首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aims of the experiment were to (i) test whether the higher leaf elongation rate per tiller (LERT) of Bromus stamineus D. than Lolium perenne L. at moderately low temperatures was maintained at high defoliation frequencies and (ii) explore responses in tiller dynamics during the onset of the cool season in the south‐east of the humid Pampas region in Argentina. The following treatments were applied: defoliation frequency at the 3·0‐leaf stage (i.e. one‐leaf lifespan), which is considered optimal, and higher defoliation frequency at the 1·5‐leaf stage (i.e. half‐of‐a‐leaf lifespan). The higher defoliation frequency reduced leaf elongation rate in both the species but it did not affect the leaf appearance rate. This confirms previous studies on several C3 grasses, suggesting a similar pattern of response. Changes in tiller size are proposed as a possible mechanism to explain such long‐term defoliation effects on leaf elongation rates. Responses in tiller production depended on the species considered. The higher defoliation frequency caused a reduction in site‐filling which led to lower tiller production rates in L. perenne but not in B. stamineus. Thus, B. stamineus maintained the advantage in LERT over L. perenne and its tiller production was not affected when defoliated at frequencies higher than those considered optimal.  相似文献   

2.
A field study was undertaken between April 2003 and May 2004 in southern Tasmania, Australia to quantify and compare changes in herbage productivity and water‐soluble carbohydrate (WSC) concentration of perennial ryegrass (Lolium perenne L.), prairie grass (Bromus willdenowii Kunth.) and cocksfoot (Dactylis glomerata L.) under a defoliation regime based on leaf regrowth stage. Defoliation interval was based on the time taken for two, three or four leaves per tiller to fully expand. Dry‐matter (DM) production and botanical composition were measured at every defoliation event; plant density, DM production per tiller, tiller numbers per plant and WSC concentration were measured bimonthly; and tiller initiation and death rates were monitored every 3 weeks. Species and defoliation interval had a significant effect (P < 0·05) on seasonal DM production. Prairie grass produced significantly more (P < 0·001) DM than cocksfoot and ryegrass (5·7 vs. 4·1 and 4·3 t DM ha?1 respectively). Plants defoliated at the two‐leaf stage of regrowth produced significantly less DM than plants defoliated at the three‐ and four‐leaf stages, irrespective of species. Defoliation interval had no effect on plant persistence of any species during the first year of establishment, as measured by plant density and tiller number. However, more frequent defoliation was detrimental to the productivity of all species, most likely because of decreased WSC reserves. Results from this study confirmed that to maximize rates of regrowth, the recommended defoliation interval for prairie grass and cocksfoot is the four‐leaf stage, and for perennial ryegrass between the two and three‐leaf stages.  相似文献   

3.
This glasshouse study aimed to determine the relative importance of water-soluble carbohydrates (WSC) and current photosynthate on root and top regrowth of perennial ryegrass (Lolium perenne L.). Individual plants were arranged in one of two miniswards (Experiments 1 and 2) and underwent varying defoliation frequencies designed to obtain a gradient of WSC content at the final harvest of each treatment (H1), when all treatments were defoliated. In Experiment 1, the plants were defoliated either three times at the one new leaf per tiller stage of regrowth (treatment 3 × 1), once at the two-leaf and again at the one-leaf stage (treatment 2, 1), once at the one-leaf and again at the two-leaf stage (treatment 1, 2) or once only at the three-leaf stage (treatment 1 × 3), up to H1. Leaf and root growth and other parameters were assessed over 6 d after H1 in sunlight, and over a 4-week period in darkness, and related to initial plant WSC content. In Experiment 2, plant defoliation treatments were: 3 × 1, 1, 2 or 1 × 3. Leaf regrowth was assessed for 36 d until the plants had three fully expanded new leaves per tiller. Leaf regrowth in both experiments was significantly related to stubble WSC (below 50 mm height). In Experiment 1, plants were almost fully reliant upon plant reserves for the first 3 d of regrowth, with reliance decreasing up to 6 d. When regrowth of plants was compared after 1 week in light or in darkness, it was estimated that one-third of leaf regrowth was due to plant WSC reserves and the remainder due to photosynthesis. However, the capacity to photosynthesize and to grow roots after H1 was also significantly related to stubble WSC content. In Experiment 2, there was a significant difference (P<0·01) between defoliation treatments on leaf dry matter (DM) yield at 12 d (×1 leaf tiller?1) of regrowth, and this was, as in Experiment 1, significantly positively related to WSC content in the stubble. However, after 36 d of regrowth, DM yield of plants defoliated at 2 or 3 leaves tiller?1 up to H1 were similar, and both were significantly higher (P<0·01) than regrowth of plants defoliated at the one-leaf stage. After defoliation, the period of reliance on WSC reserves may be substantially increased in situations of shading (canopy competition or cloud cover) or if the new regrowth shoot is removed by regrazing.  相似文献   

4.
Three experiments were conducted to determine the association between leaf number per tiller at defoliation, water‐soluble carbohydrate (WSC) concentration and herbage mass of juvenile ryegrass plants when grown in a Mediterranean environment. Seedlings of ryegrass were grown in nursery pots arranged side‐by‐side and located outside in the open‐air to simulate a mini‐sward in Experiments 1 and 2, and a mixture of annual ryegrass and subterranean clover (Trifolium subterraneum L.) was grown in a small plot field study in Experiment 3. Swards were defoliated mechanically with the onset of defoliation commencing within 28 d of germination. Frequency of defoliation ranged from one to nine leaves per tiller, whilst defoliation height ranged from 30 mm of pseudostem height that removed all leaf laminae in Experiment 1, to 50 mm of pseudostem height with some leaf laminae remaining post‐defoliation in Experiments 2 and 3. A positive relationship between herbage mass of ryegrass, WSC concentration and leaf number per tiller at defoliation was demonstrated in all experiments. In Experiment 1, the herbage mass of leaf, pseudostem and roots of tillers defoliated at one leaf per tiller was reduced to 0·10, 0·09 and 0·06 of those tillers defoliated less frequently at six leaves per tiller. However, the reduction in herbage mass from frequent defoliation was less severe in Experiment 2 and coincided with a 0·20 reduction in WSC concentration of pseudostem compared with 0·80 measured during Experiment 1. In Experiment 3, the highest harvested herbage mass of ryegrass occurred when defoliation was nine leaves per tiller. Although the harvested herbage from this sward contained senescent herbage, the in vitro dry‐matter digestibility of the harvested herbage did not differ significantly compared with the remaining treatments that had been defoliated more frequently. Leaf numbers of newly germinated ryegrass tillers in a Mediterranean environment were positively associated with WSC concentration of pseudostem and herbage mass. A minimum period of two to three leaf appearances was required to restore WSC concentrations to levels measured prior to defoliation thereby avoiding a significant reduction in herbage mass. However, maximum herbage mass of a mixed sward containing ryegrass and subterranean clover was achieved when defoliation was delayed to nine leaves per tiller.  相似文献   

5.
The field performance of the native Pappophorum vaginatum, the naturalized Eragrostis curvula and various cultivars of the introduced Achnatherum hymenoides and Leymus cinereus was evaluated as potential forage resources in rangelands of arid Argentina during the warm seasons of 2007/2008 and 2008/2009. Plants of these grass species, obtained from seeds, were transplanted to the field in 2006, when they were 1 year old. During the study years, there were two defoliation managements: plants of all study genotypes either remained undefoliated (controls) or were defoliated twice a year during spring at 5 cm stubble height. Despite tiller number being lower (P < 0·05) on defoliated than on undefoliated plants, and total leaf length per unit basal area being similar (P > 0·05) between defoliation managements by mid‐spring, there were no differences (P > 0·05) in dry weight production between defoliated and undefoliated plants in all genotypes at the end of the second growing season. Plants of one or more of the introduced genotypes showed a similar (P > 0·05) or greater (P < 0·05), but not lower, tiller number per plant and per square centimetre, daughter tiller production, total leaf length and dry weight production per unit basal area than the native species at the end of the first and/or second growing seasons. These morphological variables were similar (P > 0·05) or greater (P < 0·05) in the native than in the naturalized genotype. Plant survival, however, was lower (P < 0·05, overall mean = 20%) in the introduced than in the native (>70%) or naturalized (>39%) genotypes at the end of the first or second growing seasons.  相似文献   

6.
Abstract A glasshouse study was undertaken to determine the physiological and morphological changes in cocksfoot (Dactylis glomerata L.) during regrowth after defoliation. Individual plants were arranged in a mini‐sward in a randomized complete block design. Treatments involved harvesting each time one new leaf had expanded (one‐leaf stage), up to the six‐leaf stage, with the plants separated into leaf, stubble (tiller bases) and roots. Stubble and root water‐soluble carbohydrate (WSC), stubble and leaf dry matter (DM), tiller number per plant and leaf quality (crude protein (CP), estimated metabolizable energy (ME) and mineral content) were measured to develop optimal defoliation management of cocksfoot‐based pastures. WSC concentration in stubble and roots was highest at the five‐ and six‐leaf stages. Mean WSC concentration (g kg?1 DM) was greater in stubble than roots (32·7 ± 5·9 vs. 9·4 ± 1·5 respectively). There was a strong positive linear relationship between plant WSC concentration and leaf DM, root DM and tillers per plant after defoliation (Adj R2 = 0·72, 0·88 and 0·95 respectively). Root DM plant?1 and tiller DM tiller?1 decreased immediately following defoliation and remained low until the three‐leaf stage, then increased from the four‐leaf stage. Tillers per plant remained stable until the four‐leaf stage, after which they increased (from 9·9 ± 0·5 to 15·7 ± 1·0 tillers plant?1). Estimated metabolizable energy concentration (MJ kg?1 DM) was significantly lower at the six‐leaf stage (11·01 ± 0·06) than at any previous leaf regrowth stage, whereas CP concentration (g kg?1 DM) decreased with regrowth to the six‐leaf stage. Both the levels of ME and CP concentrations were indicative of a high quality forage throughout regrowth (11·37 ± 0·04 and 279 ± 8·0 for ME and CP respectively). Results from this study give a basis for determining appropriate criteria for grazing cocksfoot‐based pastures. The optimal defoliation interval for cocksfoot appears to be between the four‐ and five‐leaf stages of regrowth. Delaying defoliation to the four‐leaf stage allows time for replenishment of WSC reserves, resumption of root growth and an increase in tillering, and is before herbage is lost and quality falls due to onset of leaf senescence.  相似文献   

7.
A glasshouse study was undertaken to determine the priority within the perennial ryegrass (Lolium perenne L.) plant for leaf and root growth and daughter tiller initiation after defoliation, in relation to various levels of water-soluble carbohydrate (WSC) reserves at defoliation. Individual plants were arranged in mini-swards, and underwent varying defoliation frequencies and ambient temperatures before defoliation, and harvest heights at defoliation, to obtain a gradient of WSC content at H1, the date when all plants were defoliated. Defoliation interval consisted of defoliating either three times at the one new leaf tiller–1 stage (1-leaf stage) of regrowth, or once only at the 3-leaf stage, up to H1, while night temperature in the week prior to H1 was altered from 15°C to either 8 or 20°C. At H1, plants were defoliated to a stubble height of either 20 or 50 mm. Plants were subsequently destructively harvested at days 4, 6, 8, 12, 18 and 27. Leaf and root extension and tiller dynamics were also measured. On a regrowth timescale, tiller initiation was most sensitive, root regrowth moderately sensitive, and leaf regrowth relatively insensitive to a decrease in WSC. The time of daughter tiller initiation also coincided with replenishment of stubble WSC levels. In contrast to this sequence of regrowth events following defoliation, the quantitative effects on growth were different, with elongation and survival of roots most affected by reduced WSC levels. A 30-fold difference in stubble WSC at H1 between high and low WSC plants (1·52 vs. 0·05 mg tiller–1) produced only a 4-fold increase in leaf dry matter (DM) after 27 d (2·2 vs. 0·6 g plant?1), while tiller number plant?1 increased 6-fold (138 vs. 23% increase in tiller number from H1). Root elongation rate was 59 times higher in the high than in the low WSC plants (1·18 vs. 0·02 mm d?1). From a pasture management perspective, the study confirms that defoliation, coinciding with the 3-leaf stage of regrowth and around a stubble height of 50 mm, optimizes persistence and productivity of perennial ryegrass. By allowing more rapid replenishment of WSC reserves, this optimal defoliation strategy enables a greater proportion of WSC to be allocated to maintain a more active root system, and promotes tillering, compared with more frequent and close defoliation.  相似文献   

8.
《Plant Production Science》2013,16(4):386-396
Abstract

The effects of elevated CO2 (approximate doubling of atmospheric CO2 concentration) on the rate of photosynthesis estimated from continuous monitoring of CO2 exchange in whole plants were investigated in radish cv. Kosena accompanied with simultaneous analysis of growth for 6 days from 15 to 21 days after planting (DAP). The elevated CO2 increased the dry weights of hydroponically grown radish plants by 59% at 21 DAP.

The increase in dry weight was due to a combined effect of increased leaf area and increased photosynthetic rate per unit leaf area. Leaf area and the photosynthetic rate were increased by elevated CO2 by 18-43% and 9-20%, respectively, during 15 to 21 DAP. Namely, an increase in the rate of photosynthesis is accompanied by an increase in leaf area, both having a significant effect on biomass production.  相似文献   

9.
The causes of tiller death in a 2-year-old perennial ryegrass sward were examined between April and August 1977. Physiological causes accounted for most tiller deaths and grazing by slugs and rodents was more important than the damage caused by stem-boring larvae. Tillers which died were mainly small and vegetative, although some flowering tillers died prematurely. Low nutrient status delayed but did not prevent tiller death. Using 14CO2 it was shown that small tillers fixed relatively less radiocarbon than did larger tillers and they did not receive much support for their carbon economy. Selective defoliation showed that in April defoliated tillers imported radiocarbon from undefoliated tillers but that in July at anthesis an undefoliated reproductive tiller retained most of the carbon it fixed, despite its vascular association with defoliated tillers. It appears that much of the tiller death during the period April-August is due to the failure of the more favourably placed tillers to support other tillers which are heavily shaded.  相似文献   

10.
Although common disturbances of grazing lands like plant defoliation are expected to affect their sensitivity to increasing atmospheric CO2 concentration, almost no research has been conducted to evaluate how important such effects might be on the direct responses of rangelands to CO2. This growth chamber experiment subjected intact plant–soil cylinders from a Wyoming, USA, prairie to a 3‐way factorial of CO2 (370 vs. 720 μL L?1), defoliation (non‐clipped vs. clipped) and soil nitrogen (control vs. 10 g m?2 added N) under simulated natural climatic conditions. Above‐ and below‐ground biomass and N dynamics of the functional groups C3 grasses, C4 grasses and forbs were investigated. CO2 and defoliation had independent influences on biomass and N parameters of these rangeland plants. Growth under CO2‐enriched conditions enhanced above‐ground biomass 50% in C3 grasses alone, while shoot N concentration declined 16% in both C3 and C4 grasses. Plant‐soil 15N uptake was unaffected by CO2 treatment. In contrast, defoliation had no effect on biomass, but increased tissue N concentration 29% across all functional groups. Without additional N, forage quality, which is in direct relation to N concentration, will decline under increasing atmospheric CO2. Increased dominance of C3 grasses plus reduced forage quality may necessitate changes in grazing management practices in mixed‐species rangelands.  相似文献   

11.
This study utilized leaf stage‐based defoliation intervals to describe the concentrations and contents of water‐soluble carbohydrate (WSC) and nitrogen (N) in stubble and root reserves and their effect on the regrowth of prairie grass (Bromus willdenowii Kunth.) plants. The priority sequence for allocation of WSC reserves during the regrowth period was also investigated. There were substantially higher concentrations of WSC and N in the stubble compared with the roots following defoliation, confirming the stubble as the primary site for energy storage, with roots playing a lesser role. However, high R2 values for the relationships between WSC concentration in roots and regrowth variables suggested that plants of prairie grass were reliant on WSC reserves from the roots in addition to the stubble to meet the energy requirements of plants until adequate photosynthetic tissue had been produced. The sequence of priority for allocation of WSC reserves followed the order of leaf growth, root growth and tillering during the regrowth period. Although WSC reserves were identified as the primary contributor to plant regrowth following defoliation, there was also a strong relationship between stubble N concentration and regrowth variables.  相似文献   

12.
The effects of different defoliation regimes on the growth and development of three contrasting white clover cultivars (S184, Menna and Alice) were assessed in three experiments in the glasshouse. Experiment 1, with clover growing on its own, investigated the effects of three times of onset × two intensities of defoliation. In Experiment 2, clover was grown with grass and there were two times of onset × two heights × two frequencies of defoliation. Experiment 3, also with grass, investigated the effects of changing defoliation frequency at different intervals from sowing. All clover cultivars responded similarly to the various treatments and there were no interactions between time of onset and subsequent defoliation regimes in Experiments 1 and 2. Without competition from grass (Experiment 1), defoliating early at the three leaf-stage of clover decreased the number of growing points by 32% and stolon weights and lengths by 50% compared with delaying defoliation until the nine leaf-stage. Maintaining one compared with two leaves per growing point had similar effects. Over 17 weeks undefoliated seedlings produced ten times more stolon than early defoliated or intensively defoliated seedlings. In competition with grass (Experiment 2) delaying defoliation significantly decreased all aspects of stolon growth. Seedlings growing in swards defoliated frequently and closely had most growing points whereas those defoliated infrequently had least. Stolon lengths and weights were larger for seedlings growing in swards defoliated frequently than for those defoliated infrequently at both heights of cutting. Mean weight of stolon per unit length was greater when swards were defoliated at 6 cm than at 2 cm height. Changing defoliation from every 2 weeks to every week (Experiment 3) decreased stolon growth slightly when the change was made early but increased it when the change was made late, although similar amounts of stolon were produced by seedlings continuously defoliated throughout every week and every 2 weeks. The results are discussed in relation to the seedlings' leaf complements and growth habit; the over-riding influence of grass competition is highlighted. The possibility of devising optimal defoliation strategies and the need to test these in the field are also outlined.  相似文献   

13.
The defoliation tolerance of cultivars of four temperate perennial pasture grasses, perennial ryegrass (Lolium perenne, cv. Yatsyn1), phalaris (Phalaris aquatica cv. Australian), tall fescue (Festuca arundinaceae cv. Demeter) and cocksfoot (Dactylis glomerata cv. Porto), was determined under controlled conditions over a period of 12 weeks. Undefoliated plants were compared with defoliated plants, where only half of one leaf was left intact at the initial defoliation, and leaf regrowth was harvested every 3–4 d. The growth responses measured were plant tiller number, dry weight, relative leaf regrowth rate, root:shoot ratio, sheath:stem ratio and specific leaf weight. All species showed morphological adaptations that potentially increased their ability to tolerate defoliation (e.g. increased allocation to shoot at the expense of roots and lower specific leaf weights) but cocksfoot was found to be the most defoliation‐tolerant and perennial ryegrass the least. The adaptation that favoured cocksfoot most strongly was high sheath:stem ratio, which, it is proposed, allowed it to maintain photosynthesis and a level of carbon supply sufficient to support regrowth throughout the experiment. The strategy of perennial ryegrass which favours leaf growth and leads to rapid leaf turnover rates made it particularly susceptible to defoliation under the conditions of this experiment. This highlights the likely importance of defoliation‐avoidance responses in explaining the well‐known grazing resistance of this species. Phalaris and tall fescue showed responses that were intermediate between the other two species. The importance of defoliation‐avoidance mechanisms and implications for grazing management are discussed.  相似文献   

14.
《Plant Production Science》2013,16(2):111-117
Abstract

We examined the association of assimilate supply in the occurrence of milky white kernels in three cultivars with different percentages of milky white kernels in the field condition: ‘Hatsuboshi’, ‘Koshiibuki’ and ‘Koshihikari’. Five days after heading, the plants were placed in four controlled-environment chambers with either a high or low night temperature and elevated or normal [CO2] supply. Plants in each chamber were either defoliated with only flag leaf remaining, flag leaf and second leaf remaining or left intact (control). The percentage of each type of chalky kernel was examined. The percentage of milky white kernels was increased by defoliation and decreased by elevated [CO2], associated with assimilate supply. No association was observed between assimilate supply and white back or basal white kernels. The percentage of milky white kernels was negatively correlated with assimilate supply at a high night temperature in all cultivars. At a low night temperature, there was a clear threshold of assimilate supply, over which the percentage of milky white kernels was nearly zero. Cultivar differences were observed in the relation between the percentage of milky white kernels and assimilate supply. In conclusion, we found a varietal difference in the occurrence of milky white kernels in response to assimilate supply. In the cultivars used in this study, ‘Hatsuboshi’ was more sensitive to the low assimilate supply than ‘Koshihikari’.  相似文献   

15.
The effect of defoliation on the vegetative, early reproductive and inflorescence stages of tiller development, changes in the dry‐matter yield of leaf, stem and inflorescence and the associated changes in forage quality was determined on plants of annual ryegrass (Lolium rigidum Gaud.) and Italian ryegrass (L. multiflorum Lam.). The field study comprised seventy‐two plots of 1 m × 2 m, sown with one annual ryegrass and seven Italian ryegrass cultivars with a range of heading dates from early to late; defoliation commenced 6 weeks after germination. During the vegetative stage of growth, plots were defoliated when the tillers had three fully expanded leaves (three‐leaf stage). During the early reproductive stage of growth, to simulate a cut for silage, plots were defoliated 6–7 weeks after 0·10 of the tillers displayed nodal development. The subsequent regrowth was defoliated every 3 weeks. Assessments of changes in tiller density, yield and quality were made in the growth cycle that followed three contrasting cutting treatments during the winter–spring period (from 10 July). In treatment 1, this growth cycle (following closing‐up before a subsequent conservation cut) commenced on 7 August following two defoliations each taken when the tillers were at the three‐leaf stage. In treatment 2, the growth cycle commenced on 16 October following: for early‐maturing cultivars, two cuts at the three‐leaf stage, a cut for silage and an additional regrowth cut; for medium‐maturing cultivars three cuts at the three‐leaf stage and a cut for silage; and late‐maturing cultivars, five cuts at the three‐leaf stage. In treatment 3, defoliation up to 16 October was as for treatment 2, but the growth cycle studied started on 27 November following two additional regrowth cuts for early‐ and medium‐maturing cultivars and cut for silage for the late‐maturing cultivars. Tiller development for all cultivars was classified into three stages; vegetative, early reproductive and inflorescence. In treatment 1, in vitro dry‐matter digestibility (IVDMD) and crude protein (CP) content were negatively associated with maturation of tillers. IVDMD ranged from 0·85 to 0·60 and CP ranged from 200 to less than 100 g kg–1 dry matter (DM) during the vegetative and inflorescence stages respectively. This large reduction in forage quality was due to an increase in the proportion of stem, inflorescence and dead material, combined with a reduction in the IVDMD and CP content of the stem. A high level of forage quality was retained for longer with later‐maturing cultivars, and/or when vegetative tillers were initiated from the defoliation of early reproductive tillers (treatments 2 and 3). However, 15 weeks after the closing‐up date in treatment 1, defoliation significantly reduced the density of inflorescences with means (±pooled s.e_m.) of 1560, 1178 and 299 ± 108 tillers m–2, and DM yield of inflorescence with means of 3·0, 0·6 and 0·1 ± 0·15 t ha–1 for treatments 1, 2 and 3 respectively. This study supports the recommendation that annual and Italian ryegrass cultivars should be classified according to maturity date based on the onset of inflorescence emergence, and that the judicious defoliation of early reproductive tillers can be used to promote the initiation of new vegetative tillers which in turn will retain forage quality for longer.  相似文献   

16.
Abstract This field study investigated the effect of timing of nitrogen (N) fertilizer application in spring on the survival of grazed perennial ryegrass (Lolium perenne cv. Dobson and Yatsyn) over summer in a subtropical environment. There were five N fertilizer treatments: no applied N, 46 kg N ha?1 on 22 October or 22 November or 22 December, or on 22 October and again on 22 December. Water‐soluble carbohydrate (WSC) concentration of perennial ryegrass plants entering the summer was altered by varying defoliation frequency, with defoliation interval based on the number of leaves per tiller. Frequent defoliation was set at a regrowth level of one leaf per tiller and less frequent defoliation at a regrowth level of three leaves per tiller, over a total of two by three‐leaf per tiller regrowth periods. Application of N fertilizer was found to have no significant effect (P > 0·05) on survival of perennial ryegrass plants over summer. On the other hand, defoliation had a marked effect on perennial ryegrass persistence, with frequent defoliation decreasing ryegrass plant density (51 vs. 88 plants m?2; P < 0·001) and increasing the density of tropical weed grasses (99 vs. 73 plants m?2; P < 0·001) by autumn. Frequently defoliated plants had a lower stubble WSC content on a per plant basis than less frequently defoliated plants in spring (103 vs. 201 mg per plant; P < 0·001) and summer (59 vs. 101 mg per plant; P < 0·001). The lower WSC content was associated with a smaller root system in spring (1·50 vs. 2·14 g per plant; P < 0·001) and autumn (1·79 vs. 2·66 g per plant; P < 0·01), and this was reflected in 0·29 more plants being pulled from the soil by livestock between November 1996 and April 1997. Rhizoctonia fungus was associated with roots of pulled plants, but not with roots of seemingly healthy plants, indicating that this fungus may have a role in a weakened root system, which was more prone to sod pulling. Nitrogen applied in October and November resulted in a reduced WSC concentration, although the effect was restricted to 1 month after N application. The present study indicates that survival of perennial ryegrass plants over the summer in a subtropical region is prejudiced by frequent defoliation, which is associated with a lower WSC concentration and a shallower root system. Under grazing, sod pulling is a reflection of this weaker root system and contributes to plant mortality.  相似文献   

17.
The study evaluated the plasticity of Chloris gayana Kunth cv. Fine Cut to defoliation in terms of tiller size/density compensation (SDC). Twelve mini‐swards were grown in a greenhouse under non‐limiting water and nutrient availabilities for 188 d. Four defoliation treatments were applied as a factorial arrangement of two defoliation frequencies and intensities: 80L, 80H, 100L and 100H (80 and 100 denote percentage of photosynthetically active radiation intercepted at defoliation; L and H denote stubble LAIs of 0·6 and 1·75, respectively). Tiller density, demography, dry weight, leaf area and volume were determined over the final 77 d of the experiment. SDC was observed across 80H and both 100 treatments. The estimated slope of the relationship between tiller size and density was close to ?5/2, the deviation from the ?3/2 line proposed for undefoliated swards being related to changes in LAI and tiller leaf area/volume ratio. The most severe defoliation regime, 80L, resulted in a lower tiller population density relative to the compensation line, suggesting that this defoliation management shifted the species beyond its range of phenotypic plasticity. Cumulative herbage production was significantly reduced in 80L. Despite the similar herbage production of 80H and both 100 treatments, the former was the most favourable defoliation regime for optimizing leafiness and productivity.  相似文献   

18.
Regrowth of 3- and 4-month old (‘young’ and ‘old’ respectively) sheep's burnet [Sanguisorba minor ssp. muricata (Spach) Briq.] was studied under limiting and non-limiting moisture conditions in a glasshouse. Moisture deficits were imposed by using a single cycle of withholding moisture until first wilting. Plants of each age were defoliated severely at three levels which represented approximately 80–100% canopy removal. These levels were based on the proportion retained of the eight most mature leaves on each plant and were referred to as complete [0% residual leaf area (rLA)] and partial [50% rLA (four leaves) and 100% rLA (eight leaves)] defoliation. Vegetative growth and total non-structural carbohydrate (TNC) levels were studied. Leaf number (0-8 leaves), area (0-115 cm2) and dry weight (0-1·0 g) differed (P < 0·05) between defoliation intensities at the start of regrowth, while stubble (1·2 g) and root (12.·6 g) dry weights were similar. Soluble sugars [< 6% dry matter (DM)] and starch (< 1% DM) occurred in leaf, stubble and root. Old plants were morphologically and physiologically more developed than young plants. For example, stubble (2·0 g) and root (21·5 g) dry weights of old plants were greater (P < 0·05) than those of young plants (04 and 3·7 g respectively). Defoliation intensity had a major effect on regrowth, with completely defoliated plants at the final harvest having leaf numbers (forty-nine leaves) and areas (235 cm2) almost twice those of partially defoliated plants. Stubble soluble sugar levels (38% DM) were lower than those of partially defoliated plants (5·5% DM), and it was suggested that these contributed to regrowth. Moisture regime had a negligible influence on plant growth. However, plants in the dry regime had soluble sugar levels 1·4 (stubble) -1·7 (roots) times higher than those watered adequately, which suggested that plants adjusted to the water depletion. The effects of plant age on regrowth were similar for most characters, but the larger and physiologically more mature old plants would probably be more tolerant of successive defoliations.  相似文献   

19.
Leaf stage‐dependent defoliation is linked to the plant's physiological status and may be a more suitable criterion than time‐based intervals for harvesting forage grasses, but no reports of research with annual ryegrass (Lolium multiflorum Lam. var. westerwoldicum) were found. To address this, a 2‐year field study was carried out at Raymond, MS, on a Loring silt loam soil (fine‐silty, mixed, thermic Typic Fragiudalfs). Forage production, morphological characteristics and nutritive value responses to defoliation based on leaf stage (2, 3 and 4 leaves per tiller) and two residual stubble heights (RSH; 5 and 10 cm) of a tetraploid (“Maximus”) vs. a diploid (“Marshall”) cultivar of annual ryegrass were quantified. Forage harvested, in 2011, increased linearly as leaf stage increased from 7.3 to 8.8 Mg/ha, but during 2012 was least (7.0 Mg/ha) at 3‐leaf stage and similar at the other two leaf stages (7.6 Mg/ha). Tiller density was less for Maximus (1,191 tillers/m2) than for Marshall (1,383 tillers/m2). Leaf blade proportion decreased with increasing leaf stage and was greater by 9% for Maximus than for Marshall. Generally, forage nutritive value became less desirable with increasing leaf stage. There was a dichotomy in forage harvested and nutritive value responses, but maximum forage productivity was achieved when annual ryegrass was defoliated at the 4‐leaf stage interval.  相似文献   

20.
A field study was carried out to quantify the compensation capacity of Bacillus thuringiensis (Bt)-transgenic cotton to simulated damage by manually removing squares during the early growing season in 2004 and 2005 in combination with CO2 levels (ambient CO2 and elevated CO2). Treatments included: initial squares were wholly (100%) removed manually for 1 week (i.e., SR1 treatment) and for 2 consecutive weeks (i.e., SR2 treatment). Plant leaf area was measured every 2 weeks, and plant root, stem, leaf, shatters, boll dry weight and lint yield and maturity were measured at harvest. Significantly higher leaf area per plant was observed on each sampling date for SR1 and SR2 treatments compared with control (SR0) treatment in 2004 and 2005 under elevated CO2. Significantly higher lint yield and maturity were observed for SR0, SR1 and SR2 treatments under elevated CO2 in 2004 and 2005. CO2 concentration and square removal significantly affected plant lint yield and maturity. Moreover, the interaction between CO2 concentration × square removal had a significant effect on plant leaf dry weight, lint yield and maturity. Our results indicated that transgenic cotton plants can compensate for the manual removal of 100% of the initial squares for 1 and 2 weeks under ambient and elevated CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号