严重的挑战。【目的】研究禾生指葡孢霉遗传多样性、系统进化以及对寄主种子萌发的影响,揭示该病原菌的流行传播、与寄主植物互作关系以及初侵染菌源,为病害防治提供参考。【方法】从病害流行区采集病株标本,并从典型病穗组织分离禾生指葡孢霉菌株27个,依据无性世代形态特征加以鉴定,分离获得菌株的单孢培养物,提取基因组DNA。利用SRAP分子标记分析禾生指葡孢霉的全基因组多态性,获得菌株特异性分子标记;利用LSU和Rpb2保守遗传位点比较禾生指葡孢霉与其近缘种属的进化关系;将禾生指葡孢霉分生孢子悬浮液与未萌发或发芽后的青稞种子共培养,分析其对青稞种子萌发及幼苗的影响。【结果】选用14对SRAP引物组合进行穗腐菌遗传多样性分析,平均一对引物扩增产生90个多态性条带;平均每个穗腐病菌株1.4个特异分子性标记,分离自小麦的菌株Z 13008特异性标记最多(7个),而对照菌株禾谷镰孢(Fusarium graminearum)具有20个特异性标记。禾生指葡孢霉的地域分布与其遗传多样性缺乏明显相关性。在鉴定的菌株中,仅有分离自小麦(Z 13008)、黑麦(Z 13024)和2个分离自青稞的菌株(Z 13013和Z 13006)的遗传多样性与其他菌株差异较大,说明病原菌群体的遗传变异水平较低。利用20个分子标记编制DNA指纹二叉式分类检索表,可鉴定21个禾指葡孢霉菌株。系统进化分析揭示禾生指葡孢霉与丛赤壳属真菌遗传距离较近。青稞种子萌发前接种处理对种子萌发、幼苗生长均无明显的抑制作用,在萌发后共培养处理能明显抑制幼苗根系生长,导致根系变为浅褐色,但对幼苗植株生长无明显影响。【结论】与近缘种禾谷镰孢相比,禾生指葡孢霉群体内基因组DNA多态性较低,而且其遗传变异与寄主种类密切相关。禾生指葡孢霉致病性较弱,对青稞种子萌发和幼苗生长无明显的抑制作用。  相似文献   

4.
【目的】基于香蕉细菌性枯萎病病原(Ralstonia solanacearum)2号生理小种的特异保守引物和LAMP技术建立一种实时荧光定性检测方法,解决常规PCR定性检测特异性低、灵敏度低、耗时长等问题,实现在1 h内能进行准确高效的定性检测,为加强该病害防控检测和检疫工作提供技术支持。【方法】确定被测基因靶序列,利用Primer软件设计两对内外引物。由两对引物、具有链置换特性的DNA聚合酶、模板DNA、甜菜碱、Mg_2SO_4、反应缓冲液、荧光染料等组成LAMP反应体系,采用不必在反应完开管盖检测的实时荧光LAMP方法,针对该方法对于样品DNA定性检测的灵敏度、特异性及可重复性进行试验。【结果】设计的引物能顺利扩增目标基因,实时荧光LAMP检测体系对于香蕉细菌性枯萎病病原生理2号小种有良好的灵敏度、特异性,该方法可重复性强,灵敏度比普通PCR高10倍以上。【结论】香蕉细菌性枯萎病菌荧光LAMP检测体系检测特异性强、灵敏度高、耗时短、不易污染,效果较好。  相似文献   

5.
【目的】刺盘孢属(Colletotrichum)真菌是重要的植物病原菌,引起植物炭疽病。建立刺盘孢属真菌PCR检测方法。【方法】比对分析刺盘孢属及其近似属的ITS序列,设计刺盘孢属特异性引物,建立PCR扩增体系,验证引物的特异性和灵敏度。【结果】设计出刺盘孢属特异性引物ITS-c3/c4,建立了刺盘孢属常规PCR检测体系。建立的PCR体系能从刺盘孢属菌株中扩增出449 bp的特异性条带,刺盘孢属的近似属菌株未能扩增到条带。灵敏度试验可检测到DNA的浓度为2.2 pg/µL。【结论】用建立的PCR体系对炭疽病梨果实样品进行检测,可从发病组织中检测到刺盘孢属真菌。建立的PCR方法可靠、灵敏度高,能够快速、准确检测出刺盘孢属真菌。  相似文献   

6.
【目的】检测三七种子表面和内部寄藏的带菌量和真菌种类,明确三七通过种子携带传播的主要病原菌。【方法】采用PDA平板法对采自三七主产区云南省文山州和红河州的15份种子样品进行种子表面和内部寄藏真菌检测,并通过形态学和分子生物学鉴定以及致病力测定明确三七种子传带的病原菌情况。【结果】15份三七种子样品中,种子表面携带的主要真菌为菌核菌(Sclerotinia sclerotiorum)、镰刀菌属(Fusarium)、灰霉菌属(Botrytis)、拟盘多毛孢属(Pestalotiopsis)真菌;种子内部寄藏的主要真菌为菌核菌、镰刀菌属和拟盘多毛孢属真菌。致病力测定结果表明:三七种子主要携带的致病真菌有镰刀菌属、链格孢属(Alternaria)和丛赤壳属(Bionectria);其中,带菌率最高且致病性最强的是镰刀菌属的滕仓赤霉复合种(Gibberella intermedia)、三线镰刀菌(Fusarium tricinctum)、串珠镰刀菌(Gibberella moniliformis)和木贼镰刀菌(Fusarium equiseti)。【结论】本研究明确了三七种子传带的主要病原菌为镰刀菌和链格孢菌,为三七种子处理提供了理论支撑。  相似文献   

7.
[目的]本文研究了不同抗性青稞品种在条纹病发生过程中生理特性的变化.[方法]本文以抗病品种“昆仑14号”和感病品种“Z1141”为试验材料,测定了2品种条纹病发生过程中叶片感病严重度、可溶性蛋白含量、相对电导率、脯氨酸含量、丙二醛含量、相对叶绿素含量和叶绿素荧光特性的变化.[结果]接种处理初期,“Z1141”发病严重度...  相似文献   

8.
香蕉枯萎病菌1号和4号生理小种的快速检测与鉴定   总被引:1,自引:1,他引:1  
【目的】从香蕉枯萎病菌1号和4号生理小种特有的基因序列入手,建立一种快速可靠的分子检测技术,为防止香蕉枯萎病的传播蔓延、尽早采取防治对策、指导香蕉生产进行品种配置提供理论依据。【方法】根据研究室已经筛选到的4号生理小种候选致病相关基因序列设计引物,分别以来自海南、广东和广西的6个香蕉枯萎病菌1号生理小种菌株、7个4号生理小种菌株、7个尖镰孢其它专化型菌株以及2个外围菌株DNA为模板进行PCR扩增,筛选香蕉枯萎病菌1号、4号生理小种特异性引物及尖镰孢菌的通用引物。【结果】筛选到的特异性引物不仅可用于香蕉枯萎病菌DNA的检测,还可直接用于对罹病香蕉组织和土壤中的香蕉枯萎病菌的检测;筛选到的尖镰孢菌通用引物,可作为内参照以检测DNA的质量,以避免假阴性情况的出现。【结论】所建立的三重PCR检测方法实现了在一次PCR反应中快速、准确地同步检测香蕉枯萎病菌1号和4号生理小种,对检测香蕉苗是否感染枯萎病及蕉园土壤是否受到香蕉枯萎病菌的污染具有重要意义。  相似文献   

9.
甜玉米种子携带真菌与种子活力关系分析   总被引:15,自引:0,他引:15  
【目的】明确甜玉米种子携带真菌种类,探讨真菌与种子活力的相关性。【方法】采用洗涤检测法和PDA平板法对市售7个甜玉米品种和2个普通玉米品种进行种子携带真菌检测,同时以滤纸卷法对种子活力进行测定。【结果】供试种子外部带菌量差异显著,主要菌群为镰刀菌属(Fusarium spp.)、青霉属 ( Penicillium spp.)、曲霉属(Aspergillus spp.)和枝孢属(Cladosporium sp.);种子内部带菌率在品种间差异显著,以甜玉米442最高,达到99.3%,普通玉米农大108最低,仅为4.4%;甜玉米种子内部寄藏优势菌群为镰刀菌属、青霉属、曲霉属、链格孢属(Alternaria spp.)、平脐蠕孢属(Bipolaris spp.)和黑孢属(Nigrospora sp.),其中甜玉米种子内部寄藏平脐蠕孢属真菌为首次报道。除甜单22外,其余6个品种的甜玉米种子内部总体带菌率和带镰刀菌率均显著高于普通玉米品种。甜玉米种子多项活力指标显著低于普通玉米种子。【结论】种子内部带镰刀菌率与种子活力相关性分析表明,种子内部寄藏镰刀菌是影响甜玉米种子活力的重要因素之一。  相似文献   

10.
【目的】探索青海地区青稞条纹病的发生流行动态规律及敌萎丹药剂防治技术,为青稞安全生产及条纹病的有效防治提供参考。【方法】在青海刚察县(2010年)和西宁地区(2011年)青稞试验田,在分蘖-腊熟期的各个生育阶段对青稞条纹病的发病情况进行系统观察,并选用不同剂量3%敌萎丹悬浮剂进行药效试验。【结果】在青海地区,青稞条纹病于分蘖期在田间出现,乳熟期-腊熟期达到发病高峰期,病情指数为30.20。2010年,刚察县青稞条纹病在抽穗-灌浆阶段,病害流行速率最快,日平均增长11.66%;2011年在西宁地区,青稞条纹病在6月中旬至6月下旬(灌浆-乳熟)阶段,病害流行速率最快,日平均增长14.96%。有效杀菌剂3%敌萎丹悬浮剂1.0,1.5,2.0mL/kg 3个剂量拌种处理后,青稞条纹病病情较空白对照明显减轻,且3种处理较空白对照推迟病害流行盛期30~38d。【结论】在青海地区,条纹病于青稞乳熟期-腊熟期达到发病高峰期,在抽穗-乳熟阶段,病害流行速率最快。经不同剂量3%敌萎丹悬浮剂处理后,青稞整个生育期都不会出现条纹病病害流行盛期,条纹病对青稞产量不会造成威胁。  相似文献   

11.
环介导等温扩增(LAMP)技术自 2000 年被发明以来以其快速、灵敏、低耗等特点,引起众多研 究者的关注。该技术在人、动物、植物、环境等相关微生物的检测、监控等领域得到了广泛研究与应用,其检 测灵敏度普遍高于传统 PCR 。但是传统 LAMP 技术对于产物检测存在耗时、易造成污染等问题,以及在野外或 医疗点检测时存在判读不便的弊端。就 LAMP 技术与其他多种产物检测技术结合后的方法如目视 LAMP、实时 LAMP、微流控 LAMP、横向流 LAMP 及电化学 LAMP 进行了总结、举例及讨论。目视 LAMP 具有费用低、适合 多环境下使用的特点;实时 LAMP、微流控及电化学 LAMP法能够有效提高样品检测的准确度,且可减少检测时间; 横向流 LAMP 具有可操作性强、便于判读等特点。根据目前 LAMP 技术的研究进展及各技术优劣势的分析,预 测 LAMP 技术未来发展的方向和重点可能为研发手持便携式检测仪。  相似文献   

12.
介绍了环媒恒温核酸扩增法的原理及特点,综述了近年来LAMP法在食品微生物检测的应用,对LAMP方法在食品微生物检测及其它领域中的应用前景做了展望。  相似文献   

13.
基于荚膜多糖cpsA基因设计引物,建立海豚链球菌可视化环介导等温扩增(Loop-mediated isothermal amplification,LAMP)技术,以快速检测鱼类养殖中的海豚链球菌。结果表明,LAMP最佳反应条件为65 ℃反应20 min,镁离子浓度为1.2 mmol/L、dNTPs浓度为0.64 mmol/L、内外引物比例为 16∶1。特异性检测结果表明:该方法能特异性检出海豚链球菌,对无乳链球菌和其他14种菌检测结果均呈阴性;灵敏度检测结果表明,该LAMP方法灵敏度为2.12×10-5 ng/μL,比PCR检测方法灵敏度高100倍;适用性分析结果表明,该LAMP方法在模板中存在鱼类基因组干扰下也能正确完成检测。研究中建立的LAMP检测方法为海豚链球菌的检测提供一种可视化、灵敏、成本低的快速检测技术。  相似文献   

14.
猪细小病毒LAMP检测方法的建立   总被引:5,自引:0,他引:5  
 【目的】建立一种快速、敏感、特异的检测猪细小病毒(PPV)环介导等温扩增(LAMP)方法,为诊断猪细小病毒提供准确可靠工具。【方法】根据GenBank公布的PPV序列,在其保守序列区域设计了多套LAMP引物,利用LAMP Real Time Turbidimeter LA-320仪监测反应进程并筛选最佳引物、反应条件,建立了对PPV病毒DNA进行特异扩增的 LAMP检测方法,并可通过加入SYBR Green I肉眼判断结果。【结果】该方法在63℃恒温下作用45 min,PPV病毒DNA获得了高效率的特异性扩增;其检出限量为0.23 TCID50,敏感性高;在反应结束后加入SYBR Green I肉眼判断结果,与Real Time Turbidimeter LA-320仪监测结果一致。通过对20份临床样品的LAMP检测与免疫荧光鉴定、PCR方法比对,符合率均为20/20。【结论】本研究建立的PPV LAMP检测方法具有快速、特异、灵敏,操作简单、设备要求低的特点,适合用于临床PPV快速检测。  相似文献   

15.
白斑综合征病毒(white spot syndrome virus,WSSV)是克氏原螫虾(Procambarus clarkii)养殖生产中危害最大的病原之一,也是其他一些要经济虾类的主要病害,但是目前没有相应的有效治疗药物.为了减少WSSV对克氏原螯虾的危害,及早发现病原,以便采取相应措施将损失降到最小程度,笔者开展了以环介导等温扩增(loop-mediated isothermal amplification,LAMP)法检测克氏原螯虾WSSV的研究,并且与灵敏度非常高的巢式PCR检测法进行了比较.结果表明,用LAMP法可以快速、灵敏、特异性地检测克氏原螫虾WSSV,其灵敏度与巢式PCR相比,高出约500倍,且不需要专用的PCR仪,是检测WSSV的一种理想方法.该结果也为其他虾类的WSSV检测提供了重要参考.  相似文献   

16.
通过设计特异性引物,优化Mg^2+浓度、退火温度和循环时间等影响PCR的因素,确定了适合现场应用的PCR反应体系;46枚胚胎现场的鉴定率为87%,移植妊娠率为28%,准确率为85%,证明建立的PCR胚胎性别鉴定方法可用于生产。使用LAMP法对126枚常规胚胎和42枚性控胚胎现场鉴定,鉴定率95%,移植妊娠率33%,准确率88%,结果证明该方法可应用于牛早期胚胎性别鉴定。PCR法和LAMP法所鉴定同一样品的结果一致,说明在控制好实验条件的情况下,根据实际情况可选用这两种方法中的任何一种进行性别鉴定应用。  相似文献   

17.
【目的】建立一种可快速检测副猪嗜血杆菌的环介导等温扩增(LAMP)方法。【方法】根据GenBank中副猪嗜血杆菌肽聚糖相关脂蛋白(PalA)基因序列,在其保守区域设计外引物、内引物和环引物用于LAMP检测。优化副猪嗜血杆菌LAMP检测的反应体系,在反应产物中加入SYBR GreenⅠ,对检测结果进行肉眼判定,建立副猪嗜血杆菌可视化LAMP检测方法,评价该检测方法的特异性、敏感性。用建立的副猪嗜血杆菌可视化LAMP检测方法对临床分离的8株不同血清型副猪嗜血杆菌进行检测。从疑似患副猪嗜血杆菌病的猪体内采集10种体液,用所建立的可视化LAMP检测方法进行检测。【结果】建立了副猪嗜血杆菌可视化LAMP检测方法,该法在55℃水浴1h即可对副猪嗜血杆菌核酸进行高效扩增,反应结束后加入SYBR GreenⅠ即可通过肉眼观察对结果进行判断。该方法具有很强的特异性,其对DNA核酸的最低检测限为40fg,是常规PCR检测最低限的100倍,显示出较高的敏感性;用建立的LAMP方法对8株不同血清型副猪嗜血杆菌进行检测,结果均为阳性。用建立的LAMP方法对10种体液进行检测,结果鼻液、气管液、胸腔渗出物、心脏血、脑膜液、腹腔液和关节囊液呈阳性,唾液、心包液和尿液呈阴性。【结论】建立了一种可对副猪嗜血杆菌进行快速检测并可凭肉眼判定结果的可视化LAMP方法,该法操作简便、反应快速、敏感性强、特异性高,适合在兽医基层进行推广应用。  相似文献   

18.
LAMP在检测转基因抗草甘膦大豆cp4-epsps基因上的应用   总被引:4,自引:1,他引:3  
以转基因抗草甘膦大豆为主要研究对象,利用环介导等温扩增技术(Loop-Mediated Isothermal Amplification,LAMP),针对cp4-epsps合成酶基因(5-enolpyruvlshimimate-3-phosphate synthase)的6个区域设计4条特异性引物,利用一种链置换DNA聚合酶(BstDNA polymerase),在65℃保温30 min,通过荧光显色即可完成对转基因的检测工作。结果显示,该LAMP方法能够特异性检测cp4-epsps基因,其检测灵敏度是常规定性PCR方法的10倍。建立了针对转基因大豆cp4-epsps基因的LAMP检测方法,其具有高度的特异性及稳定性,结果可靠,适合转基因抗草甘膦大豆的快速检测。  相似文献   

19.
马晓燕  张会彦  宋明明  张先舟  王羽  张伟 《安徽农业科学》2011,39(14):8191-8193,8240
[目的]利用环介导等温扩增技术快速检测志贺氏菌。[方法]以志贺氏菌侵袭性质粒抗原H基因(ipaH)作为靶序列,设计引物,优化Mg2+浓度、Bst酶浓度等反应条件,建立LAMP反应体系。[结果]确定了环介导等温扩增技术检测志贺氏菌的适宜反应条件;该法检测志贺氏菌的灵敏度为62 cfu/ml。[结论]该研究初步建立了一种利用LAMP快速检测志贺氏菌的方法,为食品中志贺氏菌快速检测构建了一个技术平台。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号